植物生态学报 ›› 2022, Vol. 46 ›› Issue (6): 642-655.DOI: 10.17521/cjpe.2021.0454
魏龙鑫, 耿燕(), 崔可达, 乔雪涛, 岳庆敏, 范春雨, 张春雨, 赵秀海
收稿日期:
2021-12-06
接受日期:
2022-02-24
出版日期:
2022-06-20
发布日期:
2022-03-15
通讯作者:
耿燕
作者简介:
*(gengyan@bjfu.edu.cn)基金资助:
WEI Long-Xin, GENG Yan(), CUI Ke-Da, QIAO Xue-Tao, YUE Qing-Min, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai
Received:
2021-12-06
Accepted:
2022-02-24
Online:
2022-06-20
Published:
2022-03-15
Contact:
GENG Yan
Supported by:
摘要:
采伐是调整林分结构的重要手段。不同林层的树木对采伐强度有着不同的响应方式。但以往考察采伐对树木生长的影响时多采用定性或简单定量的方法(如按树高等距)划分森林的垂直层次, 这就忽略了同一林层内不同树种间和不同发育阶段树木生长的差异。该研究在吉林蛟河天然阔叶红松(Pinus koraiensis)林内建立轻度(胸高断面积采伐强度17.3%)、中度(34.7%)、重度(51.9%)采伐以及对照(不采伐)样地, 跟踪调查采伐后自然恢复2、4、7年保留木的生长动态。根据不同树种每一个体所处的林层位置和生长发育阶段, 将保留木划分为3个组别: 林冠层树种的成熟个体(I)、林冠层树种的未成熟个体(II)以及林下层树种的全部个体(III), 比较不同恢复时期各组别树木的生长对于采伐强度的响应差异。结果表明, 第II组树木的平均胸径相对生长速率(0.033 cm·cm-1·a-1)显著高于第I (0.016 cm·cm-1·a-1)和III组(0.018 cm·cm-1·a-1)。总体来看, 采伐促进了大多数林冠层优势树种(第I、II组)的生长, 尤其是第II组树木的相对生长速率随采伐强度的增加而增加, 但第I组树木的相对生长速率只在重度采伐样地显著高于对照样地。然而林冠层少见种的生长速率并未受到采伐活动的显著影响。值得注意的是, 第I和II组树木生长对于采伐的响应都存在一定的时间滞后, 伐后短期内(2年)采伐样地与对照样地的生长速率没有显著差异, 而采伐对树木生长的促进效果在伐后2-4年才开始出现, 并在随后的监测期内持续存在。各组别树木的相对生长速率均随初始胸径的增大而降低, 且这种负相关关系的斜率随采伐强度增加逐渐增大, 表明随着采伐强度增加, 较小的树木个体从减弱的竞争中获益更多, 呈现出更加明显的生长释放现象。
魏龙鑫, 耿燕, 崔可达, 乔雪涛, 岳庆敏, 范春雨, 张春雨, 赵秀海. 阔叶红松林不同林层和生长阶段树木生长对采伐强度的响应. 植物生态学报, 2022, 46(6): 642-655. DOI: 10.17521/cjpe.2021.0454
WEI Long-Xin, GENG Yan, CUI Ke-Da, QIAO Xue-Tao, YUE Qing-Min, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Responses of tree growth to harvesting intensity among forest strata and growth stages in a broadleaved Korean pine forest. Chinese Journal of Plant Ecology, 2022, 46(6): 642-655. DOI: 10.17521/cjpe.2021.0454
图1 异龄混交林垂直层次划分示意图。I, 林冠层树种的成熟个体; II, 林冠层树种的未成熟个体; III, 林下层树种的全部个体。
Fig. 1 Schematic diagram of vertical stratification in mixed-species and uneven-aged stands. I, large/mature canopy trees; II, small/immature canopy trees; III, understory tree species and shrubs of any size.
样地 Sample plot | 海拔 Altitude (m) | 坡度 Slope (°) | 坡向 Aspect | 郁闭度 Canopy density | 平均胸径 Mean diameter at breast height (cm) | 平均树高 Mean tree height (m) | 主要乔木树种组成 Composition of main tree species |
---|---|---|---|---|---|---|---|
CK | 453 | 1 | 东北 Northeast | 0.9 | 14.6 | 9.7 | 3春榆; 2水曲柳; 1紫椴; 1胡桃楸; 1五角枫; +红松; +蒙古栎; +黄檗; -山杨; -朝鲜槐; -三花槭; -硕桦; -白桦; -东北槭; -稠李; -裂叶榆 3 Ulmus davidiana var. japonica; 2 Fraxinus mandshurica; 1 Tilia amurensis; 1 Juglans mandshurica; 1 Acer pictum subsp. mono; + Pinus koraiensis; + Quercus mongolica; + Phellodendron amurense; - Populus davidiana; - Maackia amurensis; - Acer triflorum; - Betula costata; - Betula platyphylla; - Acer mandshuricum; - Padus racemosa; - Ulmus laciniata |
Low | 443 | 4 | 东北 Northeast | 0.9 | 13.9 | 9.6 | 2水曲柳; 1紫椴; 1红松; 1五角枫; 1蒙古栎; 1白桦; 1春榆; +东北槭; +胡桃楸; -香杨; -黄檗; -千金榆; -朝鲜槐; -稠李; -茶条槭; -裂叶榆 2 Fraxinus mandshurica; 1 Tilia amurensis; 1 Pinus koraiensis; 1 Acer pictum subsp. mono; 1 Quercus mongolica; 1 Betula platyphylla; 1 Ulmus davidiana var. japonica; + Acer mandshuricum; + Juglans mandshurica; - Populus koreana; - Phellodendron amurense; - Carpinus cordata; - Maackia amurensis; - Padus racemosa; - Acer ginnala; - Ulmus laciniata |
Medium | 430 | 5 | 东北 Northeast | 0.9 | 14.8 | 9.7 | 2红松; 2水曲柳; 1紫椴; 1蒙古栎; 1五角枫; 1三花槭; 1春榆; 1白桦; +山杨; +东北槭; +胡桃楸; -朝鲜槐; -硕桦; -稠李; -茶条槭; -青楷槭; -香杨; -黄檗 2 Pinus koraiensis; 2 Fraxinus mandshurica; 1 Tilia amurensis; 1 Quercus mongolica; 1 Acer pictum subsp. mono; 1 Acer triflorum; 1 Ulmus davidiana var. japonica; 1 Betula platyphylla; + Populus davidiana; + Acer mandshuricum; + Juglans mandshurica; - Maackia amurensis; - Betula costata; - Padus racemosa; - Acer ginnala; - Acer tegmentosum; - Populus koreana; - Phellodendron amurense |
