植物生态学报 ›› 2011, Vol. 35 ›› Issue (7): 751-758.DOI: 10.3724/SP.J.1258.2011.00751
所属专题: 青藏高原植物生态学:生理生态学
发布日期:
2011-08-18
通讯作者:
杜国祯
作者简介:
*E-mail: guozdu@lzu.edu.cnLIU Wen, LIU Kun, ZHANG Chun-Hui, DU Guo-Zhen*()
Published:
2011-08-18
Contact:
DU Guo-Zhen
摘要:
温度是影响种子萌发的重要的环境因素之一。该文以青藏高原东缘的12种菊科植物为研究对象, 结合Logistic函数和积温公式, 通过非线性回归方法估算种子萌发的最低温度和积温, 研究了种子萌发对不同温度的响应。研究结果表明: (1)青藏高原东缘的12种菊科植物种子萌发的最低温度的平均值为0 ℃, 积温的平均值为94.5 ℃·d。与前人的研究相比, 该研究中萌发的最低温度较低, 积温较高, 这是该区域菊科植物长期适应青藏高原特殊的温度环境的结果; (2)种子萌发的最低温度与积温之间存在着显著的负相关关系(p = 0.04)。萌发最低温度较低的物种积温较高, 避免了种子在多变的温度环境下较早萌发所遇到的风险; (3)种子大小与积温之间存在着显著的正相关关系(p = 0.01)。在萌发最低温度差别不大的情况下, 与大种子相比, 小种子萌发所需的积温较低, 萌发较快, 在群落演替的早期占有优势。
刘文, 刘坤, 张春辉, 杜国祯. 种子萌发的积温效应——以青藏高原东缘的12种 菊科植物为例. 植物生态学报, 2011, 35(7): 751-758. DOI: 10.3724/SP.J.1258.2011.00751
LIU Wen, LIU Kun, ZHANG Chun-Hui, DU Guo-Zhen. Effect of accumulated temperature on seed germination—a case study of 12 Compositae species on the eastern Qinghai-Tibet Plateau of China. Chinese Journal of Plant Ecology, 2011, 35(7): 751-758. DOI: 10.3724/SP.J.1258.2011.00751
物种名 Name of species | 千粒重±标准误差 Thousand-grain weight ± SE (g) |
---|---|
长毛风毛菊 Saussurea hieracioides | 1.614 9 ± 0.092 0 |
大耳叶风毛菊 Saussurea macrota | 1.766 3 ± 0.052 4 |
甘肃风毛菊 Saussurea kansuensis | 2.546 6 ± 0.093 5 |
火绒草 Leontopodium leontopodioides | 0.109 1 ± 0.011 3 |
戟叶火绒草 Leontopodium dedekensii | 0.077 4 ± 0.002 0 |
银叶火绒草 Leontopodium souliei | 0.077 2 ± 0.002 2 |
异羽千里光 Senecio diversipinnus | 0.515 8 ± 0.026 3 |
额河千里光 Senecio argunensis | 0.776 7 ± 0.011 4 |
密齿千里光 Senecio densiserratus | 0.556 7 ± 0.009 9 |
淡黄香青 Anaphalis flavescens | 0.071 0 ± 0.000 6 |
黄腺香青 Anaphalis aureo-punctata | 0.077 6 ± 0.001 0 |
尼泊尔香青 Anaphalis nepalensis | 0.255 0 ± 0.001 7 |
表1 物种名和种子大小
Table 1 List of species and their seed mass
物种名 Name of species | 千粒重±标准误差 Thousand-grain weight ± SE (g) |
---|---|
长毛风毛菊 Saussurea hieracioides | 1.614 9 ± 0.092 0 |
大耳叶风毛菊 Saussurea macrota | 1.766 3 ± 0.052 4 |
甘肃风毛菊 Saussurea kansuensis | 2.546 6 ± 0.093 5 |
火绒草 Leontopodium leontopodioides | 0.109 1 ± 0.011 3 |
戟叶火绒草 Leontopodium dedekensii | 0.077 4 ± 0.002 0 |
银叶火绒草 Leontopodium souliei | 0.077 2 ± 0.002 2 |
异羽千里光 Senecio diversipinnus | 0.515 8 ± 0.026 3 |
额河千里光 Senecio argunensis | 0.776 7 ± 0.011 4 |
密齿千里光 Senecio densiserratus | 0.556 7 ± 0.009 9 |
淡黄香青 Anaphalis flavescens | 0.071 0 ± 0.000 6 |
