植物生态学报 ›› 2011, Vol. 35 ›› Issue (5): 471-479.DOI: 10.3724/SP.J.1258.2011.00471
• 研究论文 • 下一篇
李嵩1,2,*(), 郑新军1, 唐立松1, 李彦1,**(
)
收稿日期:
2010-11-12
接受日期:
2011-02-01
出版日期:
2011-11-12
发布日期:
2011-06-07
通讯作者:
李嵩,李彦
作者简介:
** E-mail: liyan@ms.xjb.ac.cn
LI Song1,2,*(), ZHENG Xin-Jun1, TANG Li-Song1, LI Yan1,**(
)
Received:
2010-11-12
Accepted:
2011-02-01
Online:
2011-11-12
Published:
2011-06-07
Contact:
LI Song,LI Yan
摘要:
为了揭示荒漠灌丛形态的发生发展机制并认识其在荒漠生态系统中的功能, 从形态和结构决定功能的原理出发, 对生长在准噶尔荒漠东南部的岛状灌丛进行了形态学调查。依据Malthusian方程微分形式, 根据异速生长理论, 建立了冠幅与株高生长、灌丛表面积与体积生长的数学关系式, 利用植被调查数据进行了验证, 并最终得出不同灌丛在不同株高时的情景示意图。结果表明: 1)将荒漠灌丛形态假设成半三轴椭球体是合理的; 2)虽然灌丛形态发展趋势可以是扁平、近半球和竖直3种类型, 但是形态建成后, 一般维持在扁平和近半球两种类型; 3) 18类荒漠灌丛的体积和表面积的数量关系具有一定的一致性, 可能与同处于相同环境条件下的水分利用效率相近有关。
李嵩, 郑新军, 唐立松, 李彦. 基于异速生长理论的准噶尔盆地荒漠灌丛形态研究. 植物生态学报, 2011, 35(5): 471-479. DOI: 10.3724/SP.J.1258.2011.00471
LI Song, ZHENG Xin-Jun, TANG Li-Song, LI Yan. Morphological investigation of desert shrubs of China’s Junggar Basin based on allometric theory. Chinese Journal of Plant Ecology, 2011, 35(5): 471-479. DOI: 10.3724/SP.J.1258.2011.00471
物种 Species | 代号Code | 相对密度Relative density (RD) (%) | 相对频度Relative frequency (RF) (%) |
---|---|---|---|
白刺 Nitraria sibirica | Ns | 1.2 | 13.3 |
淡枝沙拐枣 Calligonum leucocladum | Cal | 3.3 | 56.7 |
白梭梭 Haloxylon persicum | Hp | 4.0 | 56.7 |
柽柳 Tamarix spp. | Tr | 2.9 | 26.7 |
黑果枸杞 Lycium ruthenicum | Lr | 0.8 | 6.7 |
花花柴 Karelinia caspica | Kc | 1.5 | 3.3 |
铃铛刺 Halimodendrom halodendron | Hh | 0.4 | 6.7 |
疏叶骆驼刺 Alhagi sparsifolia | Als | 1.4 | 6.7 |
毛足假木贼 Anabasis eriopoda | Ae | 1.3 | 6.7 |
琵琶柴 Reaumuria soongorica | Rs | 24.2 | 33.3 |
梭梭 Haloxylon ammodendron | Ha | 38.5 | 93.3 |
驼绒藜 Ceratoides lateens | Cel | 0.7 | 3.3 |
小叶碱蓬 Suaeda microphylla | Sm | 0.7 | 13.3 |
盐节木 Halocnemum strobilaceum | Hs | 0.6 | 3.3 |
盐生假木贼 Anabasis salsa | Ans | 0.7 | 3.3 |
盐穗木 Halostachys caspica | Hc | 2.3 | 10.0 |
盐爪爪 Kalidium spp. | Kf | 13.2 | 16.7 |
准噶尔沙蒿 Artemisia songarica | Ars | 2.3 | 13.3 |
表1 灌丛类型及其数量特征
Table 1 Shrub types and their quantitative characteristics
物种 Species | 代号Code | 相对密度Relative density (RD) (%) | 相对频度Relative frequency (RF) (%) |
---|---|---|---|
白刺 Nitraria sibirica | Ns | 1.2 | 13.3 |
淡枝沙拐枣 Calligonum leucocladum | Cal | 3.3 | 56.7 |
白梭梭 Haloxylon persicum | Hp | 4.0 | 56.7 |
