植物生态学报 ›› 2019, Vol. 43 ›› Issue (5): 437-446.DOI: 10.17521/cjpe.2018.0293
艾沙江•阿不都沙拉木1,2,迪丽娜尔•阿布拉1,张凯1,买热也木古•吐尔逊1,卡迪尔•阿布都热西提1,2,*(),李玲1,2,*()
收稿日期:
2018-11-17
接受日期:
2019-04-17
出版日期:
2019-05-20
发布日期:
2019-10-18
通讯作者:
卡迪尔?阿布都热西提,李玲
基金资助:
Aysajan ABDUSALAM1,2,Dilinaer ABULA1,ZHANG Kai1,Maireyemugu TUERXUN1,Kadir ABDULRASHID1,2,*(),LI Ling1,2,*()
Received:
2018-11-17
Accepted:
2019-04-17
Online:
2019-05-20
Published:
2019-10-18
Contact:
Kadir ABDULRASHID,LI Ling
Supported by:
摘要:
喀什霸王(Zygophyllum kaschgaricum)是生长于中国新疆南部荒漠环境的稀有种及二级保护植物。当前, 该物种在自然种群中呈分散式及片段化分布, 且种群密度低, 种群老龄化较严重。因此, 为了了解该物种种子萌发特性及其对荒漠环境的响应, 该文采用室内控制实验方法, 对该物种的自然坐果率、结籽率、种子吸水特性、种子休眠和萌发特性及对干旱胁迫的响应进行了比较研究。结果表明: 喀什霸王在自然种群中的坐果率及结籽率较低, 且种子的败育率较高。不同干藏时间种子的吸水速率间存在显著差异; 随着干藏时间的延长, 种子的吸水率逐步增强。刚成熟的种子在不同温度及光周期下均可萌发; 其中高温(10/20 ℃, 20/30 ℃)及黑暗条件下的萌发率比低温(10/5 ℃, 5/2 ℃)及光照条件下的萌发率高。不同干藏时间的种子在不同浓度赤霉素(GA3)下的萌发率均较高; 但低温储藏时间对该物种种子的打破休眠及萌发率没有促进作用。以上结果说明该物种存在非深度生理休眠; 而干藏时间、高温且黑暗及高浓度(50 mmoloL -1) GA3是打破休眠及促进种子萌发的最合适条件。高温条件下的干旱胁迫对喀什霸王种子萌发具有抑制作用; 春季和秋季降水量决定种子的萌发率。总之, 喀什霸王种子在物候上表现出的春秋季萌动及非深度生理休眠以提高幼苗存活力及保障种群稳定性, 是一种对新疆南部干旱及高温胁迫荒漠环境的适应策略。
艾沙江•阿不都沙拉木, 迪丽娜尔•阿布拉, 张凯, 买热也木古•吐尔逊, 卡迪尔•阿布都热西提, 李玲. 喀什霸王的结实和种子萌发特性. 植物生态学报, 2019, 43(5): 437-446. DOI: 10.17521/cjpe.2018.0293
Aysajan ABDUSALAM, Dilinaer ABULA, ZHANG Kai, Maireyemugu TUERXUN, Kadir ABDULRASHID, LI Ling. Fruit set and seed germination traits of Zygophyllum kaschgaricum. Chinese Journal of Plant Ecology, 2019, 43(5): 437-446. DOI: 10.17521/cjpe.2018.0293
图1 喀什霸王自然种群的每月累计降水量和月平均气温(2015-2017年)(平均值±标准误差)。
Fig. 1 Monthly precipitation and monthly mean air temperatures in natural population of Zygophyllum kaschgaricum in (2015-2017)(mean ± SE).
图2 不同干藏时间喀什霸王种子的吸水曲线(平均值±标准误差)。
Fig. 2 Water uptake curves of Zygophyllum kaschgaricum seeds for different duration of dry storage at room temperatures (mean ± SE).
