植物生态学报 ›› 2024, Vol. 48 ›› Issue (6): 770-779.DOI: 10.17521/cjpe.2023.0212 cstr: 32100.14.cjpe.2023.0212
收稿日期:
2023-07-26
接受日期:
2023-12-08
出版日期:
2024-06-20
发布日期:
2023-12-08
通讯作者:
*胡同欣(htxhtxapple@sina.com)
基金资助:
SUN Long, LI Wen-Bo, LOU Hu, YU Cheng, HAN Yu, HU Tong-Xin*()()
Received:
2023-07-26
Accepted:
2023-12-08
Online:
2024-06-20
Published:
2023-12-08
Contact:
*HU Tong-Xin(htxhtxapple@sina.com)
Supported by:
摘要:
林火是北方森林更新的重要驱动因子, 伴随着火烧产生的一系列产物, 在促进或抑制种子萌发方面具有重要作用。而火后种子库中的种子萌发是种子植物主要的更新和恢复途径, 相比于草本植物和灌木, 国内对于乔木的火后更新恢复研究较少。该研究以大兴安岭地区兴安落叶松(落叶松, Larix gmelinii)种子为研究对象, 对热激、火烧灰、光照三种因素进行单因素、双因素及三因素处理, 探究其对兴安落叶松种子萌发率和萌发势的影响。对标准化后的数据进行方差分解, 探究三种因素交互作用下的主要影响因素和驱动因子。研究结果显示: (1) 90 ℃ 5 min干热激的处理下兴安落叶松种子萌发率(61.11%)最高, 较对照提高21.11%, 90 ℃ 5 min及以上的湿热激处理会使种子失活。火烧灰质量与兴安落叶松种子的萌发率呈正相关关系, 1 g火烧灰的加入使兴安落叶松种子萌发率高达71.1%, 较对照提高了30%; 光照与兴安落叶松种子萌发率呈负相关关系, 100%遮光状态下的种子萌发率较对照提高了14.00%, 0遮光则降低了16.67%。在热激、火烧灰和光照的交互处理中, 1 g火烧灰+100%遮光处理的兴安落叶松种子萌发率(57%)最高, 比对照高17%。(2)模型评估显示, 在热激、火烧灰和光照交互作用中, 对兴安落叶松种子萌发率因子贡献度从大到小排序依次为: 火烧灰>干热激>光照>湿热激, 分别解释了方差分解模型33.0%、31.8%、20.3%、14.9%的非生物多功能性变异。灰分是最主要的非生物驱动因子, 在95%置信区间内, 因子重要性排序为: 火烧灰添加(1.00 g) >干热激(60 ℃ 3 min) >遮光度(0) >湿热激(90 ℃ 3 min) >湿热激(60 ℃ 3 min) >遮光度(100%) >火烧灰添加(0.25 g) >干热激(120 ℃ 3 min)。
孙龙, 李文博, 娄虎, 于澄, 韩宇, 胡同欣. 火干扰对兴安落叶松种子萌发的影响. 植物生态学报, 2024, 48(6): 770-779. DOI: 10.17521/cjpe.2023.0212
SUN Long, LI Wen-Bo, LOU Hu, YU Cheng, HAN Yu, HU Tong-Xin. Effects of fire disturbance on seed germination of Larix gmelinii. Chinese Journal of Plant Ecology, 2024, 48(6): 770-779. DOI: 10.17521/cjpe.2023.0212
处理 Treatment | 处理 Treatment | 处理 Treatment | |
---|---|---|---|
CK: 对照 Control | H11: 105 ℃ 5 min | S7: 90 ℃ 3 min | |
H1: 60 ℃ 3 min | H12: 105 ℃ 10 min | S8: 90 ℃ 5 min | |
H2: 60 ℃ 5 min | H13: 120 ℃ 3 min | S9: 90 ℃ 10 min | |
H3: 60 ℃ 10 min | H14: 120 ℃ 5 min | A1: 0.25 g | |
H4: 75 ℃ 3 min | H15: 120 ℃ 10 min | A2: 0.50 g | |
H5: 75 ℃ 5 min | S1: 60 ℃ 3 min | A3: 1.00 g | |
H6: 5 ℃ 10 min | S2: 60 ℃ 5 min | L1: 0 | |
H7: 90 ℃ 3 min | S3: 60 ℃ 10 min | L2: 25% | |
H8: 90 ℃ 5 min | S4: 75 ℃ 3 min | L3: 50% | |
H9: 90 ℃ 10 min | S5: 75 ℃ 5 min | L4: 75% | |
H10: 105 ℃ 3 min | S6: 75 ℃ 10 min | L5: 100% |
表1 测定兴安落叶松种子萌发率实验处理
Table 1 Experimental treatments exposing to seed germination rate of Larix gmelinii
处理 Treatment | 处理 Treatment | 处理 Treatment | |
---|---|---|---|
CK: 对照 Control | H11: 105 ℃ 5 min | S7: 90 ℃ 3 min | |
H1: 60 ℃ 3 min | H12: 105 ℃ 10 min | S8: 90 ℃ 5 min | |