High | 447 | 3 | 东北 Northeast | 0.9 | 12.4 | 8.8 | 2水曲柳; 2白桦; 1红松; 1紫椴; 1蒙古栎; 1五角枫; 1三花槭; 1春榆; +香杨; -山杨; -朝鲜槐; -硕桦; -东北槭; -稠李; -辽椴; -胡桃楸; -茶条槭; -裂叶榆; -黄檗 2 Fraxinus mandshurica; 2 Betula platyphylla; 1 Pinus koraiensis; 1 Tilia amurensis; 1 Quercus mongolica; 1 Acer pictum subsp. mono; 1 Acer triflorum; 1 Ulmus davidiana var. japonica; + Populus koreana; - Populus davidiana; - Maackia amurensis; - Betula costata; - Acer mandshuricum; - Padus racemosa; - Tilia mandshurica; - Juglans mandshurica; - Acer ginnala; - Ulmus laciniate; - Phellodendron amurense |
表1 吉林蛟河阔叶红松林采伐样地概况
Table 1 Plot information of the broadleaved Korean pine forest in Jiaohe, Jilin Province
样地 Sample plot | 海拔 Altitude (m) | 坡度 Slope (°) | 坡向 Aspect | 郁闭度 Canopy density | 平均胸径 Mean diameter at breast height (cm) | 平均树高 Mean tree height (m) | 主要乔木树种组成 Composition of main tree species |
---|---|---|---|---|---|---|---|
CK | 453 | 1 | 东北 Northeast | 0.9 | 14.6 | 9.7 | 3春榆; 2水曲柳; 1紫椴; 1胡桃楸; 1五角枫; +红松; +蒙古栎; +黄檗; -山杨; -朝鲜槐; -三花槭; -硕桦; -白桦; -东北槭; -稠李; -裂叶榆 3 Ulmus davidiana var. japonica; 2 Fraxinus mandshurica; 1 Tilia amurensis; 1 Juglans mandshurica; 1 Acer pictum subsp. mono; + Pinus koraiensis; + Quercus mongolica; + Phellodendron amurense; - Populus davidiana; - Maackia amurensis; - Acer triflorum; - Betula costata; - Betula platyphylla; - Acer mandshuricum; - Padus racemosa; - Ulmus laciniata |
Low | 443 | 4 | 东北 Northeast | 0.9 | 13.9 | 9.6 | 2水曲柳; 1紫椴; 1红松; 1五角枫; 1蒙古栎; 1白桦; 1春榆; +东北槭; +胡桃楸; -香杨; -黄檗; -千金榆; -朝鲜槐; -稠李; -茶条槭; -裂叶榆 2 Fraxinus mandshurica; 1 Tilia amurensis; 1 Pinus koraiensis; 1 Acer pictum subsp. mono; 1 Quercus mongolica; 1 Betula platyphylla; 1 Ulmus davidiana var. japonica; + Acer mandshuricum; + Juglans mandshurica; - Populus koreana; - Phellodendron amurense; - Carpinus cordata; - Maackia amurensis; - Padus racemosa; - Acer ginnala; - Ulmus laciniata |
Medium | 430 | 5 | 东北 Northeast | 0.9 | 14.8 | 9.7 | 2红松; 2水曲柳; 1紫椴; 1蒙古栎; 1五角枫; 1三花槭; 1春榆; 1白桦; +山杨; +东北槭; +胡桃楸; -朝鲜槐; -硕桦; -稠李; -茶条槭; -青楷槭; -香杨; -黄檗 2 Pinus koraiensis; 2 Fraxinus mandshurica; 1 Tilia amurensis; 1 Quercus mongolica; 1 Acer pictum subsp. mono; 1 Acer triflorum; 1 Ulmus davidiana var. japonica; 1 Betula platyphylla; + Populus davidiana; + Acer mandshuricum; + Juglans mandshurica; - Maackia amurensis; - Betula costata; - Padus racemosa; - Acer ginnala; - Acer tegmentosum; - Populus koreana; - Phellodendron amurense |
High | 447 | 3 | 东北 Northeast | 0.9 | 12.4 | 8.8 | 2水曲柳; 2白桦; 1红松; 1紫椴; 1蒙古栎; 1五角枫; 1三花槭; 1春榆; +香杨; -山杨; -朝鲜槐; -硕桦; -东北槭; -稠李; -辽椴; -胡桃楸; -茶条槭; -裂叶榆; -黄檗 2 Fraxinus mandshurica; 2 Betula platyphylla; 1 Pinus koraiensis; 1 Tilia amurensis; 1 Quercus mongolica; 1 Acer pictum subsp. mono; 1 Acer triflorum; 1 Ulmus davidiana var. japonica; + Populus koreana; - Populus davidiana; - Maackia amurensis; - Betula costata; - Acer mandshuricum; - Padus racemosa; - Tilia mandshurica; - Juglans mandshurica; - Acer ginnala; - Ulmus laciniate; - Phellodendron amurense |
图2 阔叶红松林样地内用于区分冠层优势树种成熟和未成熟个体的胸径-树高双变量密度图。红色点为成熟个体(I), 蓝色点为未成熟个体(II)。灰色线由内到外分别代表0.05、0.25、0.5、0.75和0.95分位数。
Fig. 2 Diameter at breast height-tree height bivariate density graphs used to distinguish mature and immature individuals of dominant tree species in the canopy in the sampling plots of broadleaved Korean pine forest. The red dots are mature individuals, and the blue dots are immature individuals. The grey lines from the inside out represent the 0.05, 0.25, 0.5, 0.75 and 0.95 quantiles, respectively.