图3 室内干藏不同时间段(0、3、6及9个月)的喀什霸王种子在不同温度光照(A)及全黑暗(B)条件下的萌发率(平均值±标准误差)。不同小写字母表示同一温度不同干藏时间间存在显著差异(p < 0.05)。
Fig. 3 Effects of dry storage period (0、3、6 and 9 months) at room temperature on the germination rate of Zygophyllum kaschgaricum seeds in different temperature under light (A) and darkness (B) (mean ± SE). Bars with different lowercase letters indicate significant differences between different dry storage periods within a temperature range treatment (p < 0.05).
处理 Treatment | 自由度 Degree of freedom | 平方和 Sum of squares | 均方 Mean square | F | p |
---|---|---|---|---|---|
温度 Temperature (A) | 3 | 31 596.125 | 10 532.042 | 1 040.202 | <0.001 |
光照 Light (B) | 1 | 1 584.375 | 1 584.375 | 156.481 | <0.001 |
干藏时间 Storage time (C) | 3 | 17 573.458 | 857.819 | 578.550 | <0.001 |
A × B | 3 | 339.125 | 113.042 | 11.165 | <0.001 |
A × C | 9 | 1 966.375 | 218.486 | 21.578 | <0.001 |
B × C | 3 | 52.458 | 17.486 | 1.727 | 0.307 |
A × B × C | 9 | 902.042 | 100.227 | 9.898 | <0.001 |
合计 Total | 96 | 329 652 |
表1 光照条件、温度和干藏时间及三者之间交互作用对喀什霸王种子萌发率的影响
Table 1 Three-way ANoVA of effects of light condition, temperature and different dry storage period and their interactions on seed germination percentages of Zygophyllum kaschgaricum
处理 Treatment | 自由度 Degree of freedom | 平方和 Sum of squares | 均方 Mean square | F | p |
---|---|---|---|---|---|
温度 Temperature (A) | 3 | 31 596.125 | 10 532.042 | 1 040.202 | <0.001 |
光照 Light (B) | 1 | 1 584.375 | 1 584.375 | 156.481 | <0.001 |
干藏时间 Storage time (C) | 3 | 17 573.458 | 857.819 | 578.550 | <0.001 |
A × B | 3 | 339.125 | 113.042 | 11.165 | <0.001 |
A × C | 9 | 1 966.375 | 218.486 | 21.578 | <0.001 |
B × C | 3 | 52.458 | 17.486 | 1.727 | 0.307 |
A × B × C | 9 | 902.042 | 100.227 | 9.898 | <0.001 |
合计 Total | 96 | 329 652 |
图4 不同低温储藏时间(0, 3及6个月)处理的喀什霸王种子在不同温度光照(A)及全黑暗(B)条件下的萌发率(平均值±标准误差)。不同小写字母表示同一温度不同低温储藏时间间存在显著差异(p < 0.05)。
Fig. 4 Effects of storage periods (0, 3 and 6 months) at low temperature on the germination rate of Zygophyllum kaschgaricum seeds in different temperature under light (A) and darkness (B) (mean ± SE). Bars with different lowercase letters indicate significant differences between different storage periods within a temperature range treatment (p < 0.05).
图5 喀什霸王刚成熟(A, B)及干藏6个月(C, D)处理的种子在不同GA3浓度及不同温度光照(A, C)及全黑暗(B, D)条件下的萌发率(平均值±标准误差)。不同小字母表示同一温度不同GA3浓度间存在显著差异(p < 0.05)。
Fig. 5 Germination rate of Zygophyllum kaschgaricum seeds from post-harvest (A, B) and dry storage for 6 months (C, D) in different GA3 concentrations and temperature under light (A, C) and darkness (B, D) (mean ± SE). Bars with different lowercase letters indicate significant differences between GA3 concentrations within a temperature range treatment (p < 0.05).