H2: 60 ℃ 5 min | H13: 120 ℃ 3 min | S9: 90 ℃ 10 min | |
H3: 60 ℃ 10 min | H14: 120 ℃ 5 min | A1: 0.25 g | |
H4: 75 ℃ 3 min | H15: 120 ℃ 10 min | A2: 0.50 g | |
H5: 75 ℃ 5 min | S1: 60 ℃ 3 min | A3: 1.00 g | |
H6: 5 ℃ 10 min | S2: 60 ℃ 5 min | L1: 0 | |
H7: 90 ℃ 3 min | S3: 60 ℃ 10 min | L2: 25% | |
H8: 90 ℃ 5 min | S4: 75 ℃ 3 min | L3: 50% | |
H9: 90 ℃ 10 min | S5: 75 ℃ 5 min | L4: 75% | |
H10: 105 ℃ 3 min | S6: 75 ℃ 10 min | L5: 100% |
图1 不同处理下兴安落叶松种子的萌发率(平均值±标准差)。 A, 干热激对兴安落叶松种子萌发的影响。B, 湿热激对兴安落叶松种子萌发的影响。C, 火烧灰对兴安落叶松种子萌发的影响。D, 光照对兴安落叶松种子萌发的影响。各处理具体信息见表1。
Fig. 1 Germination rate of Larix gmelinii seeds under different treatments (mean ± SD). A, Effect of dry heat shock on seed germination of L. gmelinii. B, Effect of wet heat shock on seed germination of L. gmelinii. C, Effect of fire ash on seed germination of L. gmelinii. D, Effect of light on seed germination of L. gmelinii. Information on each treatment is given in Table 1.
处理 Treatment | 变异来源 Source of variation | 偏平方和 SS | 自由度 df | 均方 Mf | F |
---|---|---|---|---|---|
干热激 处理 Dry heat shock | 温度 Temperature | 0.77 | 4 | 0.19 | 402.31** |
时间 Time | 0.17 | 2 | 0.09 | 179.00** | |
温度×时间 Temperature × time | 0.04 | 8 | 0.01 | 10.48** | |
湿热激 处理 Wet heat shock | 温度 Temperature | 0.71 | 2 | 0.36 | 788.62** |
时间 Time | 0.16 | 2 | 0.08 | 182.71** | |
温度×时间 Temperature × time | 0.06 | 4 | 0.02 | 35.51** |
表2 兴安落叶松种子萌发率的双因素分析
Table 2 Bi-factorial analysis of seed germination rate of Larix gmelinii
处理 Treatment | 变异来源 Source of variation | 偏平方和 SS | 自由度 df | 均方 Mf | F |
---|---|---|---|---|---|
干热激 处理 Dry heat shock | 温度 Temperature | 0.77 | 4 | 0.19 | 402.31** |
时间 Time | 0.17 | 2 | 0.09 | 179.00** | |
温度×时间 Temperature × time | 0.04 | 8 | 0.01 | 10.48** | |
湿热激 处理 Wet heat shock | 温度 Temperature | 0.71 | 2 | 0.36 | 788.62** |
时间 Time | 0.16 | 2 | 0.08 | 182.71** | |
温度×时间 Temperature × time | 0.06 | 4 | 0.02 | 35.51** |
图2 不同条件处理下兴安落叶松种子的萌发率(平均值±标准差)。 A, 干热激、火烧灰和光照交互作用下兴安落叶松种子的萌发率。B, 湿热激、火烧灰和光照交互作用下兴安落叶松种子的萌发率。***, 与CK差异显著(p < 0.001)。各处理具体见表1。
Fig. 2 Germination rate of Larix gmelinii seeds under different treatments (mean ± SD). A, Germination rate of L. gmelinii seeds under the interaction of dry heat shock, fire ash and light. B, Germination rate of L. gmelinii seeds under the interaction of wet heat shock, fire ash and light. ***, significant difference with CK (p < 0.001). Information on each treatment is given in Table 1.
