植物生态学报 ›› 2022, Vol. 46 ›› Issue (6): 613-623.DOI: 10.17521/cjpe.2021.0474
• 研究论文 • 下一篇
收稿日期:
2021-12-15
接受日期:
2022-02-16
出版日期:
2022-06-20
发布日期:
2022-02-16
通讯作者:
朱教君
作者简介:
*(jiaojunzhu@iae.ac.cn)基金资助:
Received:
2021-12-15
Accepted:
2022-02-16
Online:
2022-06-20
Published:
2022-02-16
Contact:
ZHU Jiao-Jun
Supported by:
摘要:
种子萌发受种源和环境条件(如光照和温度条件等)的影响。种子萌发决定红松(Pinus koraiensis)的天然更新能力, 因此也是恢复地带性顶极群落阔叶红松林的关键。该研究以我国3个主要种源地(辽宁清原、吉林长白山和黑龙江伊春)当年的红松种子为对象, 监测自然光、温(不同季节、林窗和林下)和控制光、温(3个光照强度: 200、20和0 μmol·m-2·s-1, 记为L200、L20和L0; 2个温度: 25和15 ℃)条件下红松种子的萌发特征。结果表明, 自然越冬后, 春季(5月)所有种源种子均未萌发, 夏季(7月)和秋季(9月)各种源种子萌发率(GP)均较低(1.8%-33.7%), 但夏季林窗内各种源种子GP均显著高于林下。对林下各季节未萌发的种子, 带回室内给予适宜的光温条件(L200、25/15 ℃)后发现: 春季和夏季种子均能大量萌发(32%-77%), 而秋季种子GP极低(<2%)。25 ℃下, 3个种源地种子GP和萌发指数(GV)均呈现在L200条件下显著高于L20和L0处理。15 ℃条件下, 清原种子GP和GV对光照的响应与25 ℃条件下相一致, 长白山和伊春种子GP和GV分别在L0和L20处理下最高。所有光照强度下, 3个种源地种子GP和GV均为25 ℃处理显著高于15 ℃处理。可见, 适宜的温度是红松种子萌发的必要先决条件, 长白山和伊春红松种子可能需要更高的积温解除休眠; 适宜温度下(25 ℃), 红松种子表现出萌发需光性; 红松种子萌发对光、温的响应存在种源特异性, 长白山和伊春红松种子在相对低温下萌发需光性弱或消失。林下光、温条件不适宜红松种子萌发是造成红松林天然更新慢或更新差的重要原因。
张敏, 朱教君. 光温条件对不同种源红松种子萌发的影响. 植物生态学报, 2022, 46(6): 613-623. DOI: 10.17521/cjpe.2021.0474
ZHANG Min, ZHU Jiao-Jun. Effects of light and temperature on seed germination of Pinus koraiensis with different provenances. Chinese Journal of Plant Ecology, 2022, 46(6): 613-623. DOI: 10.17521/cjpe.2021.0474
图1 不同透光林分鱼眼镜头照片(A、B)、林冠开阔度(C)和土壤温度(D)的季节变化。
Fig. 1 Fisheye photographs (A, B), seasonal variations of canopy openness (C), and daily soil temperature (D) in forest stands with different transmittances.
