植物生态学报 ›› 2009, Vol. 33 ›› Issue (2): 270-282.DOI: 10.3773/j.issn.1005-264x.2009.02.004
所属专题: 生态系统碳水能量通量; 碳循环
张弥1,2, 于贵瑞1,*(), 张雷明1, 孙晓敏1, 温学发1, 韩士杰3
收稿日期:
2008-03-26
接受日期:
2008-08-26
出版日期:
2009-03-26
发布日期:
2009-03-31
通讯作者:
于贵瑞
作者简介:
* E-mail: yugr@igsnrr.ac.cn基金资助:
ZHANG Mi1,2, YU Gui-Rui1,*(), ZHANG Lei-Ming1, SUN Xiao-Min1, WEN Xue-Fa1, HAN Shi-Jie3
Received:
2008-03-26
Accepted:
2008-08-26
Online:
2009-03-26
Published:
2009-03-31
Contact:
YU Gui-Rui
摘要:
太阳辐射是植物进行光合作用的前提条件, 因此成为影响植被吸收大气CO2的重要环境因子。该研究基于30 min通量和常规气象数据, 以相对辐射和晴空指数为指标, 分析了2003~2006年生长旺季(6~8月)太阳辐射的改变对长白山阔叶红松(Pinus koraiensis)林净生态系统碳交换(Net ecosystem exchange, NEE)的影响。结果表明: 天空有一定云层的覆盖对阔叶红松林碳的净吸收有明显的促进作用。4年里6~8月间生态系统最大光合速率在天空有云覆盖时较晴空条件下分别提高了34%、25%、4%和11%。在晴空指数约为0.5的中等辐射条件下, 该生态系统的NEE达到最大。对生态系统碳的净吸收有促进作用的临界相对辐射约为37%, 而使该生态系统NEE达到最大的最适相对辐射约为75%。进一步分析表明, 天空云量的增多和云层厚度的增加会引起散射辐射比例的增加、大气温度和水汽亏缺程度的降低等环境效应, 由此可能会导致冠层光合作用的增加和地上部分呼吸的减弱, 从而共同决定了净生态系统碳吸收作用的增强。
张弥, 于贵瑞, 张雷明, 孙晓敏, 温学发, 韩士杰. 太阳辐射对长白山阔叶红松林净生态系统碳交换的影响. 植物生态学报, 2009, 33(2): 270-282. DOI: 10.3773/j.issn.1005-264x.2009.02.004
ZHANG Mi, YU Gui-Rui, ZHANG Lei-Ming, SUN Xiao-Min, WEN Xue-Fa, HAN Shi-Jie. EFFECTS OF SOLAR RADIATION ON NET ECOSYSTEM EXCHANGE OF BROADLEAVED-KOREAN PINE MIXED FOREST IN CHANGBAI MOUNTAIN, CHINA. Chinese Journal of Plant Ecology, 2009, 33(2): 270-282. DOI: 10.3773/j.issn.1005-264x.2009.02.004
图1 长白山阔叶红松林2003~2006年6~8月晴朗天气和多云天气下的光响应曲线
Fig. 1 Light response curves of broadleaved Korean pine mixed forest in Changbai Mountain under clear days and cloud days from June to August in the years from 2003 to 2006 PAR: Photosynthetically available radiation
2003 | 2004 | 2005 | 2006 | |||||
---|---|---|---|---|---|---|---|---|
多云天气Cloud days | 晴朗天气Clear days | 多云天气Cloud days | 晴朗天气Clear days | 多云天气Cloud days | 晴朗天气Clear days | 多云天气Cloud days | 晴朗天气Clear days | |
初始量子效率α (mg CO2·μmol-1) | -0.003 6 | -0.002 7 | -0.003 7 | -0.004 1 | -0.003 9 | -0.003 2 | -0.003 9 | -0.004 4 |
最大光合作用速率Pec,max(mg CO2·m-2s-1) | -1.309 | -0.864 | -1.210 | -0.902 | -1.307 | -1.253 | -1.213 | -1.079 |
生态系统呼吸Re (mg CO2·m-2s-1) | 0.281 | 0.217 | 0.278 | 0.257 | 0.244 | 0.369 | 0.244 | 0.337 |
曲线拟合相关系数的平方R2 | 0.67 | 0.50 | 0.55 | 0.50 | 0.60 | 0.66 | 0.62 | 0.56 |
表1 长白山阔叶红松林2003~2006年6~8月晴朗天气及多云天气下的光响应曲线参数
Table 1 Parameter values of light response curve of broadleaved Korean pine mixed forest in Changbai Mountain under clear days and cloud days from June to August in the years from 2003 to 2006
2003 | 2004 | 2005 | 2006 | |||||
---|---|---|---|---|---|---|---|---|
多云天气Cloud days | 晴朗天气Clear days | 多云天气Cloud days | 晴朗天气Clear days | 多云天气Cloud days | 晴朗天气Clear days | 多云天气Cloud days | 晴朗天气Clear days | |
初始量子效率α (mg CO2·μmol-1) | -0.003 6 | -0.002 7 | -0.003 7 | -0.004 1 | -0.003 9 | -0.003 2 | -0.003 9 | -0.004 4 |
最大光合作用速率Pec,max(mg CO2·m-2s-1) | -1.309 | -0.864 | -1.210 | -0.902 | -1.307 | -1.253 | -1.213 | -1.079 |
生态系统呼吸Re (mg CO2·m-2s-1) | 0.281 | 0.217 | 0.278 | 0.257 | 0.244 | 0.369 | 0.244 | 0.337 |
曲线拟合相关系数的平方R2 | 0.67 | 0.50 | 0.55 | 0.50 | 0.60 | 0.66 | 0.62 | 0.56 |
