植物生态学报 ›› 2017, Vol. 41 ›› Issue (7): 707-715.DOI: 10.17521/cjpe.2016.0247
所属专题: 生物多样性
• 研究论文 • 下一篇
赵鸣飞1,2, 薛峰1,2, 王宇航1,2, 王国义1,2, 邢开雄1,2, 康慕谊1,2,*(), 王菁兰3
收稿日期:
2016-07-21
接受日期:
2017-04-05
出版日期:
2017-07-10
发布日期:
2017-08-21
通讯作者:
康慕谊
作者简介:
* 通信作者Author for correspondence (E-mail:
基金资助:
Ming-Fei ZHAO1,2, Feng XUE1,2, Yu-Hang WANG1,2, Guo-Yi WANG1,2, Kai-Xiong XING1,2, Mu-Yi KANG1,2,*(), Jing-Lan WANG3
Received:
2016-07-21
Accepted:
2017-04-05
Online:
2017-07-10
Published:
2017-08-21
Contact:
Mu-Yi KANG
About author:
KANG Jing-yao(1991-), E-mail:
摘要:
物种多样性格局及其成因是生态学的经典问题之一。谱系方法将演化信息(即物种亲缘关系)整合到群落学研究中, 给群落学研究带来了全新视角。该研究以山西芦芽山针叶林冠层下草本群落为研究对象, 将群落物种组成数据、厘定有进化时间的谱系树与地形、土壤等生境数据相结合, 运用一般线性回归、基于距离矩阵的多元回归和谱系结构主坐标分析(PCPS)等统计方法, 探究了草本群落谱系结构与谱系多样性的海拔格局及其与生境因子的关系。结果表明: 所有样地的谱系结构指标均落在随机置信带之内, 说明中性因素对草本群落构建的影响较为强烈。同时,谱系结构与海拔梯度之间存在显著的正线性关系, 暗示确定性过程的作用也不可忽略, 种间竞争排斥可能促进了低海拔地区谱系结构呈发散趋势, 而高海拔的生境过滤引发了谱系聚集趋势。基于最近谱系距离的beta多样性与海拔差异之间呈极显著正相关关系, 同样反映了草本层物种集聚受到了生境过滤的显著影响。PCPS模型前两轴代表了55.9%的谱系-物种组成变异, 海拔是引起该变异的关键因子; PCPS二维排序图显示, 高海拔地区群落的谱系聚集可能由菊科、禾本科等大科所主导, 低海拔则显示出较高的演化分支多样性, 从而表现出谱系发散。综上所述, 该研究揭示了山西芦芽山山地针叶林冠层下草本群落谱系多样性格局, 并初步明晰了主要生态过程对物种集聚的影响规律。
赵鸣飞, 薛峰, 王宇航, 王国义, 邢开雄, 康慕谊, 王菁兰. 山西芦芽山针叶林草本层群落谱系结构与多样性的海拔格局. 植物生态学报, 2017, 41(7): 707-715. DOI: 10.17521/cjpe.2016.0247
Ming-Fei ZHAO, Feng XUE, Yu-Hang WANG, Guo-Yi WANG, Kai-Xiong XING, Mu-Yi KANG, Jing-Lan WANG. Phylogenetic structure and diversity of herbaceous communities in the conifer forests along an elevational gradient in Luya Mountain, Shanxi, China. Chinese Journal of Plant Ecology, 2017, 41(7): 707-715. DOI: 10.17521/cjpe.2016.0247
图1 芦芽山针叶林草本群落谱系结构的海拔格局。
Fig. 1 Elevational patterns of the phylogenetic structures of herbaceous assemblages in the coniferous forest plots in Luya Mountain.
图2 芦芽山针叶林草本层谱系beta多样性与海拔差异之间的关系。
Fig. 2 The relationships of phylogenetic beta diversity with elevational distance for the herbaceous plants assemblages in the coniferous forest plots in Luya Mountain.
图3 草本群落物种分布、谱系结构与环境因子之间相互关系的谱系结构主坐标分析(PCPS)排序图。●, 草本植物种, 包含5种以上的科以彩色显示; Ele, 海拔; BA, 胸高断面积和。
Fig. 3 Scatter diagram between the first two axes of the principal coordinates of phylogenetic structure (PCPS) for herbaceous plants occurring in the coniferous forest plots in Luya Mountain. Color points represent large families (>5 species) grouped in monocots and dicotyledon clades. Ele, elevation; BA, total basal area of breast height.
