植物生态学报 ›› 2020, Vol. 44 ›› Issue (10): 995-1006.DOI: 10.17521/cjpe.2020.0143
• 研究论文 • 下一篇
收稿日期:
2020-05-11
接受日期:
2020-09-17
出版日期:
2020-10-20
发布日期:
2020-10-16
通讯作者:
向双
作者简介:
*向双:ORCID:0000-0002-7361-9723,xiangshuang@cib.ac.cn基金资助:
MO Dan, WANG Zhen-Meng, ZUO You-Lu, XIANG Shuang*()
Received:
2020-05-11
Accepted:
2020-09-17
Online:
2020-10-20
Published:
2020-10-16
Contact:
XIANG Shuang
Supported by:
摘要:
亚热带常绿阔叶林植物幼树阶段适应林内生境并开枝散叶是其长成大树的一个重要过程, 植物一年内多次抽枝的现象及其在抽枝展叶过程中小枝伸长、枝茎增粗与叶面积的增加优先顺序及其内在驱动机制还有待进一步研究。该研究对青城山常绿阔叶林木本植物多次抽枝发生比例进行了调查, 并以茶(Camellia sinensis)、细枝柃(Eurya loquaiana)、短刺米槠(Castanopsis carlesii var. spinulosa)、润楠(Machilus nanmu)和大叶山矾(Symplocos grandis) 5种植物的幼树为研究对象, 比较分析了植物在多次抽枝中小枝和叶片生长动态及适应策略的差异。结果显示: 1)一、二次抽枝分别开始于春季(4月)和夏末(8月下旬), 小枝水平上二次抽枝率乔木小于灌木, 常绿植物小于落叶植物。2)一次抽枝小枝枝长、单叶面积, 小枝直径和叶片数量(除大叶山矾外)均高于二次抽枝, 但二次抽枝单叶面积相对生长速率均高于一次抽枝, 二次抽枝叶片比叶质量(LMA)的增长速率高于一次抽枝。3)一次抽枝小枝枝长、叶片数量、小枝直径(除细枝柃和短刺米槠外)和总叶面积(除短刺米槠外)最大相对生长速率均高于二次抽枝, 且大部分物种最大相对生长速率出现在抽枝开始的第一、二周。4)两次抽枝中, 物种先侧重于叶片的生长, 其次是小枝枝长的生长, 最后是小枝直径的增粗。单叶面积和总叶面积皆随着小枝枝长和小枝直径的增加呈显著的异速生长关系, 表明叶片的增长速度大于小枝。单叶面积与叶片数呈显著大于1的异速生长关系, 暗示单叶面积的增长速度大于叶片数的增加速度。小枝枝长与小枝直径也呈显著大于1的异速生长关系, 揭示小枝枝长的增长速度大于小枝直径。综上所述, 两次抽枝过程中, 植物枝叶的优先生长顺序反映了植物为获取更多的资源(尤其是光源)而形成特定的抽枝展叶策略; 二次抽枝单叶面积相对生长速率和LMA增长速率高于一次抽枝, 这可能与植物即将面临的昆虫取食和气温降低压力有关。因此, 了解植物抽枝策略对于理解物种生态适应机制, 揭示物种生活史过程中存在的权衡关系具有重要的理论意义。
莫丹, 王振孟, 左有璐, 向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系. 植物生态学报, 2020, 44(10): 995-1006. DOI: 10.17521/cjpe.2020.0143
MO Dan, WANG Zhen-Meng, ZUO You-Lu, XIANG Shuang. Trade-off between shooting and leaf developing of woody species saplings in subtropical evergreen broad-leaved forests. Chinese Journal of Plant Ecology, 2020, 44(10): 995-1006. DOI: 10.17521/cjpe.2020.0143
生长型/生活型 Growth form/ Life form | 个体数 Number of individual | 物种数 Number of species | 二次抽枝率 (%)(平均值±标准误差) Proportion of the second shooting (%)(mean ± SE) |
---|---|---|---|
乔木 Tree | 198 | 43 | 20.97 ± 0.042a |
灌木 Shrub | 210 | 44 | 47.72 ± 0.053b |
常绿 Evergreen | 281 | 52 | 31.39 ± 0.044a |
落叶 Deciduous | 127 | 35 | 37.39 ± 0.062b |
表1 青城山常绿阔叶林木本植物二次抽枝率
Table 1 Second shooting proportion of evergreen broad-leaved forest woody species of Qingcheng Mountain
生长型/生活型 Growth form/ Life form | 个体数 Number of individual | 物种数 Number of species | 二次抽枝率 (%)(平均值±标准误差) Proportion of the second shooting (%)(mean ± SE) |
---|---|---|---|
乔木 Tree | 198 | 43 | 20.97 ± 0.042a |
灌木 Shrub | 210 | 44 | 47.72 ± 0.053b |
常绿 Evergreen | 281 | 52 | 31.39 ± 0.044a |
落叶 Deciduous | 127 | 35 | 37.39 ± 0.062b |
图1 青城山常绿阔叶林木本植物第一、二次抽枝时间历程(平均值±标准误差)。
Fig. 1 Specific duration of the first and second shooting of evergreen broad-leaved forest woody species of Qingcheng Mountain (mean ± SE).