图2 长白山阔叶红松林2003年6~8月不同太阳高度角范围内NEE与晴空指数kt的关系 虚线箭头示意使NEE达到最大值的kt值; 多项式回归不包括“云隙”效应下的数据; 由于2003~2006年结果相似, 因此仅取2003年表示
Fig. 2 Relationship between net ecosystem exchange (NEE) and clearness index kt for the broadleaved Korean pine mixed forest in Changbai Mountain for different intervals of solar elevation angles from June to August in 2003 Dashed line arrow indicate the value of kt at which the NEE reached its maximum; Regression did not include cloud-gap points; Since similar results were found in the years from 2003 to 2006, only 2003 results are shown
太阳高度角 Solar elevation angle β | 晴空指数 Clearness indexkt | |||
---|---|---|---|---|
2003 | 2004 | 2005 | 2006 | |
30~35o | 0.49 | 0.43 | 0.49 | 0.54 |
35~40o | 0.50 | 0.42 | 0.51 | 0.52 |
40~45o | 0.46 | 0.47 | 0.50 | 0.51 |
45~50o | 0.48 | 0.43 | 0.48 | 0.50 |
50~55o | 0.44 | 0.50 | 0.50 | 0.50 |
55~60o | 0.46 | 0.48 | 0.47 | 0.50 |
60~65o | 0.50 | 0.44 | 0.56 | 0.46 |
65~70o | 0.46 | 0.50 | 0.51 | 0.50 |
平均 Average | 0.47 | 0.46 | 0.50 | 0.51 |
表2 2003~2006年6~8月长白山阔叶红松林不同太阳高度角范围内使NEE达到最大的kt值
Table 2 The value of kt at which net ecosystem exchange (NEE) reached its maximum for the broadleaved Korean pine mixed forest in Changbai Mountain for different intervals of solar elevation angles from June to August in the years from 2003 to 2006
太阳高度角 Solar elevation angle β | 晴空指数 Clearness indexkt | |||
---|---|---|---|---|
2003 | 2004 | 2005 | 2006 | |
30~35o | 0.49 | 0.43 | 0.49 | 0.54 |
35~40o | 0.50 | 0.42 | 0.51 | 0.52 |
40~45o | 0.46 | 0.47 | 0.50 | 0.51 |
45~50o | 0.48 | 0.43 | 0.48 | 0.50 |
50~55o | 0.44 | 0.50 | 0.50 | 0.50 |
55~60o | 0.46 | 0.48 | 0.47 | 0.50 |
60~65o | 0.50 | 0.44 | 0.56 | 0.46 |
65~70o | 0.46 | 0.50 | 0.51 | 0.50 |
平均 Average | 0.47 | 0.46 | 0.50 | 0.51 |
图3 长白山阔叶红松林2003年6~8月不同太阳高度角范围内光能利用率LUE与晴空指数kt的关系 由于2003~2006年结果相似, 仅取2003年表示
Fig. 3 Relationship between light use efficiency (LUE) and clearness index (kt) for the broadleaved Korean pine mixed forest in Changbai Mountain for different intervals of solar elevation angles from June to August in 2003 Since similar results were found in the years from 2003 to 2006, only 2003 results are shown
图4 长白山阔叶红松林2003年6~8月不同太阳高度角范围内NEE与相对辐射r的关系 直线箭头示意最适相对辐射, 虚线箭头示意临界相对辐射; 多项式回归不包括“云隙”效应下的数据; 由于2003~2006年结果相似, 仅取2003年表示
Fig. 4 Relationship between net ecosystem exchange (NEE) and relative irradiance for the broadleaved Korean pine mixed forest in Changbai Mountain for different intervals of solar elevation angles from June to August in 2003 Straight line arrow indicate the optimal relative irradiance; dash line arrow indicate the critical relative irradiance; Regression did not include cloud-gap points; Since similar results were found in the years from 2003 to 2006, only 2003 results are shown
图5 长白山阔叶红松林2003~2006年6~8月不同太阳高度角范围内的最适相对辐射(a)与临界相对辐射(b)
Fig. 5 The optimal relative irradiance (a) and critical relative irradiance (b) for the broadleaved Korean pine mixed forest in Changbai Mountain for different intervals of solar elevation angles from June to August in the years from 2003 to 2006