物种 Species | 林层 Forest strata | 划分I和II组的方法 Method used to differentiate between mature (I) and immature (II) trees | 组别 Cohort | 监测株数 Number of stems | 耐阴性 Shade- tolerance | |
---|---|---|---|---|---|---|
白桦 Betula platyphylla | C | 树高胸径分布法 DBH-H distribution | I (53.5): DBH ≥ 22 cm | II (43.5): DBH < 22 cm | 178 | 喜光 LD |
东北槭 Acer mandshuricum | C | 树高胸径分布法 DBH-H distribution | I (87.4): DBH ≥ 8 cm | II (55.6): DBH < 8 cm | 270 | 喜光 LD |
春榆 Ulmus davidiana var. japonica | C | 树高胸径分布法 DBH-H distribution | I (67.8): DBH ≥ 12 cm | II (39.2): DBH < 12 cm | >627 | 喜光且耐阴 LD and ST |
硕桦 Betula costata | C | 最大树高法 Hmax | I: H ≥ 10.2 m | II: H < 10.2 m | 7 | 喜光 LD |
红松 Pinus koraiensis | C | 树高胸径分布法 DBH-H distribution | I (62.5): DBH ≥ 20 cm | II (42.4): DBH < 20 cm | 387 | 喜光 LD |
胡桃楸 Juglans mandshurica | C | 最大树高法 Hmax | I (50.0): H ≥ 11.9 m | II (35.9): H < 11.9 m | 90 | 喜光 LD |
朝鲜槐 Maackia amurensis | C | 树高胸径分布法 DBH-H distribution | I (60.3): DBH ≥ 12 cm | II (47.3): DBH < 12 cm | 94 | 喜光 LD |
黄檗 Phellodendron amurense | C | 最大树高法 Hmax | I (66.1): H ≥ 9.3 m | II (52.9): H < 9.3 m | 61 | 喜光 LD |
辽椴 Tilia mandshurica | C | 最大树高法 Hmax | I: H ≥ 11 m | II: H < 11 m | 16 | 喜光 LD |
裂叶榆 Ulmus laciniata | C | 最大树高法 Hmax | I (68.4): H ≥ 10.2 m | II (52.1): H < 10.2 m | >15 | 耐阴 ST |
蒙古栎 Quercus mongolica | C | 树高胸径分布法 DBH-H distribution | I (59.2): DBH ≥ 20 cm | II (44.2): DBH < 20 cm | 177 | 喜光 LD |
三花槭 Acer triflorum | C | 树高胸径分布法 DBH-H distribution | I (86.6): DBH ≥ 13 cm | II (50.0): DBH < 13 cm | >379 | 耐阴 ST |
五角枫 Acer pictum subsp. mono | C | 树高胸径分布法 DBH-H distribution | I (81.3): DBH ≥ 13 cm | II (60.8): DBH < 13 cm | 851 | 喜光 LD |
山杨 Populus davidiana | C | 最大树高法 Hmax | I (28.0): H ≥ 11.7 m | II (20.6): H < 11.7 m | 20 | 喜光 LD |
水曲柳 Fraxinus mandschurica | C | 树高胸径分布法 DBH-H distribution | I (60.1): DBH ≥ 21 cm | II (49.6): DBH < 21 cm | 323 | 喜光 LD |
香杨 Populus koreana | C | 最大树高法 Hmax | I: H ≥ 13.7 m | II: H < 13.7 m | 10 | 喜光 LD |
紫椴 Tilia amurensis | C | 树高胸径分布法 DBH-H distribution | I (68.3): DBH ≥ 18 cm | II (43.6): DBH < 18 cm | 493 | 喜光 LD |
暴马丁香 Syringa reticulata subsp. amurensis | U | - | III | >171 | 耐阴 ST | |
茶条槭 Acer ginnala | U | - | III | 20 | 喜光 LD | |
稠李 Padus racemosa | U | - | III | 32 | 耐阴 ST | |
簇毛槭 Acer barbinerve | U | - | III | 34 | 耐阴 ST | |
花楸树 Sorbus pohuashanensis | U | - | III | 1 | 耐阴 ST | |
楤木 Aralia elata | U | - | III | 1 | 喜光 LD | |
毛榛 Corylus mandshurica | U | - | III | 16 | 耐阴 ST | |
千金榆 Carpinus cordata | U | - | III | 1 | 耐阴 ST | |
青楷槭 Acer tegmentosum | U | - | III | 44 | 喜光 LD | |
山荆子 Malus baccata | U | - | III | 68 | 耐阴 ST | |
鼠李 Rhamnus davurica | U | - | III | 9 | 耐阴 ST | |
卫矛 Euonymus alatus | U | - | III | >12 | 喜光且耐阴 LD and ST |
表2 阔叶红松林样地内树种分组情况及其耐阴性
Table 2 Cohort specification and shade-tolerance of tree species in the plots of broadleaved Korean pine forest
物种 Species | 林层 Forest strata | 划分I和II组的方法 Method used to differentiate between mature (I) and immature (II) trees | 组别 Cohort | 监测株数 Number of stems | 耐阴性 Shade- tolerance | |
---|---|---|---|---|---|---|
白桦 Betula platyphylla | C | 树高胸径分布法 DBH-H distribution | I (53.5): DBH ≥ 22 cm | II (43.5): DBH < 22 cm | 178 | 喜光 LD |
东北槭 Acer mandshuricum | C | 树高胸径分布法 DBH-H distribution | I (87.4): DBH ≥ 8 cm | II (55.6): DBH < 8 cm | 270 | 喜光 LD |
春榆 Ulmus davidiana var. japonica | C | 树高胸径分布法 DBH-H distribution | I (67.8): DBH ≥ 12 cm | II (39.2): DBH < 12 cm | >627 | 喜光且耐阴 LD and ST |
硕桦 Betula costata | C | 最大树高法 Hmax | I: H ≥ 10.2 m | II: H < 10.2 m | 7 | 喜光 LD |
红松 Pinus koraiensis | C | 树高胸径分布法 DBH-H distribution | I (62.5): DBH ≥ 20 cm | II (42.4): DBH < 20 cm | 387 | 喜光 LD |
胡桃楸 Juglans mandshurica | C | 最大树高法 Hmax | I (50.0): H ≥ 11.9 m | II (35.9): H < 11.9 m | 90 | 喜光 LD |