图3 非生物因子对兴安落叶松种子萌发率的相对影响。 点的位置表示相关的95%置信区间每个因素的相对重要性; 柱的高度表示解释方差的百分比。**, p < 0.01; ***, p < 0.001。Adj.R2, 校正后R2。各处理具体见表1。
Fig. 3 Relative effects of abiotic factors on seed germination rate of Larix gmelinii. The location of a point indicates relative importance of each factor for the associated 95% confidence interval; the height of a column denotes percentage of variance explained. **, p < 0.01; ***, p < 0.001. Adj.R2, adjusted R2。Information on each treatment is given in Table 1.
图4 不同处理下兴安落叶松种子的萌发势。 红色虚线表示种子活力最高的时间点; 阴影部分表示12种处理下种子达到最大萌发势的时间段。各处理具体见表1。
Fig. 4 Germination potential of Larix gmelinii seeds under different treatments. Red dashed lines indicate time point of the highest seed vigor; shaded area indicate time period when seeds reached the maximum germination potential under the 12 treatments. Information on each treatment is given in Table 1.
[1] | Abella SR (2006). Effects of smoke and fire-related cues on Penstemon barbatus seeds. The American Midland Naturalist, 155, 404-410. |
[2] | Arán D, García-Duro J, Reyes O, Casal M (2013). Fire and invasive species: modifications in the germination potential of Acacia melanoxylon, Conyza canadensis and Eucalyptus globulus. Forest Ecology and Management, 302, 7-13. |
[3] | Ba LN, Liu Q, Zhang YH, Wang SZ, Gu HY (2018). Effect of smoke, heat shock and ash on seed germination of Populus ussuriensis. Journal of Northeast Forestry University, 46(6), 27-32. |
[巴丽娜, 刘强, 张芸慧, 王顺忠, 谷会岩 (2018). 烟熏、热激、火烧灰对大青杨种子萌发的影响. 东北林业大学学报, 46(6), 27-32.] | |
[4] | Baskin JM, Baskin CC, Li XJ (2000). Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biology, 15, 139-152. |
[5] | Berkovich YA, Konovalova IO, Smolyanina SO, Erokhin AN, Avercheva OV, Bassarskaya EM, Kochetova GV, Zhigalova TV, Yakovleva OS, Tarakanov IG (2017). LED crop illumination inside space greenhouses. Reach Reviews in Human Space Exploration, 6, 11-24. |
[6] | Bu XL, Xue JH, Wu YB, Ma WB (2020). Effect of biochar on seed germination and seedling growth of Robinia pseudoacacia L. in karst calcareous soils. Communications in Soil Science and Plant Analysis, 51, 352-363. |
[7] | Carrington ME (2010). Effects of soil temperature during fire on seed survival in Florida sand pine scrub. International Journal of Forestry Research, 2010, 402346. DOI: 10.1155/2010/402346. |
[8] | Castoldi E, Molina JA (2014). Effect of seed mass and number of cotyledons on seed germination after heat treatment in Pinus sylvestris L. var. iberica Svob. Forest Systems, 23, 483-489. |
[9] | Cavallero L, Raffaele E (2010). Fire enhances the ‘competition- free’ space of an invader shrub: Rosa rubiginosa in northwestern Patagonia. Biological Invasions, 12, 3395-3404. |
[10] | Cox RD, Chou YF, Wester DB (2017). Smoke water and heat influence emergence of shortgrass prairie species. Fire Ecology, 13, 138-148. |
[11] | Chen F, Meng YJ, Shuai HW, Luo XF, Zhou WG, Liu JW, Yang WY, Shu Y (2017). Effect of plant allelochemicals on seed germination and its ecological significance. Chinese Journal of Ecological Agriculture, 25, 36-46. |
[陈锋, 孟永杰, 帅海威, 罗晓峰, 周文冠, 刘建伟, 杨文钰, 舒凯 (2017). 植物化感物质对种子萌发的影响及其生态学意义. 中国生态农业学报, 25, 36-46.] | |