源 Source | III类平方和 Type III sum of squares | 自由度 df | F | p |
---|---|---|---|---|
模型 Model | 6 942.93a | 17 | 20.66 | 0.00 |
季节 Season | 2 066.04 | 1 | 195.69 | 0.00 |
种源 Provenance | 2 859.23 | 2 | 72.34 | 0.00 |
透光率 Light | 106.96 | 1 | 5.41 | 0.03 |
季节×种源 Season × Provenance | 1 475.41 | 4 | 18.66 | 0.00 |
季节×透光率 Season × Light | 222.48 | 2 | 5.63 | 0.01 |
种源×透光率 Provenance × Light | 98.84 | 2 | 2.50 | 0.10 |
种源×透光率×季节 Provenance × Light × Season | 113.96 | 4 | 1.44 | 0.24 |
表1 不同透光林分下红松种子萌发率的季节、种源和透光率三因素方差分析
Table 1 Three-way ANOVA of seasons, provenance, and light condition effects on germination percentage of Pinus koraiensis seeds under different canopy openness conditions
源 Source | III类平方和 Type III sum of squares | 自由度 df | F | p |
---|---|---|---|---|
模型 Model | 6 942.93a | 17 | 20.66 | 0.00 |
季节 Season | 2 066.04 | 1 | 195.69 | 0.00 |
种源 Provenance | 2 859.23 | 2 | 72.34 | 0.00 |
透光率 Light | 106.96 | 1 | 5.41 | 0.03 |
季节×种源 Season × Provenance | 1 475.41 | 4 | 18.66 | 0.00 |
季节×透光率 Season × Light | 222.48 | 2 | 5.63 | 0.01 |
种源×透光率 Provenance × Light | 98.84 | 2 | 2.50 | 0.10 |
种源×透光率×季节 Provenance × Light × Season | 113.96 | 4 | 1.44 | 0.24 |
图2 三个种源红松种子在不同透光林分下不同季节的自然萌发率(平均值±标准误)。红松种子在春季均未萌发, 因此仅显示夏、秋季数据。不同大写字母表示同一林分不同季节间差异显著(p ≤ 0.05), 不同小写字母表示同一季节不同透光林分间差异显著(p ≤ 0.05)。
Fig. 2 Germination percentage of Pinus koraiensis seeds from three provenances under different light conditions between different seasons (mean ± SE). The seeds did not germinate in spring, thus only summer and autumn data were displayed. Different uppercase letters indicate significant differences between different seasons in the forest stands with the same light transmittance (p ≤ 0.05). Different lowercase letters indicate significant differences between forest stands with different light transmittances in the same season (p ≤ 0.05).
种源地 Provenance | 种子取出季节 Seed-collection season | 林窗 Gap | 林下 Understory |
---|---|---|---|
清原 Qingyuan | 春 Spring | 76.67 ± 1.45a | 61.00 ± 8.19a |
夏 Summer | 56.00 ± 5.29a | 58.33 ± 7.54a | |
秋 Autumn | 2.00 ± 1.00a | 0.67 ± 0.33a | |
长白山 Changbai Mountain | 春 Spring | 34.00 ± 8.50a | 32.00 ± 4.93a |
夏 Summer | 53.00 ± 1.15a | 45.00 ± 10.69a | |
秋 Autumn | 1.67 ± 0.89a | 0.33 ± 0.33a | |
伊春 Yichun | 春 Spring | 57.33 ± 5.90a | 56.00 ± 11.50a |
夏 Summer | 62.33 ± 5.04a | 50.00 ± 10.69a | |
秋 Autumn | 0.67 ± 0.33b | 0a |
表2 不同透光林分下越冬储藏的3个种源地红松种子室内萌发率(%) (平均值±标准误)
Table 2 Germination percentages (%) of Pinus koraiensis seeds from three provenances cultivated in growth chamber after overwintering under different forest stands (mean ± SE)
种源地 Provenance | 种子取出季节 Seed-collection season | 林窗 Gap | 林下 Understory |
---|---|---|---|
清原 Qingyuan | 春 Spring | 76.67 ± 1.45a | 61.00 ± 8.19a |
夏 Summer | 56.00 ± 5.29a | 58.33 ± 7.54a | |
秋 Autumn | 2.00 ± 1.00a | 0.67 ± 0.33a | |
长白山 Changbai Mountain | 春 Spring | 34.00 ± 8.50a | 32.00 ± 4.93a |
夏 Summer | 53.00 ± 1.15a | 45.00 ± 10.69a | |
秋 Autumn | 1.67 ± 0.89a | 0.33 ± 0.33a | |
伊春 Yichun | 春 Spring | 57.33 ± 5.90a | 56.00 ± 11.50a |