太阳高度角 Solar elevation angle β | 2003 | 2004 | 2005 | 2006 | ||||
---|---|---|---|---|---|---|---|---|
最适相对辐射Optimal relative irradiance | 临界相对辐射Critical relative irradiance | 最适相对辐射Optimal relative irradiance | 临界相对辐射Critical relative irradiance | 最适相对辐射Optimal relative irradiance | 临界相对辐射Critical relative irradiance | 最适相对辐射Optimal relative irradiance | 临界相对辐射Critical relative irradiance | |
30o~35o | 75 | 67 | 94 | 34 | 98 | 38 | 53 | 28 |
35o~40o | 84 | 54 | 78 | 35 | 82 | 34 | 81 | 54 |
40o~45o | 87 | 51 | 80 | 54 | 73 | 44 | 77 | 32 |
45o~50o | 59 | 39 | 87 | 64 | 64 | 38 | 70 | 26 |
50o~55o | 61 | 26 | 81 | 43 | 71 | 45 | 58 | 40 |
55o~60o | 71 | 20 | 74 | 19 | 81 | 24 | 68 | 39 |
60o~65o | 87 | 30 | 63 | 20 | 73 | 14 | 45 | 35 |
65o~70o | 59 | 19 | 72 | 35 | 75 | 29 | 95 | 45 |
平均Average | 73 | 38 | 79 | 38 | 77 | 33 | 68 | 37 |
表3 长白山阔叶红松林2003~2006年6~8月不同太阳高度角范围内的最适相对辐射与临界相对辐射(%)
Table 3 The values of optimal relative irradiance and critical relative irradiance for the broadleaved Korean pine mixed forest in Changbai Mountain for different intervals of solar elevation angles from June to August in the years from 2003 to 2006 (%)
太阳高度角 Solar elevation angle β | 2003 | 2004 | 2005 | 2006 | ||||
---|---|---|---|---|---|---|---|---|
最适相对辐射Optimal relative irradiance | 临界相对辐射Critical relative irradiance | 最适相对辐射Optimal relative irradiance | 临界相对辐射Critical relative irradiance | 最适相对辐射Optimal relative irradiance | 临界相对辐射Critical relative irradiance | 最适相对辐射Optimal relative irradiance | 临界相对辐射Critical relative irradiance | |
30o~35o | 75 | 67 | 94 | 34 | 98 | 38 | 53 | 28 |
35o~40o | 84 | 54 | 78 | 35 | 82 | 34 | 81 | 54 |
40o~45o | 87 | 51 | 80 | 54 | 73 | 44 | 77 | 32 |
45o~50o | 59 | 39 | 87 | 64 | 64 | 38 | 70 | 26 |
50o~55o | 61 | 26 | 81 | 43 | 71 | 45 | 58 | 40 |
55o~60o | 71 | 20 | 74 | 19 | 81 | 24 | 68 | 39 |
60o~65o | 87 | 30 | 63 | 20 | 73 | 14 | 45 | 35 |
65o~70o | 59 | 19 | 72 | 35 | 75 | 29 | 95 | 45 |
平均Average | 73 | 38 | 79 | 38 | 77 | 33 | 68 | 37 |
图6 长白山阔叶红松林2003~2006年6~8月kt的分布频率直方图(β>20o)
Fig. 6 Histograms of values of the clearness index (kt) for solar elevation angles β>20o at the broadleaved Korean pine mixed forest in Changbai Mountain from June to August in the years from 2003 to 2006
图7 2003年6~8月不同太阳高度角范围内光合有效辐射中的散射辐射部分随晴空指数kt的变化 2003~2006年结果相似, 取2003年不同太阳高度角表示; diffuse PAR的计算参见Gu (1999)
Fig. 7 Changes of diffuse PAR with the clearness index (kt) for different solar elevation angles from June to August in 2003 Since similar results were found in the years from 2003 to 2006, only 2003 results are shown; the calculation method of diffuse PAR refer to Gu (1999)
图8 长白山阔叶红松林2003年6~8月气温(a)以及5 cm处土壤温度(b)随晴空指数kt的变化 2003~2006年变化相似, 不同太阳高度角变化相同, 取2003年一个太阳高度角范围(60°~65°)进行说明
Fig. 8 Changes of air temperature (Ta) (a) and 5 cm soil temperature (Ts) (b) with clearness index (kt) for the broadleaved Korean pine mixed forest in Changbai Mountain from June to August in 2003 Since similar results were found for different solar elevation angles in the years from 2003 to 2006, only the result of one interval of solar elevation angle (60°-65°) in 2003 are shown