柽柳 Tamarix spp. | Tr | 2.9 | 26.7 |
黑果枸杞 Lycium ruthenicum | Lr | 0.8 | 6.7 |
花花柴 Karelinia caspica | Kc | 1.5 | 3.3 |
铃铛刺 Halimodendrom halodendron | Hh | 0.4 | 6.7 |
疏叶骆驼刺 Alhagi sparsifolia | Als | 1.4 | 6.7 |
毛足假木贼 Anabasis eriopoda | Ae | 1.3 | 6.7 |
琵琶柴 Reaumuria soongorica | Rs | 24.2 | 33.3 |
梭梭 Haloxylon ammodendron | Ha | 38.5 | 93.3 |
驼绒藜 Ceratoides lateens | Cel | 0.7 | 3.3 |
小叶碱蓬 Suaeda microphylla | Sm | 0.7 | 13.3 |
盐节木 Halocnemum strobilaceum | Hs | 0.6 | 3.3 |
盐生假木贼 Anabasis salsa | Ans | 0.7 | 3.3 |
盐穗木 Halostachys caspica | Hc | 2.3 | 10.0 |
盐爪爪 Kalidium spp. | Kf | 13.2 | 16.7 |
准噶尔沙蒿 Artemisia songarica | Ars | 2.3 | 13.3 |
图1 18种灌木的株高(A)、冠幅面积(B)、灌丛表面积(C)和体积(D)的分布。箱型图左、右的竖线为样本的25%和75%分位数, 箱型顶端和底部的差值为四分位极值; 箱型中间的竖线为样本中值, 若线不在箱型中央, 则表明存在偏度; 箱型向左或向右延伸的直线称为“触须”, 若没有统计异常值, 则样本最大值为右触须顶部, 样本最小值为左触须的底部。若样本中存在距离箱型左侧或右侧大于1.5倍内四分位极值的数值, 则认为样本中有统计异常值(如图用“+”表示)。若触须外无数据, 则底部触须有一点; 箱型上下两侧的V型槽口对应样本中值95%置信区间。物种代号见表1。
Fig. 1 Distribution of 18 shrubs’ height (A), crown area (B), shrub surface area (C) and volume (D). On each box, the reft and right edges of the box are the 25th and 75th percentiles, the difference of the top and bottom is quartile extreme; the central mark is the median, if the line doesn’t lie the central of the box, it shows skewness; box to the left or right extension of the line were known as “whisker”, if there were no statistical outliers, the maximum value of the sample should be the top of the right whiskers, and the sample minimum should be the bottom of the left whisker. It will be considered as statistical outliers in the samples if there are values more than 1.5 times of the quartile extreme from the left or right side of the box (see Figure with “+” indicates). A dot will be at the bottom of the tentacles if no data out of tentacles; the notch of both sides of the box corresponding to 95% confidence interval of the samples. Species code see Table 1.
[1] |
Ackerly DD, Donoghue MJ (1998). Leaf size, sapling allometry, and Corner’s rules: phylogeny and correlated evolution in maples (Acer). The American Naturalist, 152, 767-791.
URL PMID |
[2] |
Allen AP, Pockman WT, Restrepo C, Milne BT (2008). Allometry, growth and population regulation of the desert shrub Larrea tridentata. Functional Ecology, 22, 197-204.