黄腺香青 Anaphalis aureo-punctata | 0.077 6 ± 0.001 0 |
尼泊尔香青 Anaphalis nepalensis | 0.255 0 ± 0.001 7 |
物种名 Name of species | $m\pm SE$ | $k\pm SE$ | $b\pm SE$ | ${{T}_{b}}\pm SE$(℃) | ${{\theta }_{T}}\left( 50\% \right)$(℃·d) | ${{R}^{2}}$ |
---|---|---|---|---|---|---|
长毛风毛菊 Saussurea hieracioides | 0.791 ± 0.023 | 0.094 ± 0.021 | 8.936 ± 2.003 | -0.361 ± 0.493 | 100.79 | 0.94 |
大耳叶风毛菊 Saussurea macrota | 0.642 ± 0.019 | 0.067 ± 0.015 | 6.791 ± 1.351 | -0.231 ± 0.573 | 119.62 | 0.92 |
甘肃风毛菊 Saussurea kansuensis | 0.587 ±0.015 | 0.090 ± 0.015 | 7.615 ± 1.137 | -0.007 ± 0.317 | 104.46 | 0.96 |
火绒草 Leontopodium leontopodioides | 0.878 ± 0.020 | 0.105 ± 0.022 | 7.865 ± 1.504 | -1.041 ± 0.467 | 77.72 | 0.95 |
戟叶火绒草 Leontopodium dedekensii | 0.767 ± 0.017 | 0.106 ± 0.017 | 7.383 ± 1.133 | 0.939 ± 0.246 | 75.37 | 0.96 |
银叶火绒草 Leontopodium souliei | 0.881 ± 0.025 | 0.073 ± 0.016 | 6.229 ± 1.314 | 0.792 ± 0.438 | 88.98 | 0.94 |
异羽千里光 Senecio diversipinnus | 0.698 ± 0.011 | 0.082 ± 0.010 | 8.543 ± 0.989 | -1.380 ± 0.362 | 115.32 | 0.99 |
额河千里光 Senecio argunensis | 0.884 ± 0.027 | 0.095 ± 0.021 | 8.161 ± 1.725 | 0.455 ± 0.382 | 89.00 | 0.94 |
密齿千里光 Senecio densiserratus | 0.842 ± 0.027 | 0.100 ± 0.019 | 8.589 ± 1.519 | 0.773 ± 0.269 | 89.82 | 0.94 |
淡黄香青 Anaphalis flavescens | 0.892 ± 0.012 | 0.121 ± 0.013 | 8.640 ± 0.897 | 1.452 ± 0.119 | 73.42 | 0.98 |
黄腺香青 Anaphalis aureo-punctata | 0.849 ± 0.016 | 0.070 ± 0.009 | 6.284 ± 0.762 | -0.320 ± 0.394 | 94.66 | 0.97 |
尼泊尔香青 Anaphalis nepalensis | 0.890 ± 0.031 | 0.081 ± 0.022 | 8.250 ± 2.154 | -0.762 ± 0.548 | 104.59 | 0.92 |
表2 通过方程(3)非线性回归分析得到的参数估计值m、k、b和Tb (±标准误差)以及通过方程(4)计算得到的积温平均值θT (50%)
Table 2 Estimates of parameter values m, k, b and Tb through nonlinear regression analysis by equation (3) and median accumulated temperature θT (50%) calculated from equation (4)
物种名 Name of species | $m\pm SE$ | $k\pm SE$ | $b\pm SE$ | ${{T}_{b}}\pm SE$(℃) | ${{\theta }_{T}}\left( 50\% \right)$(℃·d) | ${{R}^{2}}$ |
---|---|---|---|---|---|---|
长毛风毛菊 Saussurea hieracioides | 0.791 ± 0.023 | 0.094 ± 0.021 | 8.936 ± 2.003 | -0.361 ± 0.493 | 100.79 | 0.94 |
大耳叶风毛菊 Saussurea macrota | 0.642 ± 0.019 | 0.067 ± 0.015 | 6.791 ± 1.351 | -0.231 ± 0.573 | 119.62 | 0.92 |
甘肃风毛菊 Saussurea kansuensis | 0.587 ±0.015 | 0.090 ± 0.015 | 7.615 ± 1.137 | -0.007 ± 0.317 | 104.46 | 0.96 |