[12] | Farooq MA, Zhang X, Zafar MM, Ma W, Zhao J (2021). Roles of reactive oxygen species and mitochondria in seed germination. Frontiers in Plant Science, 12, 781734. DOI: 10.3389/fpls.2021.781734. |
[13] | Fernandes AF, Oki Y, Fernandes GW, Moreira B (2021). The effect of fire on seed germination of campo rupestre species in the South American Cerrado. Plant Ecology, 222, 45-55. |
[14] | Fu JJ, Wu ZW, Yan SJ, Zhang YJ, Gu XL, Du LH (2020). Effects of climate, vegetation, and topography on spatial patterns of burn severity in the Great Xing’an Mountains. Acta Ecologica Sinica, 40, 1672-1682. |
[付婧婧, 吴志伟, 闫赛佳, 张宇婧, 顾先丽, 杜林翰 (2020). 气候、植被和地形对大兴安岭林火烈度空间格局的影响. 生态学报, 40, 1672-1682.] | |
[15] | Gonzalez S, Salazar CV, Ghermandi L (2022). Burning the seed bank: seed response of eight species to different fire intensities in Patagonian steppe. Applied Vegetation Science, 25, e12684. DOI: 10.1111/avsc.12684. |
[16] | Gonzalez SL, Ghermandi L (2012). Fire cue effects on seed germination of six species of northwestern Patagonian grasslands. Natural Hazards and Earth System Sciences, 12, 2753-2758. |
[17] | Gross N, Le Bagousse-Pinguet Y, Liancourt P, Berdugo M, Gotelli NJ, Maestre FT (2017). Functional trait diversity maximizes ecosystem multifunctionality. Nature Ecology & Evolution, 1, 132. DOI: 10.1038/s41559-017-0132. |
[18] | Gu HY, Jiang KY, Zhang YH, Wang SZ, Chen XW (2017). Effect of heat shock on seed germination of three Pinaceae species in Great Hing’an Mountains. Acta Ecologica Sinica, 37, 6581-6587. |
[谷会岩, 蒋克研, 张芸慧, 王顺忠, 陈祥伟 (2017). 热激对大兴安岭三种松科树种种子萌发的影响. 生态学报, 37, 6581-6587.] | |
[19] | Herrero C, Kassa A, Pando V, Bravo F, Alía R (2019). Effect of heat shock on the germination of seeds of the species Acacia senegal L. and Acacia seyal Del. from sub-Saharan Africa (Ethiopia). Forest Systems, 28, e006. DOI: 10.5424/fs/2019282-14227. |
[20] | Hodges JA, Price JN, Nimmo DG, Guja LK (2019). Evidence for direct effects of fire-cues on germination of some perennial forbs common in grassy ecosystems. Austral Ecology, 44, 1271-1284. |
[21] | Hu HQ, Wei SJ, Sun L (2012). Estimating carbon emissions from forest fires during 2001 to 2010 in Daxing’anling Mountain. Acta Ecologica Sinica, 32, 5373-5386. |
[胡海清, 魏书精, 孙龙 (2012). 大兴安岭2001-2010年森林火灾碳排放的计量估算. 生态学报, 32, 5373-5386.] | |
[22] | Jeffery DJ, Holmes PM, Rebelo AG (1988). Effects of dry heat on seed germination in selected indigenous and alien legume species in South Africa. South African Journal of Botany, 54, 28-34. |
[23] | Jiang KY, Zhang YH, Liu Q, Wang SZ, Gu HY (2018). Effect of heat shock on seed germination of three Betulaceae species in Daxing’an Mountains. Journal of Northeast Forestry University, 46(6), 23-26. |
[蒋克研, 张芸慧, 刘强, 王顺忠, 谷会岩 (2018). 热激对大兴安岭桦木科3个树种种子萌发的影响. 东北林业大学学报, 46(6), 23-26.] | |
[24] | Kin AG, Suárez CE, Chirino CC, Ávila PL, Morici EFA (2016). Impact of heat on seed germination of three perennial grasses in the semiarid region in Central Argentina. Australian Journal of Botany, 64, 451-455. |
[25] | King RA, Menges EA (2018). Effects of heat and smoke on the germination of six Florida scrub species. South African Journal of Botany, 115, 223-230. |