夏 Summer | 62.33 ± 5.04a | 50.00 ± 10.69a | |
秋 Autumn | 0.67 ± 0.33b | 0a |
指标 Index | 源 Source | III类平方和 Type III sum of squares | 自由度 df | F | p |
---|---|---|---|---|---|
GP | 模型 Model | 27 581.179a | 17 | 56.175 | 0.00 |
种源 Provenance | 6 191.542 | 2 | 107.189 | 0.00 | |
光 Light | 2 987.890 | 2 | 51.727 | 0.00 | |
温度 Temp | 12 454.163 | 1 | 431.217 | 0.00 | |
种源×光 Provenance × Light | 1 289.040 | 4 | 11.158 | 0.00 | |
种源×温度 Provenance × Temperature | 1 448.825 | 2 | 25.082 | 0.00 | |
光×温度 Light × Temperature | 877.690 | 2 | 15.195 | 0.00 | |
种源×光×温度 Provenance × Light × Temperature | 1 090.786 | 4 | 9.442 | 0.00 | |
MGT | 模型 Model | 4 888.740b | 17 | 6.396 | 0.00 |
种源 Provenance | 686.604 | 2 | 7.636 | 0.00 | |
光 Light | 542.808 | 2 | 6.037 | 0.00 | |
温度 Temp | 1 355.676 | 1 | 30.154 | 0.00 | |
种源×光 Provenance × Light | 178.422 | 4 | 0.992 | 0.42 | |
种源×温度 Provenance × Temperature | 679.857 | 2 | 7.561 | 0.00 | |
光×温度 Light × Temperature | 371.673 | 2 | 4.133 | 0.02 | |
种源×光×温度 Provenance × Light × Temperature | 743.805 | 4 | 4.136 | 0.00 | |
GV | 模型 Model | 57.775c | 17 | 47.783 | 0.00 |
种源 Provenance | 17.631 | 2 | 123.943 | 0.00 | |
光 Light | 0.556 | 2 | 3.911 | 0.03 | |
温度 Temperature | 28.159 | 1 | 395.914 | 0.00 | |
种源×光 Provenance × Light | 1.801 | 4 | 6.331 | 0.00 | |
种源×温度 Provenance × Temperature | 6.471 | 2 | 45.491 | 0.00 | |
光×温度 Light × Temperature | 0.869 | 2 | 6.106 | 0.00 | |
种源×光×温度 Provenance × Light × Temperature | 2.266 | 4 | 7.964 | 0.00 |
表3 不同光照、温度和种源地对红松种子萌发率(GP)、平均萌发时间(MGT)、萌发指数(GV)的三因素方差分析
Table 3 Three-way ANOVA for light, temperature, and provenance effects on the germination percentage (GP), mean germination time (MGT) and germination value (GV) of Pinus koraiensis seeds
指标 Index | 源 Source | III类平方和 Type III sum of squares | 自由度 df | F | p |
---|---|---|---|---|---|
GP | 模型 Model | 27 581.179a | 17 | 56.175 | 0.00 |
种源 Provenance | 6 191.542 | 2 | 107.189 | 0.00 | |
光 Light | 2 987.890 | 2 | 51.727 | 0.00 | |
温度 Temp | 12 454.163 | 1 | 431.217 | 0.00 | |
种源×光 Provenance × Light | 1 289.040 | 4 | 11.158 | 0.00 | |
种源×温度 Provenance × Temperature | 1 448.825 | 2 | 25.082 | 0.00 | |
光×温度 Light × Temperature | 877.690 | 2 | 15.195 | 0.00 | |
种源×光×温度 Provenance × Light × Temperature | 1 090.786 | 4 | 9.442 | 0.00 | |
MGT | 模型 Model | 4 888.740b | 17 | 6.396 | 0.00 |
种源 Provenance | 686.604 | 2 | 7.636 | 0.00 | |
光 Light | 542.808 | 2 | 6.037 | 0.00 | |
温度 Temp | 1 355.676 | 1 | 30.154 | 0.00 | |
种源×光 Provenance × Light | 178.422 | 4 | 0.992 | 0.42 | |
种源×温度 Provenance × Temperature | 679.857 | 2 | 7.561 | 0.00 | |
光×温度 Light × Temperature | 371.673 | 2 | 4.133 | 0.02 | |
种源×光×温度 Provenance × Light × Temperature | 743.805 | 4 | 4.136 | 0.00 | |
GV | 模型 Model | 57.775c | 17 | 47.783 | 0.00 |
种源 Provenance | 17.631 | 2 | 123.943 | 0.00 | |
光 Light | 0.556 | 2 | 3.911 | 0.03 | |
温度 Temperature | 28.159 | 1 | 395.914 | 0.00 | |
种源×光 Provenance × Light | 1.801 | 4 | 6.331 | 0.00 | |
种源×温度 Provenance × Temperature | 6.471 | 2 | 45.491 | 0.00 | |
光×温度 Light × Temperature | 0.869 | 2 | 6.106 | 0.00 | |