火绒草 Leontopodium leontopodioides | 0.878 ± 0.020 | 0.105 ± 0.022 | 7.865 ± 1.504 | -1.041 ± 0.467 | 77.72 | 0.95 |
戟叶火绒草 Leontopodium dedekensii | 0.767 ± 0.017 | 0.106 ± 0.017 | 7.383 ± 1.133 | 0.939 ± 0.246 | 75.37 | 0.96 |
银叶火绒草 Leontopodium souliei | 0.881 ± 0.025 | 0.073 ± 0.016 | 6.229 ± 1.314 | 0.792 ± 0.438 | 88.98 | 0.94 |
异羽千里光 Senecio diversipinnus | 0.698 ± 0.011 | 0.082 ± 0.010 | 8.543 ± 0.989 | -1.380 ± 0.362 | 115.32 | 0.99 |
额河千里光 Senecio argunensis | 0.884 ± 0.027 | 0.095 ± 0.021 | 8.161 ± 1.725 | 0.455 ± 0.382 | 89.00 | 0.94 |
密齿千里光 Senecio densiserratus | 0.842 ± 0.027 | 0.100 ± 0.019 | 8.589 ± 1.519 | 0.773 ± 0.269 | 89.82 | 0.94 |
淡黄香青 Anaphalis flavescens | 0.892 ± 0.012 | 0.121 ± 0.013 | 8.640 ± 0.897 | 1.452 ± 0.119 | 73.42 | 0.98 |
黄腺香青 Anaphalis aureo-punctata | 0.849 ± 0.016 | 0.070 ± 0.009 | 6.284 ± 0.762 | -0.320 ± 0.394 | 94.66 | 0.97 |
尼泊尔香青 Anaphalis nepalensis | 0.890 ± 0.031 | 0.081 ± 0.022 | 8.250 ± 2.154 | -0.762 ± 0.548 | 104.59 | 0.92 |
图3 12种植物在5个温度梯度下实验的累积萌发率和拟合得到的积温-萌发曲线(异羽千里光为4个温度梯度)。
Fig. 3 Cumulative germination and fitted accumulated temperature germination curves of 12 species at five temperature gradients (for Senecio diversipinnus, only four temperature gradients were tested).
[1] | Alvarado V, Bradford KJ (2002). A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell & Environment, 25, 1061-1069. |
[2] | Angus JF, Cunningham RB, Moncur MW, MackKenzie DH (1981). Phasic development in field crops. I. Thermal response in the seedling phase. Field Crops Research, 3, 365-378. |
[3] | Bewley JD, Black M (1994). Seeds: Physiology of Development and Germination 2nd edn. Plenum Press, New York. |
[4] | Bierhuizen JF, Wagenvoort WA (1974). Some aspects of seed germination in vegetables. II. The determination and application of heat sums and minimum temperature for germination. Scientia Horticulturae, 2, 213-219. |
[5] | Brown RF, Mayer DG (1988). Representing cumulative germination. 2. The use of the Weibull function and other empirically derived curves. Annals of Botany, 61, 127-138. |
[6] |
Bu HY, Chen XL, Xu XL, Liu K, Jia P, Du GZ (2007). Seed mass and germination in an alpine meadow on the eastern Tsinghai-Tibet Plateau. Plant Ecology, 191, 127-149.
DOI URL |
[7] |
Cavieres LA, Arroyo MTK (2000). Seed germination response to cold stratification period and thermal regime in Phacelia secunda(Hydrophyllaceae). Plant Ecology, 149, 1-8.