[26] | Kyereh B, Swaine MD, Thompson J (1999). Effect of light on the germination of forest trees in Ghana. Journal of Ecology, 87, 772-783. |
[27] | Li MY (2020). The Effect of Forest Fire Combustion Products on Seed Germination of Ten Herbaceous Plants in Great Hing’an Mountain. Master degree dissertation, Northeast Forestry University, Harbin. |
[李明月 (2020). 林火产物对大兴安岭十种草本植物种子萌发的影响. 硕士学位论文, 东北林业大学, 哈尔滨.] | |
[28] | Li SY (2023). Effects of Fire Cues on Seed Germination of Typical Plants in the Songnen Grassland Under Salinity Stress and Its Mechanism. Master degree dissertation, University of Chinese Academy of Sciences, Beijing. |
[李绍阳 (2023). 火烧信号对盐碱胁迫下松嫩草地典型植物种子萌发的影响及机制研究. 硕士学位论文, 中国科学院大学, 北京.] | |
[29] | Li SY, Ma HY, Zhao DD, Ma MY, Qi WW (2021). Research progress on the effects of fire-related cues on seed germination. Chinese Journal of Plant Ecology, 45, 1177-1190. |
[李绍阳, 马红媛, 赵丹丹, 马梦谣, 亓雯雯 (2021). 火烧信号对种子萌发影响的研究进展. 植物生态学报, 45, 1177-1190.]
DOI |
|
[30] | Liang RF, Wu ZN, Li ZY, Kong LQ (2021). Effects of low-temperature and light on seed germination of Leymus chinensis. Chinese Journal of Grassland, 43(12), 33-39. |
[梁润芳, 武自念, 李志勇, 孔令琪 (2021). 低温和光照对羊草种子萌发的影响. 中国草地学报, 43(12), 33-39.] | |
[31] | Liu FL (2017). Response of four pine species to plant ash during germination and seedling growth. Acta Ecologica Sinica, 37, 5673-5680. |
[刘发林 (2017). 草木灰对四种松属种子发芽和幼苗生长的影响. 生态学报, 37, 5673-5680.] | |
[32] | Luo BZ, Wei SJ, Luo SS, Hu HQ, Wang ZS (2022). Effects of forest fire disturbance on carbon pools of Schima superba forest ecosystem in Guangdong Province. Acta Ecologica Sinica, 43, 3359-3369. |
[罗碧珍, 魏书精, 罗斯生, 胡海清, 王振师 (2022). 林火干扰对广东木荷林生态系统碳库的影响. 生态学报, 43, 3359-3369.] | |
[33] | McLauchlan KK, Higuera PE, Miesel J, Rogers BM, Schweitzer J, Shuman JK, Tepley AJ, Varner JM, Veblen TT, Adalsteinsson SA, Balch JK, Baker P, Batllori E, Bigio E, Brando P, et al. (2020). Fire as a fundamental ecological process: research advances and frontiers. Journal of Ecology, 108, 2047-2069. |
[34] | Naghipour AA, Bashari H, Khajeddin SJ, Tahmasebi P, Iravani M (2016). Effects of smoke, ash and heat shock on seed germination of seven species from Central Zagros rangelands in the semi-arid region of Iran. African Journal of Range & Forage Science, 33, 67-71. |
[35] | Perala DA, Alm AA (1990). Reproductive ecology of birch: a review. Forest Ecology and Management, 32, 1-38. |
[36] | Qi YC, Dong Z, Li WS, Xue PP, He YN, Qi DH (2023). Effects of different light conditions on seed germination and seedling growth of Toxicodendron vernicifluum. Agriculture and Technology, 43(11), 76-81. |
[綦远才, 董智, 李文杉, 薛沛沛, 何雅楠, 齐代华 (2023). 不同光照条件对漆树种子萌发及幼苗生长的影响. 农业与技术, 43(11), 76-81.] | |
[37] | Reyes O, Casal M (2004). Effects of forest fire ash on germination and early growth of four Pinus species. Plant Ecology, 175, 81-89. |
[38] | Ribeiro S, Gaspar MJ, Lima-Brito J, Fonseca T, Soares P, Cerveira A, Fernandes PM, Louzada J, Carvalho A (2022). Impact of fire recurrence and induced water stress on seed germination and root mitotic cell cycle of Pinus pinaster Aiton. Forests, 14, 78. DOI: 10.3390/f14010078. |
[39] | Rayana DSM, Anderson CJ, José MRF, Oliveira LCD (2016). Proteomic analysis of osmoprimed and heat-shock-treated eucalyptus urophylla seeds. Trees, 1-12. |