处理Treatment | 自由度 Degree of freedom | 平方和 Sum of Squares | 均方 Mean Square | F | p |
---|---|---|---|---|---|
干藏时间 Storage time (A) | 1 | 6 007.688 | 6 007.688 | 283.06 | <0.001 |
温度 Temperature (B) | 3 | 37 412.38 | 12 470.79 | 587.58 | <0.001 |
光照Light (C) | 1 | 2 338.02 | 2 338.02 | 110.16 | <0.001 |
赤霉素 GA3 (D) | 3 | 38 984.708 | 12 994.903 | 612.275 | <0.001 |
A × B | 3 | 987.85 | 329.29 | 15.52 | <0.001 |
A × C | 1 | 70.08 | 70.08 | 3.30 | <0.072 |
A × D | 3 | 2 607.85 | 869.29 | 40.96 | <0.001 |
B × C | 3 | 312.60 | 104.20 | 4.91 | <0.001 |
B × D | 9 | 5 908.83 | 656.54 | 30.93 | <0.001 |
C × D | 3 | 109.19 | 36.40 | 1.72 | 0.167 |
A × B × C | 3 | 174.29 | 58.09 | 2.74 | <0.05 |
A × B × D | 9 | 1 051.60 | 116.85 | 5.51 | <0.001 |
A × C × D | 3 | 21.38 | 7.13 | 0.34 | 0.800 |
B × C × D | 9 | 130.85 | 14.54 | 0.69 | 0.721 |
A × B × C × D | 9 | 257.92 | 28.66 | 1.35 | 0.218 |
合计 Total | 192 | 1 047 186 |
表2 GA3浓度、光照条件、温度和干藏时间及四者之间交互作用对喀什霸王种子萌发的影响
Table 2 Four-way ANoVA of effects of light condition, temperature, GA3 concentration and different dry storage period and their interactions on seed germination rate of Zygophyllum kaschgaricum
处理Treatment | 自由度 Degree of freedom | 平方和 Sum of Squares | 均方 Mean Square | F | p |
---|---|---|---|---|---|
干藏时间 Storage time (A) | 1 | 6 007.688 | 6 007.688 | 283.06 | <0.001 |
温度 Temperature (B) | 3 | 37 412.38 | 12 470.79 | 587.58 | <0.001 |
光照Light (C) | 1 | 2 338.02 | 2 338.02 | 110.16 | <0.001 |
赤霉素 GA3 (D) | 3 | 38 984.708 | 12 994.903 | 612.275 | <0.001 |
A × B | 3 | 987.85 | 329.29 | 15.52 | <0.001 |
A × C | 1 | 70.08 | 70.08 | 3.30 | <0.072 |
A × D | 3 | 2 607.85 | 869.29 | 40.96 | <0.001 |
B × C | 3 | 312.60 | 104.20 | 4.91 | <0.001 |
B × D | 9 | 5 908.83 | 656.54 | 30.93 | <0.001 |
C × D | 3 | 109.19 | 36.40 | 1.72 | 0.167 |
A × B × C | 3 | 174.29 | 58.09 | 2.74 | <0.05 |
A × B × D | 9 | 1 051.60 | 116.85 | 5.51 | <0.001 |
A × C × D | 3 | 21.38 | 7.13 | 0.34 | 0.800 |
B × C × D | 9 | 130.85 | 14.54 | 0.69 | 0.721 |
A × B × C × D | 9 | 257.92 | 28.66 | 1.35 | 0.218 |
合计 Total | 192 | 1 047 186 |
图6 喀什霸王刚成熟(A, B)及室内干藏6月(C, D)处理的种子在不同浓度PEG溶液及不同温度光照(A, C)及全黑暗(B, D)条件下的萌发率(平均值±标准误差)。不同小写字母表示同一温度不同PEG浓度间存在显著差异(p < 0.05)。
Fig. 6 Germination rate of Zygophyllum kaschgaricum seeds from post-harvest (A, B) and dry storage for 6 months (C, D) in different PEG concentrations and temperature under light (A, C) and darkness (B, D) (mean ± SE). Bars with different lowercase letters indicate significant differences between PEG concentrations within a temperature range treatment (p < 0.05).