DOI URL |
[8] | Covell S, Ellis RH, Roberts EH, Summerfield RJ (1986). The influence of temperature on seed germination rate in grain legumes. I. A comparison of chickpea, lentil, soyabean and cowpea at constant temperatures. Journal of Experimental Botany, 37, 705-715. |
[9] | Dahal P, Bradford KJ, Jones RA (1990). Effects of priming and endosperm integrity on seed germination rates of tomato genotypes. I. Germination at suboptimal temperature. Journal of Experimental Botany, 41, 1431-1439. |
[10] | Garcia-Huidobro J, Monteith JL, Squire GR (1982). Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.). I. Constant temperature. Journal of Experimental Botany, 33, 288-296. |
[11] | Grime JP, Mason G, Curtis AV, Rodman J, Band SR, Mowforth MAG, Neal AM, Shaw S (1981). A comparative study of germination characteristics in a local flora. Journal of Ecology, 694, 1017-1059. |
[12] | Gutterman Y (1993). Seed Germination in Desert Plants. Springer-Verlag, Berlin. |
[13] | Huang WD (黄文达), Wang YR (王彦荣), Hu XW (胡小文) (2009). Germination responses of three desert plants to temperature and water potential. Acta Prataculturae Sinica (草业学报), 18(3), 171-177. (in Chinese with English abstract). |
[14] | Hur SN, Nelson CJ (1985). Temperature effects on germination of birds foot trefoil and seombadi. Agronomy Journal, 77, 557-560. |
[15] | Keller M, Kollmann J (1999). Effects of seed provenance on germination of herbs for agricultural compensation sites. Agriculture, Ecosystems & Environment, 72, 87-99. |
[16] | Kocabas Z, Craigon J, Azam-Ali SN (1999). The germination response of Bambara groundnut (Vigna sublerrannean(L.) Verdc.) to temperature. Seed Science and Technology, 27, 303-313. |
[17] | Larsen SU, Bibby MBM (2005). Differences in thermal time requirement for germination of three turfgrass species. Crop Science, 45, 2030-2037. |
[18] | Marshall B, Squire GR (1996). Non-linearity in the rate- temperature relations of germination in oilseed rape. Journal of Experimental Botany, 47, 1369-1375. |
[19] | Moot DJ, Scott WR, Roy AM, Nicholls AC (2000). Base temperature and thermal time requirements for germination and emergence of temperate pasture species. New Zealand Journal of Agricultural Research, 43, 15-25. |
[20] | Norden N, Daws MI, Antoine C, Gonzalez MA, Garwood NC, Chave J (2009). The relationship between seed mass and mean time to germination for 1037 tree species across five tropical forests. Functional Ecology, 23, 203-210. |
[21] | Nyachiro JM, Clarke FR, DePauw RM, Knox RE, Armstrong KC (2002). Temperature effects on seed germination and expression of seed dormancy in wheat. Euphytica, 126, 123-127. |
[22] | Orozco-Segovia A, Gonzáalez-Zertuche L, Mendoza A, Orozco S (1996). A mathematical model that uses Gaussian distribution to analyze the germination of Manfreda brachystachya(Agavaceae) in a thermogradient. Physiologia Plantarum, 98, 431-438. |
[23] | Probert RJ (2000). The role of temperature in the regulation of seed dormancy and germination. In: Fenner M ed. Seed: The Ecology of Regeneration in Plant Communities 2nd edn. CAB International, Wallingford, UK. 261-291. |
[24] | Qi A, Wheeler TR, Keatinge JDH, Ellis RH, Summerfield RJ, Craufurd PQ (1999). Modelling the effects of temperature on the rates of seedling emergence and leaf appearance in legume cover crops. Experimental Agriculture, 35, 327-344. |
[25] | Ross MA, Harper JL (1972). Occupation of biological space during seedling establishment. Journal of Ecology, 60, 77-88. |
[26] | Steadman KJ, Pritchard HW (2004). Germination of Aesculus hippocastanum seeds following cold-induced dormancy loss can be described in relation to a temperature- dependent reduction in base temperature(Tb) and thermal time. New Phytologist, 161, 415-425. |
[27] |
Steinmaus SJ, Prather TS, Holt JS (2000). Estimation of base temperatures for nine weed species. Journal of Experimental Botany, 51, 275-286.
URL PMID |
[28] |
Thompson PA (1970). Characterization of the germination responses to temperature of species and ecotypes. Nature, 225, 827-831.
DOI URL PMID |
[29] | Trudgill DL, Honek A, Li D, van Straalen NM (2005). Thermal time―concepts and utility. Annals of Applied Biology, 146, 1-14. |
[30] | Trudgill DL, Squire GR, Thompson K (2000). A thermal time basis for comparing the germination requirements of some British herbaceous plants. New Phytologist, 145, 107-114. |
[31] | Vera ML (1997). Effects of altitude and seed size on germination and seedling survival of heathland plants in North Spain. Plant Ecology, 133, 101-106. |
[32] | Wu ZY (吴征镒) (1980). Vegetation of China (中国植被). Science Press, Beijing. (in Chinese) |
[33] | Zhang HX (张红香) (2008). Research on Seed Germination Ecology (种子发芽生态研究). PhD Dissertation, Northeast Normal University, Changchun. (in Chinese with English abstract) |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 袁涵 钟爱文 刘送平 徐磊 彭焱松. 水毛花种子萌发特性的差异及休眠解除方法[J]. 植物生态学报, 2024, 48(5): 638-650. |
[3] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[4] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[5] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[6] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[7] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[8] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[9] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[10] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[11] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[12] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[13] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[14] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[15] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19