[40] | Santana VM, Bradstock RA, Ooi MKJ, Denham AJ, Auld TD, Baeza MJ (2010). Effects of soil temperature regimes after fire on seed dormancy and germination in six Australian Fabaceae species. Australian Journal of Botany, 58, 539-545. |
[41] | Soto B, Basanta R, Diaz-Fierros F (1997). Effects of burning on nutrient balance in an area of gorse (Ulex europaeus L.) scrub. Science of the Total Environment, 204, 271-281. |
[42] | Świeca M, Gawlik-Dziki U, Kowalczyk D, Złotek U (2012). Impact of germination time and type of illumination on the antioxidant compounds and antioxidant capacity of Lens culinaris sprouts. Scientia Horticulturae, 140, 87-95. |
[43] | Tan YS (2019). Effect of Ash and Aqueous Charcoal Solution on Seed Germination of Four Herbs in Great Hing’an Mountains. Master degree dissertation, Northeast Forestry University, Harbin. |
[谭咏森 (2019). 火烧灰及木炭水提液对大兴安岭四种草本植物种子萌发的影响. 硕士学位论文, 东北林业大学, 哈尔滨.] | |
[44] | Tavşanoğlu C, Çatav SS, Özüdoğru B (2015). Fire-related germination and early seedling growth in 21 herbaceous species in Central Anatolian steppe. Journal of Arid Environments, 122, 109-116. |
[45] | Thomas PB, Morris EC, Auld TD (2003). Interactive effects of heat shock and smoke on germination of nine species forming soil seed banks within the Sydney region. Austral Ecology, 28, 674-683. |
[46] | Torres O, Calvo L, Valbuena L (2006). Influence of high temperatures on seed germination of a special Pinus pinaster stand adapted to frequent fires. Plant Ecology, 186, 129-136. |
[47] | Vivar-Evans S, Barradas VL, Sánchez-Coronado ME, Gamboa de Buen A, Orozco-Segovia A (2006). Ecophysiology of seed germination of wild Dahlia coccinea (Asteraceae) in a spatially heterogeneous fire-prone habitat. Acta Oecologica, 29, 187-195. |
[48] | Wang HCY, Gao ZL, Cao YF, Yu WT, Wang QH, Zhou RL, Zhao F (2023). Response mechanism of forest fire combustion products affecting plant seed germination. World Forestry Research, 36(4), 47-53. |
[王何晨阳, 高仲亮, 曹宇飞, 于闻天, 王秋华, 周汝良, 赵璠 (2023). 森林火灾产物影响植物种子萌发响应机制研究. 世界林业研究, 36(4), 47-53.] | |
[49] | Yan XF, Wang JL, Zhou LB (2011). Effects of light intensity on Quercus liaotungensis seed germination and seedling growth. Chinese Journal of Applied Ecology, 22, 1682-1688. |
[闫兴富, 王建礼, 周立彪 (2011). 光照对辽东栎种子萌发和幼苗生长的影响. 应用生态学报, 22, 1682-1688.] | |
[50] | Yang ZH (2023). Study on Seed Dormancy Mechanism of Taxodium distichum var. imbricatum. Master degree dissertation, Southwest University, Chongqing. |
[杨治华 (2023). 池杉种子休眠机理研究. 硕士学位论文, 西南大学, 重庆.] | |
[51] | Zenner EK, Hibbs DE (2000). A new method for modeling the heterogeneity of forest structure. Forest Ecology and Management, 129, 75-87. |
[52] | Zhang L (2004). Eco-physiological characteristics of seed germination of Larix chinensis, a timberline tree. Acta Phytoecologica Sinica, 28, 579-583. |
[张玲 (2004). 林线树种太白红杉种子萌发的生理生态特性. 植物生态学报, 28, 579-583.]
DOI |
|
[53] | Zhang M, Zhu JJ (2022). Effects of light and temperature on seed germination of Pinus koraiensis with different provenances. Chinese Journal of Plant Ecology, 46, 613-623. |
[张敏, 朱教君 (2022). 光温条件对不同种源红松种子萌发的影响. 植物生态学报, 46, 613-623.]