1 | Ahmad S, Ahmad R, Ashraf MY, Ashraf M, Waraich EA (2009). Sunflower (Helianthus annuus L.) response to drought stress at germination and seedling growth stages. Pakistan Journal of Botany, 41, 647-654. |
2 | Albrecht MA, McCarthy BC (2011). Variation in dormancy and germination in three co-occurring perennial forest herbs. Plant Ecology, 212, 1465-1477. |
3 | Baskin CC, Baskin JM (1988). Germination ecophysiology of herbaceous plant species in a temperate region. American Journal of Botany, 75, 286-305. |
4 | Baskin CC, Baskin JM (2014). Seed: Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego, USA. 215-375. |
5 | Baskin JM, Baskin CC (2004). A classification system for seed dormancy. Seed Science Research, 14, 1-16. |
6 | Brown AR, owena SF, Petersa J (2015). Climate change and pollution speed declines in zebra fish populations. Proceedings of the National Academy of the Sciences of the United States of America, 112, 1237-1246. |
7 | Casas RR, Kovach K, Dittmar E (2012). Seed after-ripening and dormancy determine adult life history independently of germination timing. New Phytologist, 194, 868-879. |
8 | Copete MA, Herranz JM, Ferrandis P (2015). Annual dormancy cycles in buried seeds of shrub species: Germination ecology of Sideritis serrata(Labiatae). Plant Biology, 17, 798-807. |
9 | Galloway LF, Etterson JR (2009). Plasticity to canopy shade in a monocarpic herb: Within- and between-generation effects. New Phytologist, 182, 1003-1012. |
10 | Gutterman Y (1993). Seed Germination in Desert Plants. Springer-Verlag, Berlin Heidelberg. |
11 | Gutterman Y (2000). Environmental factors and survival strategies of annual plant species in the Negev Desert, Israel. Plant Species Biology, 15, 113-125. |
12 | Huang ZY, Gutterman Y, Hu ZH, Zhang XS (2001). Seed germination in Artemisia sphaerocephala II. The influencing of environmental factors. Acta Phytoecologica Sinica, 25, 240-246. |
[ 黄振英, Gutterman Y, 胡正海, 张新时 (2001). 白沙蒿种子萌发特性的研究II. 环境因素的影响. 植物生态学报, 25, 240-246.] | |
13 | Kalisz S, Wardle GM (1994). Life history variation in Campanula americana(Campanulaceae): Population differentiation. American Journal of Botany, 81, 521-527. |
14 | Leadley P, Pereira HM, Alkemade R (2010). Biodiversity Scenarios: Projections of 21st Century Change in Biodiversity and Associated Ecosystem Services. Secretariat of the Convention on Biological Diversity, Montreal. 121-133. |
15 | Liu B, Lü XG, Jiang M, Zhang WG, Wu HT (2015). Effects of light and water depth on seed germination of Phragmites australis in the wetlands of Songnen Plain. Chinese Journal of Plant Ecology, 39, 616-620. |
[ 刘波, 吕宪国, 姜明, 张文广, 武海涛 (2015). 光照、水深交互作用对松嫩湿地芦苇种子萌发的影响. 植物生态学报, 39, 616-620.] | |
16 | Lu JJ, Tan DY, Baskin JM, Baskin CC (2014). Germination season and watering regime, but not seed morph, affect life history traits in a cold desert diaspore-heteromorphic annual. PLoS oNE, 9, e102018. DOI:10.1371/journal.pone.0102018. |