朝鲜槐 Maackia amurensis | C | 树高胸径分布法 DBH-H distribution | I (60.3): DBH ≥ 12 cm | II (47.3): DBH < 12 cm | 94 | 喜光 LD |
黄檗 Phellodendron amurense | C | 最大树高法 Hmax | I (66.1): H ≥ 9.3 m | II (52.9): H < 9.3 m | 61 | 喜光 LD |
辽椴 Tilia mandshurica | C | 最大树高法 Hmax | I: H ≥ 11 m | II: H < 11 m | 16 | 喜光 LD |
裂叶榆 Ulmus laciniata | C | 最大树高法 Hmax | I (68.4): H ≥ 10.2 m | II (52.1): H < 10.2 m | >15 | 耐阴 ST |
蒙古栎 Quercus mongolica | C | 树高胸径分布法 DBH-H distribution | I (59.2): DBH ≥ 20 cm | II (44.2): DBH < 20 cm | 177 | 喜光 LD |
三花槭 Acer triflorum | C | 树高胸径分布法 DBH-H distribution | I (86.6): DBH ≥ 13 cm | II (50.0): DBH < 13 cm | >379 | 耐阴 ST |
五角枫 Acer pictum subsp. mono | C | 树高胸径分布法 DBH-H distribution | I (81.3): DBH ≥ 13 cm | II (60.8): DBH < 13 cm | 851 | 喜光 LD |
山杨 Populus davidiana | C | 最大树高法 Hmax | I (28.0): H ≥ 11.7 m | II (20.6): H < 11.7 m | 20 | 喜光 LD |
水曲柳 Fraxinus mandschurica | C | 树高胸径分布法 DBH-H distribution | I (60.1): DBH ≥ 21 cm | II (49.6): DBH < 21 cm | 323 | 喜光 LD |
香杨 Populus koreana | C | 最大树高法 Hmax | I: H ≥ 13.7 m | II: H < 13.7 m | 10 | 喜光 LD |
紫椴 Tilia amurensis | C | 树高胸径分布法 DBH-H distribution | I (68.3): DBH ≥ 18 cm | II (43.6): DBH < 18 cm | 493 | 喜光 LD |
暴马丁香 Syringa reticulata subsp. amurensis | U | - | III | >171 | 耐阴 ST | |
茶条槭 Acer ginnala | U | - | III | 20 | 喜光 LD | |
稠李 Padus racemosa | U | - | III | 32 | 耐阴 ST | |
簇毛槭 Acer barbinerve | U | - | III | 34 | 耐阴 ST | |
花楸树 Sorbus pohuashanensis | U | - | III | 1 | 耐阴 ST | |
楤木 Aralia elata | U | - | III | 1 | 喜光 LD | |
毛榛 Corylus mandshurica | U | - | III | 16 | 耐阴 ST | |
千金榆 Carpinus cordata | U | - | III | 1 | 耐阴 ST | |
青楷槭 Acer tegmentosum | U | - | III | 44 | 喜光 LD | |
山荆子 Malus baccata | U | - | III | 68 | 耐阴 ST | |
鼠李 Rhamnus davurica | U | - | III | 9 | 耐阴 ST | |
卫矛 Euonymus alatus | U | - | III | >12 | 喜光且耐阴 LD and ST |
林木株数 Number of stems | 胸高断面积 Basal area (m2·hm-2) | |||||
---|---|---|---|---|---|---|
I | II | III | I | II | III | |
伐前 Pre-harvesting | ||||||
CK | 354 | 516 | 76 | 23.01 | 3.63 | 0.36 |
Low | 345 | 621 | 60 | 25.77 | 3.36 | 0.26 |
Medium | 339 | 589 | 71 | 25.86 | 3.67 | 0.39 |
High | 296 | 595 | 134 | 23.63 | 3.41 | 0.35 |
伐后 Post-harvesting | ||||||
CK | 354 | 516 | 76 | 23.01 | 3.63 | 0.36 |
Low | 303 (12%) | 580 (7%) | 48 (20%) | 21.24 (18%) | 3.11 (7%) | 0.25 (4%) |
Medium | 251 (26%) | 504 (14%) | 58 (18%) | 16.94 (34%) | 3.25 (11%) | 0.27 (31%) |
High | 149 (50%) | 379 (36%) | 68 (49%) | 8.47 (64%) | 2.61 (23%) | 0.21 (40%) |
表3 阔叶红松林各样地内各组别树木采伐前后的个体株数、胸高断面积及相应的采伐强度
Table 3 Number of stems, basal area of diameter at breast height (DBH) pre- and post-harvesting, and harvesting intensity of each cohort in each plot of broadleaved Korean pine forest
林木株数 Number of stems | 胸高断面积 Basal area (m2·hm-2) | |||||
---|---|---|---|---|---|---|
I | II | III | I | II | III | |
伐前 Pre-harvesting | ||||||
CK | 354 | 516 | 76 | 23.01 | 3.63 | 0.36 |
Low | 345 | 621 | 60 | 25.77 | 3.36 | 0.26 |
Medium | 339 | 589 | 71 | 25.86 | 3.67 | 0.39 |
High | 296 | 595 | 134 | 23.63 | 3.41 | 0.35 |
伐后 Post-harvesting | ||||||
CK | 354 | 516 | 76 | 23.01 | 3.63 | 0.36 |
Low | 303 (12%) | 580 (7%) | 48 (20%) | 21.24 (18%) | 3.11 (7%) | 0.25 (4%) |
Medium | 251 (26%) | 504 (14%) | 58 (18%) | 16.94 (34%) | 3.25 (11%) | 0.27 (31%) |
High | 149 (50%) | 379 (36%) | 68 (49%) | 8.47 (64%) | 2.61 (23%) | 0.21 (40%) |
图3 阔叶红松林采伐前后对照样地(A)、轻度采伐(B)、中度采伐(C)和重度采伐样地(D)内的林木胸径分布。
Fig. 3 Diameter at breast height (DBH) distribution in control plot (A) and plots subjected to low intensity harvesting (B), medium intensity harvesting (C), and high intensity harvesting plot (D) before and after harvesting of broadleaved Korean pine forest.