DOI URL |
[3] |
Archibald S, Bond WJ (2003). Growing tall vs growing wide: tree architecture and allometry of Acacia karroo in forest, savanna, and arid environments. Oikos, 102, 3-14.
DOI URL |
[4] |
Brown JH, Gillooly JF, Allen AP, van Savage M, West GB (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.
DOI URL |
[5] |
Chesson P, Gebauer RLE, Schwinning S, Huntly N, Wiegand K, Ernest MSK, Sher A, Novoplansky A, Weltzin JF (2004). Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia, 141, 236-253.
DOI URL PMID |
[6] |
Coomes DA, Grubb PJ (1998). A comparison of 12 tree species of Amazonian caatinga using growth rates in gaps and understorey, and allometric relationships. Functional Ecology, 12, 426-435.
DOI URL |
[7] |
Fowler N (1986). The role of competition in plant communities in arid and semiarid regions. Annual Review of Ecology and Systematics, 17, 89-110.
DOI URL |
[8] | Han WX (韩文轩), Fang JY (方精云) (2008). Review on the mechanism models of allometric scaling laws: 3/4 vs. 2/3 power. Journal of Plant Ecology (Chinese Version) (植物生态学报), 32, 951-960. (in Chinese with English abstract) |
[9] |
Hein S, Spiecker H (2008). Crown and tree allometry of open-grown ash (Fraxinus excelsior L.) and sycamore (Acer pseudoplatanus L.). Agroforestry Systems, 73, 205-218.
DOI URL |
[10] |
Ishii H, Clement JP, Shaw DC (2000). Branch growth and crown form in old coastal Douglas-fir. Forest Ecology and Management, 131, 81-91.
DOI URL |
[11] |
Kidron GJ (2009). The effect of shrub canopy upon surface temperatures and evaporation in the Negev Desert. Earth Surface Processes and Landforms, 34, 123-132.
DOI URL |
[12] |
Kohyama T, Hotta M (1990). Significance of allometry in tropical saplings. Functional Ecology, 4, 515-521.
DOI URL |
[13] | Liu JS (刘峻杉), Xu X (徐霞), Zhang Y (张勇), Tian YQ (田玉强), Gao Q (高琼) (2010). Effect of rainfall interannual variability on the biomass and soil water distribution in a semiarid shrub community. Science China (Life Sciences) (中国科学(生命科学)), 53, 729-737. (in Chinese) |
[14] |
Maguire DA, Hann DW (1987). Equations for predicting sapwood area at crown base in southwestern Oregon Douglas-fir. Canadian Journal of Forest Research, 17, 236-241.
DOI URL |
[15] |
Reynolds JF, Kemp PR, Ogle K, Fernández RJ (2004). Modifying the “pulse-reserve” paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia, 141, 194-210.
URL PMID |
[16] | Schwinning S, Belnap J, Bowling DR, Ehleringer JR (2008). Sensitivity of the Colorado plateau to change: climate, ecosystems, and society. Ecology and Society, 13, 28. |
[17] |
Schwinning S, Sala OE, Loik ME, Ehleringer JR (2004). Thresholds, memory, and seasonality: understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia, 141, 191-193.
URL PMID |
[18] |
West GB, Woodruff WH, Brown JH (2002). Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proceedings of the National Academy of Sciences of the United States of America, 99, 2473-2478.
URL PMID |
[19] |
Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135, 621-628.
DOI URL PMID |
[20] |
Xiao S, Chen SY, Zhao LQ, Wang G (2006). Density effects on plant height growth and inequality in sunflower populations. Journal of Integrative Plant Biology, 48, 513-519.