种源×光×温度 Provenance × Light × Temperature | 2.266 | 4 | 7.964 | 0.00 |
图3 光照培养箱不同光照和温度条件下红松种子的萌发率(平均值±标准误)。L0, L20, L200代表光照强度分别为0, 20, 200 μmol·m-2·s-1。不同大写字母表示相同光照下不同温度之间萌发率差异显著(p ≤ 0.05); 不同小写字母表示相同温度条件下不同光照之间萌发率差异显著(p ≤ 0.05)。
Fig. 3 Germination percentage (GP) of Pinus koraiensis seeds from three provenances under different light and temperature conditions in growth chamber (mean ± SE). L0, L2 and L200 represent 0, 20, 200 μmol·m-2·s-1 light intensities, respectively. Different uppercase letters indicate significant differences between different temperature conditions under the same light intensity (p ≤0.05); different lowercase letters indicate significant differences between different light intensities under the same temperature condition (p ≤ 0.05).
图4 不同光照和温度条件下红松的平均萌发时间(平均值±标准误)。L0、L20、L200代表光照强度分别为0、20、200 μmol·m-2·s-1。不同大写字母表示相同光照下不同温度之间萌发率差异显著(p ≤ 0.05); 不同小写字母表示相同温度条件下不同光照之间萌发率差异显著(p ≤ 0.05)。
Fig. 4 Mean germination time (MGT) of Pinus koraiensis seeds from three provenances under different light and temperature conditions (mean ± SE). L0, L2 and L200 represent 0, 20, 200 μmol·m-2·s-1 light intensities, respectively. Different uppercase letters indicate significant differences between different temperature conditions under the same light intensity (p ≤ 0.05); different lowercase letters indicate significant differences between different light intensities under the same temperature condition (p ≤ 0.05).
图5 不同光照和温度条件下红松种子萌发指数(平均值±标准误)。L0、L20、L200代表光照强度分别为0、20、200 μmol·m-2·s-1。不同大写字母表示相同光照下不同温度之间萌发率差异显著(p ≤ 0.05); 不同小写字母表示相同温度条件下不同光照之间萌发率差异显著(p ≤ 0.05)。
Fig. 5 Germination value (GV) of Pinus koraiensis seeds from three provenances under different light and temperature conditions (mean ± SE). L0, L2 and L200 represent 0, 20, 200 μmol·m-2·s-1 light intensities, respectively. Different uppercase letters indicate significant differences between different temperature conditions under the same light intensity (p ≤ 0.05); different lowercase letters indicate significant differences between different light intensities under the same temperature condition (p ≤ 0.05).
[1] |
Argyris J, Dahal P, Hayashi E, Still DW, Bradford KJ (2008). Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin and ethylene biosynthesis, metabolism and response genes. Plant Physiology, 148, 926-947.
DOI PMID |
[2] | Baskin CC, Baskin JM (2014). Seeds Ecology, Biogeography, and Evolution of Dormancy and Germination. 2nd ed. Academic Press, San Diego, USA. |
[3] |
Bauerová L, Munie SA, Houšková K, Habrová H (2020). Germination of Dracaena cinnabari Balf. f. seeds under controlled temperature conditions. Forests, 11, 521. DOI: 10.3390/f11050521.
DOI URL |
[4] | Bewley JD, Black M (1994). Seeds: Physiology of Development and Germination. 2nd ed. Plenum Press, New York. |
[5] |
Bu HY, Ge WJ, Zhou XH, Qi W, Liu K, Xu DH, Wang XJ, Du GZ (2017). The effect of light and seed mass on seed germination of common herbaceous species from the eastern Qinghai-Tibet Plateau. Plant Species Biology, 32, 263-269.