变异来源 Source of variation | 生长速率 Growth rate | 相对生长速率 Relative growth rate | ||||
---|---|---|---|---|---|---|
df | F | p | df | F | p | |
采伐强度 Harvesting intensity (HI) | 3 | 24.772 | <0.001 | 3 | 23.690 | <0.001 |
组别 Cohort (C) | 2 | 215.467 | <0.001 | 2 | 100.555 | <0.001 |
恢复时期 Period (P) | 2 | 91.112 | <0.001 | 2 | 19.289 | <0.001 |
采伐强度×组别 HI × C | 6 | 2.456 | 0.023 | 6 | 3.858 | <0.001 |
采伐强度×恢复时期 HI × P | 6 | 7.500 | <0.001 | 6 | 5.639 | <0.001 |
组别×恢复时期 C × P | 4 | 6.691 | <0.001 | 4 | 4.822 | <0.001 |
采伐强度×组别×恢复时期 HI × C × P | 12 | 1.435 | 0.145 | 12 | 0.934 | 0.512 |
表4 阔叶红松林影响保留木生长的多因素方差分析
Table 4 Multi-factor analysis of variance of affecting the growth of residual trees of broadleaved Korean pine forest
变异来源 Source of variation | 生长速率 Growth rate | 相对生长速率 Relative growth rate | ||||
---|---|---|---|---|---|---|
df | F | p | df | F | p | |
采伐强度 Harvesting intensity (HI) | 3 | 24.772 | <0.001 | 3 | 23.690 | <0.001 |
组别 Cohort (C) | 2 | 215.467 | <0.001 | 2 | 100.555 | <0.001 |
恢复时期 Period (P) | 2 | 91.112 | <0.001 | 2 | 19.289 | <0.001 |
采伐强度×组别 HI × C | 6 | 2.456 | 0.023 | 6 | 3.858 | <0.001 |
采伐强度×恢复时期 HI × P | 6 | 7.500 | <0.001 | 6 | 5.639 | <0.001 |
组别×恢复时期 C × P | 4 | 6.691 | <0.001 | 4 | 4.822 | <0.001 |
采伐强度×组别×恢复时期 HI × C × P | 12 | 1.435 | 0.145 | 12 | 0.934 | 0.512 |
图4 阔叶红松林不同强度采伐后2年内(A)、2-4年(B)、4-7年(C)、7年内(D)各组别树木的平均胸径相对生长速率(平均值±标准误)。不同小写字母表示在同一树木组别内不同采伐强度样地间存在显著差异; 不同大写字母表示在同一采伐强度样地内不同树木组别间存在显著差异(p < 0.05)。I, 林冠层树种的成熟个体; II, 林冠层树种的未成熟个体; III, 林下层树种的全部个体。CK, 对照样地; High, 重度采伐样地; Low, 轻度采伐样地; Medium, 中度采伐样地。
Fig. 4 Relative growth rate (mean ± SE) of diameter at breast height (DBH) of each group of trees under different harvesting intensities in different recovery periods of broadleaved Korean pine forest. A, First two years after harvested. B, 2-4 years after harvested. C, 4-7 years after harvested. D, Over 7 years after harvested. Different lowercase letters indicate significant differences among different harvesting intensities within the same cohort; different uppercase letters indicate significant differences among tree cohorts within the same harvesting intensity (p < 0.05). I, large/mature canopy trees; II, small/immature canopy trees; III, understory tree species and shrubs of any size. CK, control plot; High, heavily harvesting plot; Low, light harvesting plot; Medium, moderate harvesting plot.
图5 阔叶红松林不同采伐强度下各组别树木胸径的相对生长速率与其初始大小的关系。I, 林冠层树种的成熟个体; II, 林冠层树种的未成熟个体; III, 林下层树种的全部个体。CK, 对照样地; High, 重度采伐样地; Low, 轻度采伐样地; Medium, 中度采伐样地。阴影代表拟合曲线95%的置信区间。
Fig. 5 Relationship between the relative growth rate of diameter at breast height (DBH) of each group of trees and their initial size under different harvesting intensities of broadleaved Korean pine forest. I, large/mature canopy trees; II, small/immature canopy trees; III, understory tree species and shrubs of any size. CK, control plot; High, heavily harvesting plot; Low, light harvesting plot; Medium, moderate harvesting plot. Shadow volume represents 95% confidence interval of the fitted line.