17 | Lu JJ, Zhou YM, Tan DY, Baskin CC, Baskin JM (2015). Seed dormancy in six cold desert Brassicaceae species with indehiscent fruits. Seed Science Research, 25, 276-285. |
18 | Mandák B (2001). Germination requirements of invasive and non-invasive Atriplex species: A comparative study. Flora, 198, 45-54. |
19 | Neaves LE, Eales J, Whitlock R (2015). The fitness consequences of inbreeding in natural populations and their implications for species conservation—A systematic map. Environmental Evidence, 4, 2-17. |
20 | Nordborg M, Bergelson J (1999). The effect of seed and rosette cold treatment on germination and flowering time in some Arabidopsis thaliana(Brassicaceae) ecotypes. American Journal of Botany, 86, 470-475. |
21 | Nurulla M, Baskin CC, Lu JJ, Tan DY, Baskin JM (2015). Intermediate morphophysiological dormancy allows for life-cycle diversity in the annual weed,Turgenia latifolia(Apiaceae). Australian Journal of Botany, 62, 630-637. |
22 | Parmesan C, Yohe G (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42. |
23 | Pluntz M, Coz SL, Peyrard N, Pradel R, Choquet R, Cheptou Po (2018). A general method for estimating seed dormancy and colonisation in annual plants from the observation of existing flora. Ecology Letters, 21, 1311-1318. |
24 | Qin HN, Zhao LN, Yu SX, Liu HY, Liu B, Xia NH, Peng H, Li ZY, Zhang ZX, He XJ, Yin LK, Lin YL, Liu QR, Hou YT, Liu Y, Liu QX, Cao W, Li JQ, Chen SL, Jin XH, Gao TG, Chen WL, Ma HY, Geng YY, Jin XF, Chang CY, Jiang H, Cai L, Zang CX, Wu JY, Ye JF, Lai YJ, Liu B, Lin QW, Xue NX (2017). Evaluating the endangerment status of China’s angiosperms through the red list assessment. Biodiversity Science, 25, 745-757. |
[ 覃海宁, 赵莉娜, 于胜祥, 刘慧圆, 刘博, 夏念和, 彭华, 李振宇, 张志翔, 何兴金, 尹林克, 林余霖, 刘全儒, 侯元同, 刘演, 刘启新, 曹伟, 李建强, 陈世龙, 金效华, 高天刚, 陈文俐, 马海英, 耿玉英, 金孝锋, 常朝阳, 蒋宏, 蔡蕾, 臧春鑫, 武建勇, 叶建飞, 赖阳均, 刘冰, 林秦文, 薛纳新 (2017). 中国被子植物濒危等级的评估. 生物多样性, 25, 745-757.] | |
25 | Ren H, Zhang QM, Lu HF, Liu HX, Guo QF, Wang J, Jian SG, Bao Ho (2012). Wild plant species with extremely small populations require conservation and reintroduction in China. AMBIo, 41, 913-917. |
26 | Soltani E, Gruber S, oveisi M, Salehi N, Alahdadi I, Javid MG (2017). Water stress, temperature regimes and light control induction, and loss of secondary dormancy in Brassica napus L. seeds. Seed Science Research, 27, 217-230. |
27 | Song NP, Wang X, Chen L, Xue Y, Chen J, Sui JM, Wang L, Yang XG (2018). Co-existence mechanisms of plant species within “soil islands” habitat of desert steppe. Biodiversity Science, 26, 667-677. |
[ 宋乃平, 王兴, 陈林, 薛毅, 陈娟, 随金明, 王磊, 杨新国 (2018). 荒漠草原“土岛”生境群落物种共存机制. 生物多样性, 26, 667-677.] | |
28 | Sun HZ, Lu JJ, Tan DY, Baskin JM, Baskin CC (2009). Dormancy and germination characteristics of the trimorphic achenes of Garhadiolus papposus( Asteraceae), an annual ephemeral from the Junggar Desert, China. South African Journal of Botany, 75, 537-545. |
29 | Sun QL, Zhang RH, Yi SG, Yang L, Li QY, Zhou JH, Lai LM, Jiang LH, Zheng YR (2019). Responses of germination and seedling emergence of Stipa bungeana to key environmental factors. Acta Ecologica Sinica, 39, 2034-2042. |