DOI URL |
[6] |
Bu HY, Ren QJ, Xu XL, Liu K, Jia P, Wen SJ, Sun DS, Du GZ (2008). Seed germinating characteristics of 54 gramineous species in the alpine meadow on the eastern Qinghai-Tibet Plateau. Frontiers of Biology in China, 3, 187-193.
DOI URL |
[7] |
Carón MM, de Frenne P, Verheyen K, Quinteros A, Ortega- Baes P, (2020). Germination responses to light of four Neotropical forest tree species along an elevational gradient in the southern Central Andes. Ecological Research, 35, 550-558.
DOI URL |
[8] | Chen CX, Wang JL, Zhi X (1997). Research state of the dormancy and pregermination of Pinus koraiensis seed in China and aboard. World Forestry Research, 10(5), 3-9. |
[陈彩霞, 王九龄, 智信 (1997). 国内外红松种子休眠及催芽问题研究动态. 世界林业研究, 10(5), 3-9.] | |
[9] | Chen SB, Song AQ, Li ZJ (2005). Research advance in re- sponse of forest seedling regeneration to light environmental heterogeneity. Chinese Journal of Applied Ecology, 16, 365-370. |
[陈圣宾, 宋爱琴, 李振基 (2005). 森林幼苗更新对光环境异质性的响应研究进展. 应用生态学报, 16, 365-370.] | |
[10] |
Daws MI, Burslem DFRP, Crabtree LM, Kirkman P, Mullins CE, Dalling JW (2002). Differences in seed germination responses may promote coexistence of four sympatric Piper species. Functional Ecology, 16, 258-267.
DOI URL |
[11] |
Finch-Savage WE, Leubner-Metzger G (2006). Seed dormancy and the control of germination. New Phytologist, 171, 501-523.
PMID |
[12] |
Fredrick C, Muthuri C, Ngamau K, Sinclair F (2017). Provenance and pretreatment effect on seed germination of six provenances of Faidherbia albida (Delile) A. Chev. Agroforestry Systems, 91, 1007-1017.
DOI URL |
[13] |
Ganatsas PP, Tsakaldimi MN (2007). Effect of light conditions and salinity on germination behaviour and early growth of umbrella pine (Pinus pinea L.) seed. The Journal of Horticultural Science and Biotechnology, 82, 605-610.
DOI URL |
[14] |
Gaudio N, Balandier P, Philippe G, Dumas Y, Jean F, Ginisty C (2011). Light-mediated influence of three understorey species (Calluna vulgaris, Pteridium aquilinum, Molinia caerulea) on the growth of Pinus sylvestris seedlings. European Journal of Forest Research, 130, 77-89.
DOI URL |
[15] |
Ghaderi-Far F, Coşgun ZL, Değirmenci CÜ, Tüysüz İ, Ülgen C, Tavşanoğlu Ç (2021). Light and temperature requirements for germination in the Mediterranean shrub Lavandula stoechas (Lamiaceae). Plant Biology, 23, 992-999.
DOI PMID |
[16] | Gu RS, Yu ZL, Du SM (2005). The status and development of Chinese forest basic research. Scientia Silvae Sinicae, 41(6), 201-205. |
[谷瑞升, 于振良, 杜生明 (2005). 我国林学基础研究及其发展. 林业科学, 41(6), 201-205.] | |
[17] | Guan YY, Fei F, Guan QW, Chen B (2016). Advances in studies of forest gap ecology. Scientia Silvae Sinicae, 52(4), 91-99. |
[管云云, 费菲, 关庆伟, 陈斌 (2016). 林窗生态学研究进展. 林业科学, 52(4), 91-99.] | |
[18] | Guo CC, Shen YB, Shi FH (2021). Response of respiration and hormones during germination of Pinus bungeana seeds to temperature changes. Journal of Central South University of Forestry & Technology, 41, 25-36. |
[郭聪聪, 沈永宝, 史锋厚 (2021). 白皮松种子萌发过程中呼吸代谢和内源激素对温度变化的响应. 中南林业科技大学学报, 41, 25-36.] | |
[19] |
Guo CC, Shen YB, Shi FH (2020). Effect of temperature, light and storage time on the seed germination of Pinus bungeana Zucc. ex Endl.: the role of seed-covering layers and abscisic acid changes. Forests, 11, 300. DOI: 10.3390/f11030300.