环境因子 Environmental variables | 第1排序轴 PCPS 1 | 第2排序轴 PCPS 2 | R2 | p |
---|---|---|---|---|
海拔 Elevation | -0.495 | 0.869 | 0.653 8 | 0.001 |
坡向 Aspect | -0.620 | 0.784 | 0.203 9 | 0.224 |
坡度 Slope | 0.305 | -0.952 | 0.290 0 | 0.109 |
冠层高 Delta height | 0.296 | -0.955 | 0.145 6 | 0.349 |
胸高断面积和 Total basal area of breast height | -0.701 | 0.713 | 0.359 0 | 0.049 |
立木密度 Stem density | 0.300 | 0.954 | 0.156 9 | 0.325 |
土壤深度 Soil depth | -0.436 | -0.900 | 0.175 0 | 0.289 |
凋落物厚度 Litter thickness | -0.762 | 0.648 | 0.010 6 | 0.928 |
土壤有机碳 Soil organic carbon | -0.914 | -0.406 | 0.183 4 | 0.267 |
土壤总氮 Soil total nitrogen | -0.384 | -0.923 | 0.134 8 | 0.389 |
土壤总磷 Soil total phosphorus | 0.165 | 0.986 | 0.045 5 | 0.733 |
表1 环境因子与谱系结构主坐标分析(PCPS)前两排序轴的关系
Table 1 Correlations between the first two constrained ordination axes (PCPS 1 and PCPS 2) and environmental factors
环境因子 Environmental variables | 第1排序轴 PCPS 1 | 第2排序轴 PCPS 2 | R2 | p |
---|---|---|---|---|
海拔 Elevation | -0.495 | 0.869 | 0.653 8 | 0.001 |
坡向 Aspect | -0.620 | 0.784 | 0.203 9 | 0.224 |
坡度 Slope | 0.305 | -0.952 | 0.290 0 | 0.109 |
冠层高 Delta height | 0.296 | -0.955 | 0.145 6 | 0.349 |
胸高断面积和 Total basal area of breast height | -0.701 | 0.713 | 0.359 0 | 0.049 |
立木密度 Stem density | 0.300 | 0.954 | 0.156 9 | 0.325 |
土壤深度 Soil depth | -0.436 | -0.900 | 0.175 0 | 0.289 |
凋落物厚度 Litter thickness | -0.762 | 0.648 | 0.010 6 | 0.928 |
土壤有机碳 Soil organic carbon | -0.914 | -0.406 | 0.183 4 | 0.267 |
土壤总氮 Soil total nitrogen | -0.384 | -0.923 | 0.134 8 | 0.389 |
土壤总磷 Soil total phosphorus | 0.165 | 0.986 | 0.045 5 | 0.733 |
[1] | APG III (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III.Botanical Journal of the Linnean Society, 161, 105-121. |
[2] | Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008). Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity.Proceedings of the National Academy of Sciences of the United States of American, 105, 11505-11511. |
[3] | Cavender-Bares J, Kozak KH, Fine PV, Kembel SW (2009). The merging of community ecology and phylogenetic biology.Ecology Letters, 12, 693-715. |
[4] | Cook JE (2015). Structural effects on understory attributes in second-growth forests of northern Wisconsin, USA.Forest Ecology and Management, 347, 188-199. |
[5] | Donoghue MJ (2008). Phylogenetic perspective on the distribution of plant diversity.Proceedings of the National Academy of Sciences of the United States of American, 105, 11549-11555. |
[6] | Duarte LDS (2011). Phylogenetic habitat filtering influences forest nucleation in grasslands.Oikos, 120, 208-215. |
[7] | Elton C (1946). Competition and the structure of ecological communities.Journal of Animal Ecology, 15, 54-68. |
[8] | Fine PVA, Kembel SW (2011). Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities.Ecography, 34, 552-565. |
[9] | Gaston KJ (2000). Global patterns in biodiversity.Nature, 405, 220-227. |
[10] | Gilbert B, Lechowicz MJ (2004). Neutrality, niches, and dispersal in a temperate forest understory.Proceedings of the National Academy of Sciences of the United States of America, 101, 7651-7656. |
[11] | Gilliam FS (2007). The ecological significance of the herbaceous layer in temperate forest ecosystems.BioScience, 57, 845-858. |
[12] | Graham CH, Fine PV (2008). Phylogenetic beta diversity: Linking ecological and evolutionary processes across space in time. Ecology Letters, 11, 1265-1277. |
[13] | Graham CH, Mcguire JA (2009). Phylogenetic structure in tropical hummingbird communities.Proceedings of the National Academy of Sciences of the United States of American, 106, 19673-19678. |
[14] | Hardy OJ, Senterre B (2007). Characterizing the phylogenetic structure of communities by an additive partitioning of phylogenetic diversity.Journal of Ecology, 95, 493-506. |