DOI |
|
[54] | Zhou YZ (2020). Effects of Heat Shock, Smoke and Ash on Seed Germination of Seven Species in Great Hing’an Mountains. Master degree dissertation, Northeast Forestry University, Harbin. |
[周肄智 (2020). 热激、烟熏和火烧灰对大兴安岭七种植物种子萌发的影响. 硕士学位论文, 东北林业大学, 哈尔滨.] | |
[55] | Zou W, Chen Z, Jiang YQ, Huang MY, Zhang HN, Huang XY, Peng PH, Wang GY (2023). Responses of Pinus yunnanensis seed germination to temperature, light and GA3. Journal of Sichuan Forestry Science and Technology, 44(1), 84-90. |
[邹雯, 陈卓, 蒋云清, 黄梦月, 张鸿南, 黄汐月, 彭培好, 王国严 (2023). 云南松种子萌发对温度、光照和GA3的响应. 四川林业科技, 44(1), 84-90.] | |
[56] | Zuloaga-Aguilar S, Briones O, Orozco-Segovia A (2011). Seed germination of montane forest species in response to ash, smoke and heat shock in Mexico. Acta Oecologica, 37, 256-262. |
[1] | 袁涵, 钟爱文, 刘送平, 彭焱松, 徐磊. 水毛花种子萌发特性的差异及休眠解除方法[J]. 植物生态学报, 2024, 48(5): 638-650. |
[2] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[3] | 胡同欣, 李蓓, 李光新, 任玥霄, 丁海磊, 孙龙. 火烧黑碳对生长季兴安落叶松林外生菌根真菌群落物种组成的影响[J]. 植物生态学报, 2023, 47(6): 792-803. |
[4] | 张雪, 韩凤朋, 肖波, 沈思铭. 黄土高原生物结皮对地表粗糙度和灌草植物种子二次扩散的影响[J]. 植物生态学报, 2023, 47(12): 1668-1683. |
[5] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[6] | 张敏, 朱教君. 光温条件对不同种源红松种子萌发的影响[J]. 植物生态学报, 2022, 46(6): 613-623. |
[7] | 钟雨辰, 王斌, 方中平, 徐小忠, 于明坚. 片段化景观中壳斗科植物种子捕食和扩散模式[J]. 植物生态学报, 2021, 45(2): 154-162. |
[8] | 李绍阳, 马红媛, 赵丹丹, 马梦谣, 亓雯雯. 火烧信号对种子萌发影响的研究进展[J]. 植物生态学报, 2021, 45(11): 1177-1190. |
[9] | 白天道, 余春兰, 甘泽朝, 赖海荣, 杨隐超, 黄厚宸, 蒋维昕. 细叶云南松种实性状变异与地理气象因子的关联[J]. 植物生态学报, 2020, 44(12): 1224-1235. |
[10] | 艾沙江•阿不都沙拉木, 迪丽娜尔•阿布拉, 张凯, 买热也木古•吐尔逊, 卡迪尔•阿布都热西提, 李玲. 喀什霸王的结实和种子萌发特性[J]. 植物生态学报, 2019, 43(5): 437-446. |
[11] | 范紫腾, 毋钰灵, 王新菊, 李太强, 高江云. 共生真菌对兰科植物种间杂交后代种子萌发的效应[J]. 植物生态学报, 2019, 43(4): 374-382. |
[12] | 王祖幸, 何维明. 土埋深度影响物种水平的种子质量-种子出苗关系[J]. 植物生态学报, 2019, 43(10): 899-908. |
[13] | 吴小琪, 杨圣贺, 黄力, 李笑寒, 杨超, 钱深华, 杨永川. 常绿阔叶林林冠环境对栲幼苗建成的影响[J]. 植物生态学报, 2019, 43(1): 55-64. |
[14] | 田大栓. 氮磷供应量及比例对灰绿藜种子性状的影响[J]. 植物生态学报, 2018, 42(9): 963-970. |
[15] | 何庆海, 杨少宗, 李因刚, 沈鑫, 柳新红. 枫香树种群种子与果实表型性状变异分析[J]. 植物生态学报, 2018, 42(7): 752-763. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19