图9 长白山阔叶红松林2003年6~8月空气饱和水汽压差VPD随晴空指数kt的变化 2003~2006年变化相同, 不同太阳高度角变化相同, 取2003年一个太阳高度角范围(60°~65°)进行说明
Fig. 9 Change of vapor pressure deficit VPD with clearness index (kt) for the broadleaved Korean pine mixed forest in Changbai Mountain from June to August in 2003 Since similar results were found for different solar elevation angles in the years from 2003 to 2006, only the result of one interval of solar elevation angle (60°-65°) in 2003 are shown
[1] | Alton PB, North PR, Los SO (2007). The impact of diffuse sunlight on canopy light-use efficiency gross photosynthetic product and net ecosystem exchange in three forest biomes. Global Change Biology, 13,1-12. |
[2] | Aubinet M, Chermanne B, Vandenhaute M, Longdoz B, Yernaux M, Laitat E (2001). Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agricultural and Forest Meteorology, 108,293-315. |
[3] | Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger, JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001). Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107,43-69. |
[4] | Gilmanov TG, Soussana JF, Aires L, Allard V, Ammann C, Balzarolo M, Barcza Z, Bernhofer C, Campbell CL, Cernusca A, Cescatti A, Brown CJ, Dirks BOM, Dore S, Eugster W, Fuhrer J, Gimeno C, Gruenwald T, Haszpra L, Hensen A, Ibrom A, Jacobs AFG, Jones MB, Lanigan G, Laurila T, Lohila A, Manca G, Marcolla B, Nagy Z, Pilegaard K, Pinter K, Pio, C, Raschi A, Rogiers N, Sanz MJ, Stefani P, Sutton M, Tuba Z, Valentini R, Williams ML, Wohlfahrt G (2007). Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agriculture, Ecosystems and Environment, 121,93-120. |
[5] | Goulden ML, Daube BC, Fan SM, Sutton DJ, Bazzaz A, Munger JW, Wofsy S (1997). Physiological responses of a black spruce forest to weather. Journal of Geophysical Research, 102,28987-28996. |
[6] | Gu LH, Baldocchi DD, Verma SB, Black TA, Vesala T, Falge E, Dowty PR (2002). Advantages of diffuse radiation for terrestrial ecosystem productivity. Journal of Geophysical Research, 107, doi: 10.1029/2001JD-001242. |
[7] | Gu LH, Fuentes JD, Shugart HH (1999). Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: results from two North American deciduous forests. Journal of Geophysical Research, 104,31421-31434. |
[8] | Guan DX (关德新), Wu JB (吴家兵), Yu GR (于贵瑞), Sun XM (孙晓敏), Zhao XS (赵晓松), Han SJ (韩士杰), Jin CJ (金昌杰) (2004). Meteorological control on CO2 flux above broad-leaved Korean pine mixed forest in Changbai Mountains. Science in China Series D: Earth Sciences (中国科学D辑), 34 (Suppl. II),103-108. (in Chinese) |
[9] | Guan DX, Wu, JB, Zhao XS, Han SJ, Yu GR, Sun XM, Jin CJ (2006). CO2 fluxes over an old, temperate mixed forest in northeastern China. Agricultural and Forest Meteorology, 137,138-149. |
[10] | Law BE, Falge E, Gu LH, Baldocchi D, Pakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, Jarvis P, Jensen NO, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw KT, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2002). Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113,97-120. |