图6 阔叶红松林不同采伐强度下林冠层优势、亚优势树种和少见种的成熟个体(I)和未成熟个体(II)的平均胸径相对生长速率(平均值±标准误)。不同大写字母表示不同采伐强度下I组树木胸径的相对生长速率存在显著差异(p < 0.05); 不同小写字母表示不同采伐强度下II组树木胸径的相对生长速率存在显著差异(p < 0.05)。CK, 对照样地; High, 重度采伐样地; Low, 轻度采伐样地; Medium, 中度采伐样地。
Fig. 6 Relative growth rate of diameter at breast height (DBH)(mean ± SE) of mature (I) and immature (II) individuals of dominant, subdominant and rare species in the forest canopy under different harvesting intensities of broadleaved Korean pine forest. Different uppercase letters indicate significant differences in relative growth rate of DBH of trees in cohort I among different harvesting intensities (p < 0.05); different lowercase letters indicate significant differences in relative growth rates of DBH of trees in cohort II among different harvesting intensities (p < 0.05). CK, control plot; High, heavily harvesting plot; Low, light harvesting plot; Medium, moderate harvesting plot.
[1] |
Baker TR, Swaine MD, Burslem DFRP (2003). Variation in tropical forest growth rates: combined effects of functional group composition and resource availability. Perspectives in Plant Ecology Evolution and Systematics, 6, 21-36.
DOI URL |
[2] |
Bose AK, Wagner RG, Weiskittel AR, D'Amato AW (2021). Effect magnitudes of operational-scale partial harvesting on residual tree growth and mortality of ten major tree species in Maine USA. Forest Ecology and Management, 484, 118953. DOI: 10.1016/j.foreco.2021.118953.
DOI URL |
[3] |
Castagneri D, Nola P, Cherubini P, Motta R (2012). Temporal variability of size-growth relationships in a Norway spruce forest: the influences of stand structure, logging, and climate. Canadian Journal of Forest Research, 42, 550-560.
DOI URL |
[4] | Chen YJ, Cao KF, Cai ZQ (2008). Above- and below-ground competition between seedlings of lianas and trees under two light irradiances. Journal of Plant Ecology (Chinese Version), 32, 639-647. |
[陈亚军, 曹坤芳, 蔡志全 (2008). 两种光强下木质藤本与树木幼苗的竞争关系. 植物生态学报, 32, 639-647.]
DOI |
|
[5] |
Chi XL, Tang ZY, Xie ZQ, Guo Q, Zhang M, Ge JL, Xiong GM, Fang JY (2015). Effects of size, neighbors, and site condition on tree growth in a subtropical evergreen and deciduous broad-leaved mixed forest, China. Ecology and Evolution, 5, 5149-5161.
DOI URL |
[6] |
Darrigo MR, Venticinque EM, Santos FAMD (2016). Effects of reduced impact logging on the forest regeneration in the central Amazonia. Forest Ecology and Management, 360, 52-59.
DOI URL |
[7] |
de Avila AL, Schwartz G, Ruschel AR, Lopes JDC, Silva JNM, Dormann CF, Mazzei L, Soares MHM, Bauhus J (2017). Recruitment, growth and recovery of commercial tree species over 30 years following logging and thinning in a tropical rain forest. Forest Ecology and Management, 385, 225-235.
DOI URL |
[8] |
Dionisio LFS, Schwartz G, Lopes JDC, de Assis Oliveira F, (2018). Growth, mortality, and recruitment of tree species in an Amazonian rainforest over 13 years of reduced impact logging. Forest Ecology and Management, 430, 150-156.
DOI URL |
[9] | Everett R, Baumgartner D, Ohlson P, Schellhaas R (2008). Defining and quantifying canopy strata. Northwest Science, 82, 48-64. |
[10] | Fan CY, Zhang CY, Zhao XH (2017). Effects of selective harvest on community structure and dynamics in a mixed broadleaved Korean pine forest in Jiaohe, Jilin Province. Acta Ecologica Sinica, 37, 6668-6678. |
[范春雨, 张春雨, 赵秀海 (2017). 择伐对吉林蛟河阔叶红松林群落结构及动态的影响. 生态学报, 37, 6668-6678.] | |
[11] |
Fernández-Tschieder E, Binkley D, Bauerle W (2020). Production ecology and reverse growth dominance in an old-growth ponderosa pine forest. Forest Ecology and Management, 460, 117891. DOI: 10.1016/j.foreco.2020.117891.
DOI URL |
[12] | Gadow K, González JGÁ, Zhang CY, Pukkala T, Zhao XH (2021). Sustaining Forest Ecosystems. Springer Nature, Switzerland. |
[13] |
Geng Y, Yue QM, Zhang CY, Zhao XH, Gadow K (2021). Dynamics and drivers of aboveground biomass accumulation during recovery from selective harvesting in an uneven-aged forest. European Journal of Forest Research, 140, 1163-1178.
DOI URL |
[14] |
Guo Q, Chi XL, Xie ZQ, Tang ZY (2017). Asymmetric competition for light varies across functional groups. Journal of Plant Ecology, 10, 74-80.
DOI URL |
[15] |
Hartmann H, Messier C (2011). Interannual variation in competitive interactions from natural and anthropogenic disturbances in a temperate forest tree species: implications for ecological interpretation. Forest Ecology and Management, 261, 1936-1944.
DOI URL |
[16] | Hao MH, Li XY, Xia MJ, He HJ, Zhang CY, Zhao XH (2018). Effects of tending felling on functional and phylogenetic structures in a multi-species temperate secondary forest at Jiaohe in Jilin Province. Scientia Silvae Sinicae, 54(5), 1-9. |
[郝珉辉, 李晓宇, 夏梦洁, 何怀江, 张春雨, 赵秀海 (2018). 抚育采伐对蛟河次生针阔混交林功能结构和谱系结构的影响. 林业科学, 54(5), 1-9.] | |
[17] | He HJ, Zhang ZH, Zhang CY, Hao MH, Yao J, Xie Z, Gao HT, Zhao XH (2019). Short-term effects of thinning intensity on stand growth and species diversity of mixed coniferous and broad-leaved forest in northeastern China. Scientia Silvae Sinicae, 55(2), 1-12. |
[何怀江, 张忠辉, 张春雨, 郝珉辉, 姚杰, 解蛰, 高海涛, 赵秀海 (2019). 采伐强度对东北针阔混交林林分生长和物种多样性的短期影响. 林业科学, 55(2), 1-12.] | |
[18] |
Hu J, Herbohn J, Chazdon RL, Baynes J, Vanclay JK (2020). Long-term growth responses of three Flindersia species to different thinning intensities after selective logging of a tropical rainforest. Forest Ecology and Management, 476, 118442. DOI: 10.1016/j.foreco.2020.118442.