DOI URL |
[20] |
Han AR, Kim HJ, Jung JB, Park PS (2018). Seed germination and initial seedling survival of the subalpine tree species, Picea jezoensis, on different forest floor substrates under elevated temperature. Forest Ecology and Management, 429, 579-588.
DOI URL |
[21] |
Kara F, Topaçoğlu O (2018). Influence of stand density and canopy structure on the germination and growth of Scots pine (Pinus sylvestris L.) seedlings. Environmental Monitoring and Assessment, 190, 749. DOI: org/10.1007/s10661-018-7129-x.
DOI URL |
[22] |
Kołodziejek J, Patykowski J, Wala M (2017). Effect of light, gibberellic acid and nitrogen source on germination of eight taxa from dissapearing European temperate forest, Potentillo albae-Quercetum. Scientific Reports, 7, 13924. DOI: 10.1038/S41598-017-13101-z.
DOI PMID |
[23] | Li Y, Mao SL, Li X, Wang YC, Li Q (2016). Effects of temperature and seed size on seed germination in Potentilla aurea. Genomics and Applied Biology, 35, 1248-1251. |
[李阳, 毛少利, 李想, 王宇超, 李倩 (2016). 温度和种子大小对黄花委陵菜种子萌发特征的影响. 基因组学与应用生物学, 35, 1248-1251.] | |
[24] |
Li YB, Mou P, Wang TM, Ge JP (2012). Evaluation of regeneration potential of Pinus koraiensis in mixed pine-hardwood forests in the Xiao Xing'an Mountains, China. Journal of Forestry Research, 23, 543-551.
DOI URL |
[25] | Li YK, Liu SZ, Kang CZ, Man DQ, Li DL (2011). Effects of temperature on germination characteristics of Pinus sylvesiris var. mongolica and Picea mongolica seed. Bulletin of Soil and Water Conservation, 31, 73-77. |
[李银科, 刘世增, 康才周, 满多清, 李得禄 (2011). 温度对樟子松和沙地云杉种子萌发特征的影响. 水土保持通报, 31, 73-77.] | |
[26] | Ma JL, Zhuang LW, Chen D, Li JW (1992). Geographic distribution of Pinus koraiensis in the world. Journal of Northeast Forestry University, 20(5), 40-48. |
[马建路, 庄丽文, 陈动, 李景文 (1992). 红松的地理分布. 东北林业大学学报, 20(5), 40-48.] | |
[27] |
Metcalfe DJ, Grubb PJ (1995). Seed mass and light requirements for regeneration in Southeast Asian rain forest. Canadian Journal of Botany, 73, 817-826.
DOI URL |
[28] |
Milberg P, Andersson L, Thompson K (2000). Large-seeded species are less dependent on light for germination than small-seeded ones. Seed Science Research, 10, 99-104.
DOI URL |
[29] |
Pérez-García F, Hornero J, González-Benito ME (2003). Interpopulation variation in seed germination of five Mediterranean Labiatae shrubby species. Israel Journal of Plant Sciences, 51, 117-124.
DOI URL |
[30] |
Ritter E, Dalsgaard L, Einhorn KS (2005). Light, temperature and soil moisture regimes following gap formation in a semi-natural beech-dominated forest in Denmark. Forest Ecology and Management, 206, 15-33.
DOI URL |
[31] |
Ruano I, Pando V, Bravo F (2009). How do light and water influence Pinus pinaster Ait. germination and early seedling development? Forest Ecology and Management, 258, 2647-2653.
DOI URL |
[32] |
Song Y, Zhu JJ, Yan QL (2020). The temperature and length for the release of primary and induction of secondary physiological dormancy in Korean pine (Pinus koraiensis Sieb. et Zucc.) seeds. New Forests, 51, 657-669.