[15] | Hawkins BA, Rueda M, Rangel TF, Field R, Diniz-Filho JAF (2014). Community phylogenetics at the biogeographical scale: Cold tolerance, niche conservatism and the structure of North American forests.Journal of Biogeography, 41, 23-38. |
[16] | Helmus M, Savage K, Diebel MJ, Ives A (2007). Separating the determinants of phylogenetic community structure.Ecology Letters, 10, 917-925. |
[17] | Kembel SW, Hubbell SP (2006). The phylogenetic structure of a neotropical forest tree community.Ecology, 87, 86-99. |
[18] | Kluge J, Kessler M (2011). Phylogenetic diversity, trait diversity and niches: Species assembly of ferns along a tropical elevational gradient.Journal of Biogeography, 38, 394-405. |
[19] | Körner C (2007). The use of “altitude” in ecological research.Trends in Ecology & Evolution, 22, 569-574. |
[20] | Latham RE, Ricklefs RE (1993). Global patterns of tree species richness in moist forests: Energy-diversity theory does not account for variation in species richness.Oikos, 67, 325-333. |
[21] | Li XH, Zhu XX, Niu Y, Sun H (2014). Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, southwest China.Journal of Systematics and Evolution, 52, 280-288. |
[22] | Li YJ, Wang SY, Niu JJ, Fang KY, Li XL, Li Y, Bu WL, Li YH (2016). Climate-adial growth relationship of Larix principis-rupprechtii at different altitudes on Luya Mountain. Acta Ecologica Sinica, 36, 1608-1618. (in Chinese with English abstract)[李颖俊, 王尚义, 牛俊杰, 方克艳, 李晓岚, 栗燕, 布文丽, 李玉晗 (2016). 芦芽山华北落叶松(Larix principis-rupprechtii)树轮宽度年表对气候因子的响应. 生态学报, 36, 1608-1618.] |
[23] | Lichstein JW (2007). Multiple regression on distance matrices: A multivariate spatial analysis tool.Plant Ecology, 188, 117-131. |
[24] | Lomolino MV (2001). Elevation gradients of species-density: Historical and prospective views.Global Ecology Biogeography, 10, 3-13. |
[25] | Losos JB (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species.Ecology Letters, 11, 995-1003. |
[26] | Lozupone CA, Hamady M, Kelley ST, Rob K (2007). Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities.Applied & Environmental Microbiology, 73, 1576-1585. |
[27] | Lu MM, Huang XC, Ci XQ, Yang GP, Li J (2014). Phylogenetic community structure of subtropical forests along elevational gradients in Ailao Mountains of southwest China.Biodiversity Science, 22, 438-448. (in Chinese with English abstract)[卢孟孟, 黄小翠, 慈秀芹, 杨国平, 李捷 (2014). 沿海拔梯度变化的哀牢山亚热带森林群落谱系结构. 生物多样性, 22, 438-448.] |
[28] | Machac A, Janda M, Dunn RR, Sanders NJ (2011). Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on diversity.Ecography, 34, 364-371. |
[29] | Márialigeti S, Tinya F, Bidló A, Ódor P (2016). Environmental drivers of the composition and diversity of the herb layer in mixed temperate forests in Hungary.Plant Ecology, 217, 549-563. |
[30] | McCain CM (2009). Global analysis of bird elevational diversity.Global Ecology and Biogeography, 18, 346-360. |
[31] | Oommen MA, Shanker K (2005). Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants.Ecology, 86, 3039-3047. |
[32] | Pillar VD, Duarte LDS (2010). A framework for metacommunity analysis of phylogenetic structure.Ecology Letters, 13, 587-596. |
[33] | Qian H, Hao Z, Zhang J (2014). Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China.Journal of Plant Ecology, 7, 154-165. |
[34] | Rahbek C (2005). The role of spatial scale and the perception of large-scale species-richness patterns.Ecology Letters, 8, 224-239. |
[35] | Ricklefs RE (2004). A comprehensive framework for global patterns in biodiversity.Ecology Letters, 7, 1-15. |
[36] | Roberts DW, Cooper SV (1989). Concepts and techniques of vegetation mapping. In: Ferguson D, Morgan P, Johnson FD eds. Land Classifications Based on Vegetation: Applications for Resource Management, General Technical Report INF-257. Department of Agriculture, Forest Service, Intermountain Research Station, Odgen, USA. 90-96. |