[11] | Letts MG, Lafleur PM (2005). On the relationship between cloudiness and net ecosystem carbon dioxide exchange in a peatland ecosystem. Ecoscience, 12(1),53-59. |
[12] | Leuning R (1995). A critical appraisal of a combined stomatal-photosynthesis model for C3 plant. Plant, Cell & Environment, 18,339-355. |
[13] | Lloyd J, Taylor JA (1994). On the temperature dependence of soil respiration. Functional Ecology, 8,315-323. |
[14] | Reichstein M, Fagle E, Baldocchi D, Palale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havrànkovà K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Migiletta F, Ourcival JM, Pumpaney J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11,1424-1439. |
[15] | Urban O, Janous D, Acosta M, Czerný R, Markovà I, Navràtil M, Pavelka M, Pokorný R, Šprtovà Mirka, Zhang R, Špunda V, Grace J, Marek M (2007). Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Global Change Biology, 13,157-168. |
[16] | Wu JB (吴家兵), Guan DX (关德新), Sun XM (孙晓敏), Zhang M (张弥), Shi TT (施婷婷), Han SJ (韩士杰), Jin CJ (金昌杰) (2006). Photosynthetic characteristics of dominant tree species and canopy in the broadleaved Korean pine forest of Changbai Mountains. Science in China Series D: Earth Sciences (中国科学D辑). 36(Suppl. I),83-90. (in Chinese) |
[17] | Zhang LM (张雷明) (2006). Ecophysiological Controls on Seasonal Variations of Ecosystem Carbon Exchange of Typical Forest Ecosystems Along NSTEC (中国东部南北样带典型生态系统碳收支特征及其生理生态学机制). PhD dissertation, Institute of Geographic Sciences and Natural Resources Research, the Chinese Academy of Sciences, Beijing, 119-133. (in Chinese) |
[18] | Zhang LM (张雷明), Yu GR (于贵瑞), Sun XM (孙晓敏), Wen XF (温学发), Ren CY (任传友), Song X (宋霞), Liu YF (刘允芬), Guan DX (关德新), Yan JH (闫俊华), Zhang YP (张一平) (2006). Seasonal variation of carbon exchange of typical forest ecosystems along the eastern forest transect in China. Science in China Series D: Earth Sciences (中国科学D辑), 36(Suppl. I),45-59. (in Chinese) |
[19] | Zhang M (张弥), Guan DX (关德新), Han SJ (韩士杰), Wu JB (吴家兵), Zhang JH (张军辉), Jin MS (金明淑), Xu H (徐浩), He X (何秀), Dai GH (戴冠华) (2005). Climatic dynamic of broadleaved Korean pine forest in Changbai Mountain in the last 22 Years. Chinese Journal of Ecology (生态学杂志), 24,1007-1012. (in Chinese with English abstract) |
[20] | Zhao XS (赵晓松), Guan DX (关德新), Wu JB (吴家兵), Zhang M (张弥), Jin CJ (金昌杰), Han SJ (韩士杰) (2006). The relationship Between CO2 flux and temperature of the mixed forest of broad-leaved and Korea-Pine in Changbai Mountain. Acta Ecologica Sinica (生态学报), 26,1088-1095. (in Chinese with English abstract) |
[21] | Zhao YM (赵育民), Niu SK (牛数奎), Wang JB (王军邦), Li HT (李海涛), Li GC (李贵才) (2007). Light use efficiency of vegetation: a review. Chinese Journal of Ecology(生态学杂志), 26,1471-1477. (in Chinese with English abstract) |
[1] | 靳宇曦, 刘芳, 张军, 韩梦琪, 王忠武, 屈志强, 韩国栋. 不同载畜率处理下短花针茅荒漠草原生态系统净碳交换特征[J]. 植物生态学报, 2018, 42(3): 361-371. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19