DOI URL |
[33] |
Song Y, Zhu JJ, Yan QL, Wang GC (2017). Korean pine seed: lingking changes in dormancy to germination in the 2 years following dispersal. Forestry, 91, 98-109.
DOI URL |
[34] | Su H, Shen YR, Cai J, Jiang ZM, Yang CH, Xu XQ (2021). Germination characteristics of Betula albo-sinensis seeds from different provenances. Journal of Northwest Forestry University, 36(3), 109-114. |
[宿昊, 申耀荣, 蔡靖, 姜在民, 杨彩虹, 徐秀琴 (2021). 不同种源红桦种子的萌发特性. 西北林学院学报, 36(3), 109-114.] | |
[35] | Tan M, Yang ZL, Yang X, Cheng XY, Li GR, Ma WM (2018). Study on seed germination and seedling growth of Houpoöa officinalis in different habitats. Journal of Ecology and Rural Environment, 34, 910-916. |
[谭美, 杨志玲, 杨旭, 程小燕, 李公荣, 马文明 (2018). 不同生境内厚朴种子萌发和幼苗生长研究. 生态与农村环境学报, 34, 910-916.] | |
[36] |
Toole VK, Toole EH, Hendricks SB, Borthwick HA (1961). Responses of seeds of Pinus virginiana to light. Plant Physiology, 36, 285-290.
DOI PMID |
[37] | Wang LL, Liu YP, Zhang GF, Su WH, Zhou R, Guo XR, Zhao GH (2015). Effects of temperatures and light on seed germination of Platycladus orientalis (Linn.) Franco. Seed, 34(8), 1-5. |
[王玲玲, 刘亚萍, 张光飞, 苏文华, 周睿, 郭晓荣, 赵冠华 (2015). 温度和光照对侧柏种子萌发的影响. 种子, 34(8), 1-5.] | |
[38] |
Xia QQ, Ando M, Seiwa K (2016). Interaction of seed size with light quality and temperature regimes as germination cues in 10 temperate pioneer tree species. Functional Ecology, 30, 866-874.
DOI URL |
[39] | Xu HC (1992). Geographical Variation and Provenance Selection of Pinus tabulaeformis. China Forestry Publishing House, Beijing. |
[徐化成 (1992). 油松地理变异和种源选择. 中国林业出版社, 北京.] | |
[40] | Yan XF, Wang JL, Zhou LB (2011). Effects of light intensity on Quercus liaotungensis seed germination and seedling growth. Chinese Journal of Applied Ecology, 22, 1682-1688. |
[闫兴富, 王建礼, 周立彪 (2011). 光照对辽东栎种子萌发和幼苗生长的影响. 应用生态学报, 22, 1682-1688.] | |
[41] | Yu LZ, Yu SQ, Shi JW, Kong XW, Ding GQ, Lu ZM (2005). Higher plants species diversity in different types of artificial broad-leaved Korean pine forests. Chinese Journal of Ecology, 24, 1253-1257. |
[于立忠, 于水强, 史建伟, 孔祥文, 丁国泉, 卢正茂 (2005). 不同类型人工阔叶红松林高等植物物种多样性. 生态学杂志, 24, 1253-1257.] | |
[42] |
Yu Y, Baskin JM, Baskin CC, Tang Y, Cao M (2008). Ecology of seed germination of eight non-pioneer tree species from a tropical seasonal rain forest in southwest China. Plant Ecology, 197, 1-16.
DOI URL |
[43] | Zhang JN, Liu K (2014). Mechanisms for plants detecting the optimum time and place to germinate. Acta Prataculturae Sinica, 23(1), 328-338. |
[张佳宁, 刘坤 (2014). 植物调节萌发时间和萌发地点的机制. 草业学报, 23(1), 328-338.] | |
[44] |
Zhang M, Zhu JJ, Yan QL (2012). Review on influence mechanisms of light in seed germination. Chinese Journal of Plant Ecology, 36, 899-908.
DOI URL |
[张敏, 朱教君, 闫巧玲 (2012). 光对种子萌发的影响机理研究进展. 植物生态学报, 36, 899-908.]