[37] | Sheldon KS, Yang S, Tewksbury JJ (2011). Climate change and community disassembly: Impacts of warming on tropical and temperate montane community structure.Ecology Letters, 14, 1191-1200. |
[38] | Soininen J, McDonald R, Hillebrand H (2007). The distance decay of similarity in ecological communities.Ecography, 30, 3-12. |
[39] | Stevens GC (1992). The elevational gradient in altitudinal range: An extension of Rapoport’s latitudinal rule to altitude.The American Naturalist, 140, 893-911. |
[40] | Swenson NG (2011). Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities.PLOS ONE, 6, e21264. doi: 10.1371/journal. pone.0021264. |
[41] | Swenson NG, Anglada-Cordero P, Barone JA (2011). Deterministic tropical tree community turnover: Evidence from patterns of functional beta diversity along an elevational gradient.Proceedings of the Royal Society of London B: Biological Sciences, 278, 877-884. |
[42] | Tang ZY, Fang JY, Chi XL, Feng JM, Liu YN, Shen ZH,Wang XP, Wang ZH, Wu XP, Zheng CY (2012a). Patterns of plant beta-diversity along elevational and latitudinal gradients in mountain forests of China.Ecography, 35, 1083-1091. |
[43] | Tang ZY, Fang JY, Chi XL, Yang YY, Ma WH, Mohhamot A, Guo ZD, Liu YN, Gaston KJ (2012b). Geography, environment, and spatial turnover of species in China’s grasslands.Ecography, 35, 1103-1109. |
[44] | Tello JS, Myers JA, Macía MJ, Fuentes AF, Cayola L, Arellano G, Loza MI, Torrez V, Cornejo M, Miranda TB (2015). Elevational gradients in β-diversity reflect variation in the strength of local community assembly mechanisms across spatial scales.PLOS ONE, 10, e0121458. doi: 10.1371/ journal.pone.0121458. |
[45] | Vamosi SM, Heard SB, Vamosi JC, Webb CO (2009). Emerging patterns in the comparative analysis of phylogenetic community structure.Molecular Ecology, 18, 572-592. |
[46] | Webb CO (2000). Exploring the phylogenetic structure of ecological communities: An example for rain forest trees.The American Naturalist, 156, 145-155. |
[47] | Webb CO, Ackerly DD, Kembel SW (2008). Phylocom: Software for the analysis of phylogenetic community structure and trait evolution.Bioinformatics, 24, 2098-2100. |
[48] | Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002). Phylogenies and community ecology.Annual Review of Ecology and Systematics, 33, 475-505. |
[49] | Webb CO, Donoghue MJ (2005). Phylomatic: Tree assembly for applied phylogenetics.Molecular Ecology Notes, 5, 181-183. |
[50] | Wiens JJ, Donoghue MJ (2004). Historical biogeography, ecology and species richness.Trends in Ecology & Evolution, 19, 639-644. |
[51] | Wiens JJ, Parra-Olea G, García-París M, Wake DB (2007). Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders.Proceedings of the Royal Society of London B: Biological Sciences, 274, 919-928. |
[52] | Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB (2014). Three keys to the radiation of angiosperms into freezing environments.Nature, 506, 89-92. |
[53] | Zhang JT (1989). Vertical zone of vegetation in Luya Mountain in Shanxi Province.Scientia Geographica Sinica, 9, 346-353. (in Chinese with English abstract)[张金屯 (1989). 山西芦芽山植被垂直带的划分. 地理科学, 9, 346-353.] |
[54] | Zhang WT, Jiang Y, Wang MC, Zhang LN, Dong MY (2015). Responses of radial growth in Larix principis-rupprechtii to climate change along an elevation gradient on the southern slope of Luya Mountain.Acta Ecologica Sinica, 35, 1-10. (in Chinese with English abstract)[张文涛, 江源, 王明昌, 张凌楠, 董满宇 (2015). 芦芽山阳坡不同海拔华北落叶松径向生长对气候变化的响应. 生态学报, 35, 1-10.] |
[1] | 张效境, 梁潇洒, 马望, 王正文. 呼伦贝尔草地植物茎秆和叶片中养分的时间动态与回收[J]. 植物生态学报, 2021, 45(7): 738-748. |
[2] | 黄刚, 赵学勇, 苏延桂. 科尔沁沙地3种草本植物根系生长动态[J]. 植物生态学报, 2007, 31(6): 1161-1167. |
[3] | 刘鹏, 徐根娣, 郭水良, 汪敏. 南方4种草本植物对铝胁迫生理响应的研究[J]. 植物生态学报, 2005, 29(4): 644-651. |
[4] | 牛书丽, 蒋高明, 高雷明, 李永庚, 刘美珍. 内蒙古浑善达克沙地97种植物的光合生理特征(英文)[J]. 植物生态学报, 2003, 27(3): 318-324. |
[5] | 李燕军. 管涔山北部寒温性针叶林下草本植物分布特点分析[J]. 植物生态学报, 1986, 10(3): 218-227. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19