DOI URL |
[19] |
Jiang J, Zhang CY, Zhao XH (2012). Plant species-area relationship in a 42-hm2 research plot of coniferous and board-leaved mixed forest in Jiaohe, Jilin Province, China. Chinese Journal of Plant Ecology, 36, 30-38.
DOI URL |
[姜俊, 张春雨, 赵秀海 (2012). 吉林蛟河42 hm2针阔混交林样地植物种-面积关系. 植物生态学报, 36, 30-38.]
DOI |
|
[20] | Jiang ZH, Jin GZ (2010). Effects of selection cutting on diameter growth and vertical growth among major tree species in the mixed broadleaved-Korean pine forest. Acta Ecologica Sinica, 30, 5843-5852. |
[蒋子涵, 金光泽 (2010). 择伐对阔叶红松林主要树种径向与纵向生长的影响. 生态学报, 30, 5843-5852.] | |
[21] |
King DA, Wright SJ, Connell JH (2006). The contribution of interspecific variation in maximum tree height to tropical and temperate diversity. Journal of Tropical Ecology, 22, 11-24.
DOI URL |
[22] |
Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JHC, Gourlet-Fleury S, et al. (2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207.
DOI URL |
[23] |
Lewis SL, Tanner EVJ (2000). Effects of above- and belowground competition on growth and survival of rain forest tree seedlings. Ecology, 81, 2525-2538.
DOI URL |
[24] |
Li YP, Ni YL, Xu H, Lian JY, Ye WH (2021). Relationship between variation of plant functional traits and individual growth at different vertical layers in a subtropical evergreen broad-leaved forest of Dinghushan. Biodiversity Science, 29, 1186-1197.
DOI URL |
[李艳朋, 倪云龙, 许涵, 练琚愉, 叶万辉 (2021). 鼎湖山南亚热带常绿阔叶林植物功能性状变异与不同垂直层次个体生长的关联. 生物多样性, 29, 1186-1197.]
DOI |
|
[25] |
Liu Y, Blanco JA, Wei XH, Kang XG, Wang WF, Guo YR (2014). Determining suitable selection cutting intensities based on long-term observations on aboveground forest carbon, growth, and stand structure in Changbai Mountain, Northeast China. Scandinavian Journal of Forest Research, 29, 436-454.
DOI URL |
[26] | Lu JY, Zhang CY, Zhao XH (2021). Relationship between forest strata structure and topography of coniferous and broad-leaved mixed forest in Jiaohe City, Jilin Province. Acta Ecologica Sinica, 41, 6613-6620. |
[鲁君悦, 张春雨, 赵秀海 (2021). 吉林省蛟河市针阔混交林林层结构与地形的关系. 生态学报, 41, 6613-6620.] | |
[27] |
Niinemets U (2006). The controversy over traits conferring shade-tolerance in trees: ontogenetic changes revisited. Journal of Ecology, 94, 464-470.
DOI URL |
[28] |
Onoda Y, Saluñga JB, Akutsu K, Aiba SI, Yahara T, Anten NPR (2014). Trade-off between light interception efficiency and light use efficiency: implications for species coexistence in one-sided light competition. Journal of Ecology, 102, 167-175.
DOI URL |
[29] |
Poorter L, Bongers F, Sterck FJ, Wöll H (2003). Architecture of 53 rain forest tree species differing in adult stature and shade tolerance. Ecology, 84, 602-608.
DOI URL |
[30] |
Prévost M, Charette L (2015). Selection cutting in a yellow birch-conifer stand, in Quebec, Canada: comparing the single-tree and two hybrid methods using different sizes of canopy opening. Forest Ecology and Management, 357, 195-205.
DOI URL |
[31] |
Rodrigues DR, Bovolenta YR, Pimenta JA, Bianchini E (2019). Selective logging alters allometric relationships of five tropical tree species in seasonal semi-deciduous forests. Journal of Forestry Research, 30, 1633-1639.
DOI |
[32] |
Scrucca L, Fop M, Murphy TB, Raftery AE (2016). mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8, 289-317.
DOI URL |
[33] |
Shao GF, Wang H, Dai LM, Wu G, Li YS, Lang RL, Song B (2005). Integrating stand and landscape decisions for multi-purposes of forest harvesting. Forest Ecology and Management, 207, 233-243.
DOI URL |
[34] |
Sheil D, Eastaugh CS, Vlam M, Zuidema PA, Groenendijk P, Sleen P, Jay A, Vanclay J (2017). Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Functional Ecology, 31, 568-581.
DOI URL |
[35] |
Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, Coomes DA, Lines ER, Morris WK, Rüger N, Álvarez E, Blundo C, Bunyavejchewin S, Chuyong G, Davies SJ, et al. (2014). Rate of tree carbon accumulation increases continuously with tree size. Nature, 507, 90-93.
DOI URL |
[36] | Tang Y, Chen H, Tong YW, Zhu Q, Zhou WM, Zhou L, Dai LM, Yu DP (2019). Competition of key tree species with selective cutting at different intensities in broadleaved- Korean pine mixed forest in the Changbai Mountain, China. Chinese Journal of Applied Ecology, 30, 1469-1478. |
[唐杨, 陈红, 童跃伟, 朱琪, 周旺明, 周莉, 代力民, 于大炮 (2019). 长白山阔叶红松林不同强度择伐后关键树种的竞争关系. 应用生态学报, 30, 1469-1478.]