DOI URL |
[21] | Xu H (许皓), Li Y (李彦), Xie JX (谢静霞), Cheng L (程磊), Zhao Y (赵彦), Liu R (刘冉) (2010). Influence of solar radiation and groundwater table on carbon balance of phreatophytic desert shrub Tamarix. Chinese Journal of Plant Ecology (植物生态学报), 34, 375-386. (in Chinese with English abstract) |
[22] | Xu KX (徐克学) (2004). Biomathematics (生物数学). Science Press, Beijing. (in Chinese) |
[23] | Zhang JT (张金屯) (2004). Quantitative Ecology (数量生态学). Science Press, Beijing. (in Chinese) |
[24] | Zhao HL (赵哈林), Su YZ (苏永中), Zhang H (张华), Zhao LY (赵丽娅), Zhou RL (周瑞莲) (2007). Multiple effects of shrub on soil properties and understory vegetation in Horqin Sand Land, Inner Mongolia. Journal of Desert Research (中国沙漠), 27, 385-390. (in Chinese with English abstract) |
[25] | Zheng XJ (郑新军), Wang QX (王勤学), Liu R (刘冉), Li Y (李彦) (2009). The condensation water input to the saline- alkaline desert ecosystem in the southeastern edge of the Junggar Basin. Progress in Natural Science (自然科学进展), 19, 1175-1186. (in Chinese) |
[26] | Zhu YJ (朱雅娟), Jia ZQ (贾志清), Lu Q (卢琦), Hao YG (郝玉光), Zhang JB (张景波), Li L (李磊), Qi YL (綦艳林) (2010). Water use strategy of five shrubs in Ulanbuh Desert. Scientia Silvae Sinicae (林业科学), 46(4), 1-7. (in Chinese with English abstract) |
[1] | 魏龙鑫, 耿燕, 崔可达, 乔雪涛, 岳庆敏, 范春雨, 张春雨, 赵秀海. 阔叶红松林不同林层和生长阶段树木生长对采伐强度的响应[J]. 植物生态学报, 2022, 46(6): 642-655. |
[2] | 莫丹, 王振孟, 左有璐, 向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系[J]. 植物生态学报, 2020, 44(10): 995-1006. |
[3] | 崔光帅, 张林, 沈维, 刘新圣, 王媛韬. 西藏雅鲁藏布江流域中段砂生槐灌丛生物量分配及碳密度[J]. 植物生态学报, 2017, 41(1): 53-61. |
[4] | 黄菊莹, 余海龙. 四种荒漠草原植物的生长对不同氮添加水平的响应[J]. 植物生态学报, 2016, 40(2): 165-. |
[5] | 申鑫, 曹林, 徐婷, 佘光辉. 基于高分辨率与高光谱遥感影像的北亚热带马尾松及次生落叶树种的分类[J]. 植物生态学报, 2015, 39(12): 1125-1135. |
[6] | 杨晓东,阎恩荣,张志浩,孙宝伟,黄海侠,Ali ARSHAD,马文济,史青茹. 浙江天童常绿阔叶林演替阶段共有种的树木构型[J]. 植物生态学报, 2013, 37(7): 611-619. |
[7] | 陈亚军, 曹坤芳, 蔡志全. 两种光强下木质藤本与树木幼苗的竞争关系[J]. 植物生态学报, 2008, 32(3): 639-647. |
[8] | 于洋, 曹敏, 郑丽, 盛才余. 光对热带雨林冠层树种绒毛番龙眼种子萌发及其幼苗早期建立的影响[J]. 植物生态学报, 2007, 31(6): 1028-1036. |
[9] | 王满莲, 冯玉龙. 紫茎泽兰和飞机草的形态、生物量分配和光合特性对氮营养的响应[J]. 植物生态学报, 2005, 29(5): 697-705. |
[10] | 向言词, 彭少麟, 蔡锡安, 任海, 周厚诚. 林窗中植物竞争强度随林窗发育的变化[J]. 植物生态学报, 2003, 27(1): 99-102. |
[11] | 黄培右, 潘伟斌, 李海涛, 兰海燕, 贾宝全, 姚晓玲, 周建民. 准喀尔盆地荒漠灌丛对融雪水空间分布的反馈初探[J]. 植物生态学报, 1992, 16(4): 346-353. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19