[ 孙清琳, 张瑞红, 易三桂, 杨柳, 李巧燕, 周继华, 来利明, 姜联合, 郑元润 (2019). 长芒草(Stipa bungeana)种子萌发与出苗对关键环境因子的响应. 生态学报, 39, 2034-2042.] | |
30 | Tobe K, Zhang L, Yu QG (2001). Characteristics of seed germination in five non-halophytic Chinese desert shrub species. Journal of Arid Environments, 47, 191-201. |
31 | Venable DL, Búrquez A, Corral G, Morales E, Espinosa F (1987). The ecology of seed heteromorphism in Heterosperma pinnatum in central Mexico. Ecology, 68, 65-76. |
32 | Western D (2001). Human-modified ecosystems and future evolution. Proceedings of the National Academy of Sciences of United States of America, 98, 5458-5465. |
33 | Xia Q, Maharajah P, Cueff G, Rajjouc L, Prodhommed D, Gibond Y, Baillya C, Corbineaua F, Meimouna P, El-Maarouf-Bouteau H (2018). Integrating proteomics and enzymatic profiling to decipher seed metabolism affected by temperature in seed dormancy and germination. Plant Science, 269, 118-125. |
34 | Yao H, Tan DY (2005). Size-dependent reproductive output and life-history strategies in four ephemeral species of Trigonella. Acta Phytoecologica Sinica, 29, 954-960. |
[ 姚红, 谭敦炎 (2005). 胡卢巴属4种短命植物个体大小依赖的繁殖输出与生活史对策. 植物生态学报, 29, 954-960.] | |
35 | Yin LK (2006). Rare, Endangered and Endemic Higher Plants in Xinjiang. Xinjiang Science and Technology Press, Ürü mqi. 35-45. |
[ 尹林克 (2006). 新疆珍稀濒危特有高等植物. 新疆科学技术出版社, 乌鲁木齐. 35-45.] | |
36 | Zhang WH, Xu XB, Zhou JY (2004). Distribution and bio- ecological characteristics of Abies chensiensis, an endangered plant. Chinese Biodiversity, 12, 419-426. |
[ 张文辉, 许晓波, 周建云 (2004). 濒危植物秦岭冷杉地理分布和生物生态学特性研究. 生物多样性, 12, 419-426.] |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 袁涵 钟爱文 刘送平 徐磊 彭焱松. 水毛花种子萌发特性的差异及休眠解除方法[J]. 植物生态学报, 2024, 48(5): 638-650. |
[3] | 李绍阳, 马红媛, 赵丹丹, 马梦谣, 亓雯雯. 火烧信号对种子萌发影响的研究进展[J]. 植物生态学报, 2021, 45(11): 1177-1190. |
[4] | 吴小琪, 杨圣贺, 黄力, 李笑寒, 杨超, 钱深华, 杨永川. 常绿阔叶林林冠环境对栲幼苗建成的影响[J]. 植物生态学报, 2019, 43(1): 55-64. |
[5] | 刘波, 吕宪国, 姜明, 张文广, 武海涛. 光照、水深交互作用对松嫩湿地芦苇种子萌发的影响[J]. 植物生态学报, 2015, 39(6): 616-620. |
[6] | 李晓娟, 王强, 倪穗, 阮晓, 王永红, 张焕, 王高峰. 栗与美国板栗化感作用的比较[J]. 植物生态学报, 2013, 37(2): 173-182. |
[7] | 陈志颖, 阮晓, 张玉竹, 潘存德, 王强. 3,4-二羟基苯乙酮胁迫对天山云杉种子萌发过程中内源植物激素含量变化的影响[J]. 植物生态学报, 2013, 37(12): 1114-1122. |
[8] | 刘会良, 张永宽, 张道远, 尹林克, 张元明. 不同居群准噶尔无叶豆果实和种子特性及种子萌发差异[J]. 植物生态学报, 2012, 36(8): 802-811. |
[9] | 张敏, 朱教君, 闫巧玲. 光对种子萌发的影响机理研究进展[J]. 植物生态学报, 2012, 36(8): 899-908. |
[10] | 王桔红, 马瑞君, 陈文. 冷层积和室温干燥贮藏对河西走廊8种荒漠植物种子萌发的影响[J]. 植物生态学报, 2012, 36(8): 791-801. |
[11] | 胡小文, 王娟, 王彦荣. 野豌豆属4种植物种子萌发的积温模型分析[J]. 植物生态学报, 2012, 36(8): 841-848. |
[12] | 杨帆, 曹德昌, 杨学军, 高瑞如, 黄振英. 盐生植物角果碱蓬种子二型性对环境的适应策略[J]. 植物生态学报, 2012, 36(8): 781-790. |
[13] | 刘文, 刘坤, 张春辉, 杜国祯. 种子萌发的积温效应——以青藏高原东缘的12种 菊科植物为例[J]. 植物生态学报, 2011, 35(7): 751-758. |
[14] | 申建红, 曾波, 类淑桐, 苏晓磊, 黄文军. 三峡水库消落区4种一年生植物种子的水淹耐受性及水淹对其种子萌发的影响[J]. 植物生态学报, 2011, 35(3): 237-246. |
[15] | 侯天文, 金辉, 刘红霞, 罗毅波. 实验室条件下五唇兰菌根真菌专一性研究[J]. 植物生态学报, 2010, 34(12): 1433-1438. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19