DOI |
|
[45] |
Zhang M, Zhu JJ, Yan QL (2012). Seed germination of Pinus koraiensis Siebold & Zucc. in response to light regimes caused by shading and seed positions. Forest Systems, 21, 426-438.
DOI URL |
[46] | Zhu JJ (2002). A review on fundamental studies of secondary forest management. Chinese Journal of Applied Ecology, 13, 1689-1694. |
[朱教君 (2002). 次生林经营基础研究进展. 应用生态学报, 13, 1689-1694.] | |
[47] |
Zhu JJ, Liu ZG, Wang HX, Yan QL, Fang HY, Hu LL, Yu LZ (2008). Effects of site preparation on emergence and early establishment of Larix olgensis in montane regions of northeastern China. New Forests, 36, 247-260.
DOI URL |
[48] | Zou L, Zhang GQ, Saxi Y, Yu Y, Tang QM (2015). Plant diversity of virgin broadleaved-Korean pine forest and birch secondary forest in Liangshui. Bulletin of Botanical Research, 35, 945-951. |
[邹莉, 张国权, 萨喜雅尔图, 于洋, 唐庆明 (2015). 凉水原始阔叶红松林与白桦次生林植物多样性的比较研究. 植物研究, 35, 945-951.] |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 袁涵 钟爱文 刘送平 徐磊 彭焱松. 水毛花种子萌发特性的差异及休眠解除方法[J]. 植物生态学报, 2024, 48(5): 638-650. |
[3] | 张雪, 韩凤朋, 肖波, 沈思铭. 黄土高原生物结皮对地表粗糙度和灌草植物种子二次扩散的影响[J]. 植物生态学报, 2023, 47(12): 1668-1683. |
[4] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[5] | 魏龙鑫, 耿燕, 崔可达, 乔雪涛, 岳庆敏, 范春雨, 张春雨, 赵秀海. 阔叶红松林不同林层和生长阶段树木生长对采伐强度的响应[J]. 植物生态学报, 2022, 46(6): 642-655. |
[6] | 宋语涵, 张鹏, 金光泽. 阔叶红松林不同演替阶段灌木叶片碳氮磷化学计量特征及其影响因素[J]. 植物生态学报, 2021, 45(9): 952-960. |
[7] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[8] | 钟雨辰, 王斌, 方中平, 徐小忠, 于明坚. 片段化景观中壳斗科植物种子捕食和扩散模式[J]. 植物生态学报, 2021, 45(2): 154-162. |
[9] | 李绍阳, 马红媛, 赵丹丹, 马梦谣, 亓雯雯. 火烧信号对种子萌发影响的研究进展[J]. 植物生态学报, 2021, 45(11): 1177-1190. |
[10] | 哈努拉•塔斯肯, 蔡慧颖, 金光泽. 树冠结构对典型阔叶红松林生产力的影响[J]. 植物生态学报, 2021, 45(1): 38-50. |
[11] | 白天道, 余春兰, 甘泽朝, 赖海荣, 杨隐超, 黄厚宸, 蒋维昕. 细叶云南松种实性状变异与地理气象因子的关联[J]. 植物生态学报, 2020, 44(12): 1224-1235. |
[12] | 艾沙江•阿不都沙拉木, 迪丽娜尔•阿布拉, 张凯, 买热也木古•吐尔逊, 卡迪尔•阿布都热西提, 李玲. 喀什霸王的结实和种子萌发特性[J]. 植物生态学报, 2019, 43(5): 437-446. |
[13] | 范紫腾, 毋钰灵, 王新菊, 李太强, 高江云. 共生真菌对兰科植物种间杂交后代种子萌发的效应[J]. 植物生态学报, 2019, 43(4): 374-382. |
[14] | 王祖幸, 何维明. 土埋深度影响物种水平的种子质量-种子出苗关系[J]. 植物生态学报, 2019, 43(10): 899-908. |
[15] | 吴小琪, 杨圣贺, 黄力, 李笑寒, 杨超, 钱深华, 杨永川. 常绿阔叶林林冠环境对栲幼苗建成的影响[J]. 植物生态学报, 2019, 43(1): 55-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19