DOI |
|
[37] |
Tasiken H, Cai HY, Jin GZ (2021). Effects of canopy structure on productivity in a typical mixed broadleaved-Korean pine forest. Chinese Journal of Plant Ecology, 45, 38-50.
DOI URL |
[哈努拉·塔斯肯, 蔡慧颖, 金光泽, (2021). 树冠结构对典型阔叶红松林生产力的影响. 植物生态学报, 45, 38-50.] | |
[38] | Vatraz S, Carvalho J, Silva JNM, Castro TDC (2016). Effect of the reduced impact exploration on growth dynamics of a natural forest. Scientia Forestalis, 44, 261-271. |
[39] |
Wu ZL, Zhou CJ, Zhou XN, Hu XS, Gan JB (2018). Variability after 15 years of vegetation recovery in natural secondary forest with timber harvesting at different intensities in southeastern China: community diversity and stability. Forests, 9, 40. DOI: 10.3390/f9010040.
DOI URL |
[40] | Xuan HC, Guo MZ, Gao LS, Fan CY (2020). Effect of competition environment changes on the radial growth of Pinus koraiensis and Fraxinus mandshurica in mixed coniferous- broad-leaved forest. Acta Ecologica Sinica, 40, 4087-4093. |
[宣海憧, 郭梦昭, 高露双, 范春雨 (2020). 竞争强度变化对针阔混交林红松和水曲柳径向生长的影响. 生态学报, 40, 4087-4093.] | |
[41] |
Zhang CY, Zhao XH, Gadow KV (2014). Analyzing selective harvest events in three large forest observational studies in North Eastern China. Forest Ecology and Management, 316, 100-109.
DOI URL |
[42] | Zhao YT (2009). Iconographia Plantarum Lignosarum Jilinica. China Forestry Publishing House, Beijing. |
[赵毓棠 (2009). 吉林树木图志. 中国林业出版社, 北京.] | |
[43] | Zheng JM, Zhang CY, Zhou JX, Zhao XH, Yu XX, Qin YS (2007). Study on vertical structure of forest communities in Yunmengshan. Forest Research, 20, 768-774. |
[郑景明, 张春雨, 周金星, 赵秀海, 余新晓, 秦永胜 (2007). 云蒙山典型森林群落垂直结构研究. 林业科学研究, 20, 768-774.] | |
[44] | Zhuang CY, Huang QL, Ma ZB, Luo F, Zhang Y (2014). Review on defining methods for canopy stratification. World Forestry Research, 27(6), 34-40. |
[庄崇洋, 黄清麟, 马志波, 罗芬, 张寅 (2014). 林层划分方法综述. 世界林业研究, 27(6), 34-40.] | |
[45] | Zucchini W, Schmidt M, Gadow K (2001). A model for the diameter-height distribution in an uneven-aged beech forest and a method to assess the fit of such models. Silva Fennica, 35, 169-183. |
[1] | 宋语涵, 张鹏, 金光泽. 阔叶红松林不同演替阶段灌木叶片碳氮磷化学计量特征及其影响因素[J]. 植物生态学报, 2021, 45(9): 952-960. |
[2] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[3] | 哈努拉•塔斯肯, 蔡慧颖, 金光泽. 树冠结构对典型阔叶红松林生产力的影响[J]. 植物生态学报, 2021, 45(1): 38-50. |
[4] | 莫丹, 王振孟, 左有璐, 向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系[J]. 植物生态学报, 2020, 44(10): 995-1006. |
[5] | 黄菊莹, 余海龙. 四种荒漠草原植物的生长对不同氮添加水平的响应[J]. 植物生态学报, 2016, 40(2): 165-. |
[6] | 张瑜, 金光泽. 腐烂等级、径级对典型阔叶红松林红松倒木物理化学性质的影响[J]. 植物生态学报, 2016, 40(12): 1276-1288. |
[7] | 朱良军, 金光泽, 王晓春. 典型阔叶红松林干扰历史重建及干扰形成机制[J]. 植物生态学报, 2015, 39(2): 125-139. |
[8] | 王一峰, 李梅, 李世雄, 郭杰, 陈玉萍, 王瑞雪. 青藏高原东缘星状风毛菊生殖分配对海拔的响应[J]. 植物生态学报, 2012, 36(11): 1145-1153. |
[9] | 王一峰, 刘启茜, 裴泽宇, 李海燕. 青藏高原3种风毛菊属植物的繁殖分配与海拔高度的相关性[J]. 植物生态学报, 2012, 36(1): 39-46. |
[10] | 李嵩, 郑新军, 唐立松, 李彦. 基于异速生长理论的准噶尔盆地荒漠灌丛形态研究[J]. 植物生态学报, 2011, 35(5): 471-479. |
[11] | 黎磊, 周道玮. 红葱种群地上和地下构件的密度制约调节[J]. 植物生态学报, 2011, 35(3): 284-293. |
[12] | 张弥, 于贵瑞, 张雷明, 孙晓敏, 温学发, 韩士杰. 太阳辐射对长白山阔叶红松林净生态系统碳交换的影响[J]. 植物生态学报, 2009, 33(2): 270-282. |
[13] | 陈亚军, 曹坤芳, 蔡志全. 两种光强下木质藤本与树木幼苗的竞争关系[J]. 植物生态学报, 2008, 32(3): 639-647. |
[14] | 郝占庆, 李步杭, 张健, 王绪高, 叶吉, 姚晓琳. 长白山阔叶红松林样地(CBS):群落组成与结构[J]. 植物生态学报, 2008, 32(2): 238-250. |
[15] | 于洋, 曹敏, 郑丽, 盛才余. 光对热带雨林冠层树种绒毛番龙眼种子萌发及其幼苗早期建立的影响[J]. 植物生态学报, 2007, 31(6): 1028-1036. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19