表2 青城山常绿阔叶林木本植物第一 、二次抽枝时间、叶片大小和小枝大小的比较(平均值±标准误差)
Table 2 Comparison of timing, leaf size and twig size between the first and second shooting of evergreen broad-leaved forest woody species of Qingcheng Mountain (mean±SE)
图2 青城山常绿阔叶林木本植物第一、二次抽枝叶片比叶质量(LMA)的动态变化。
Fig. 2 Dynamic changes of newly developed leaf mass per area (LMA) of the first and second shooting of evergreen broad-leaved forest woody species of Qingcheng Mountain.
图3 青城山常绿阔叶林木本植物第一、二次抽枝小枝各构件的相对生长速率。
Fig. 3 Relative growth rate of twig components for both the first and second shooting of evergreen broad-leaved forest woody species of Qingcheng Mountain.
y-x | 抽枝批次 Batch of shooting | 回归系数 Regression coefficient | p | 分组斜率(置信区间) Group slope (CIs) | 截距(置信区间) Intercept (CIs) | 共同斜率(置信区间) Common slope (CIs) | p0 | 截距 Intercept |
---|---|---|---|---|---|---|---|---|
单叶面积-小枝长 Individual leaf area-Twig length | I | 0.741 | <0.001 | 1.358 (1.172, 1.573) | -0.455 (-0.619, -0.291) | 1.347 (1.198, 1.515) | 0.855 | -0.446a |
II | 0.679 | <0.001 | 1.327 (1.087, 1.620) | -0.309 (-0.545, -0.074) | -0.326b | |||
单叶面积-小枝直径 Individual leaf area-Twig diameter | I | 0.447 | <0.001 | 1.930 (1.558, 2.390) | -1.037 (-1.398, -0.676) | 2.206 (1.942, 2.487) | 0.136 | -1.268a |
II | 0.826 | <0.001 | 2.342 (2.021, 2.713) | -1.274 (-1.588, -0.960) | -1.151b | |||
单叶面积-叶片数 Individual leaf area-Leaf number | I | 0.633 | <0.001 | 1.334 (1.120, 1.589) | -0.426 (-0.618, -0.234) | 1.570 | 0.001 | |
II | 0.443 | <0.001 | 2.317 (1.784, 3.010) | -1.361 (-1.947, -0.775) | ||||
小枝长-小枝直径 Twig length-Twig diameter | I | 0.645 | <0.001 | 1.421 (1.196, 1.688) | -0.429 (-0.642, -0.216) | 1.554 (1.355, 1.778) | 0.111 | -0.540a |
II | 0.653 | <0.001 | 1.764 (1.434, 2.170) | -0.727 (-1.061, -0.393) | -0.537a | |||
总叶面积-小枝长 Total leaf area-Stem length | I | 0.720 | <0.001 | 1.369 (1.175, 1.596) | -0.488 (-0.660, -0.315) | 1.350 (1.205, 1.512) | 0.794 | -0.473a |
II | 0.761 | <0.001 | 1.327 (1.117, 1.576) | -0.312 (-0.515, -0.109) | -0.332b | |||
总叶面积-小枝直径 Total leaf area-Twig diameter | I | 0.427 | <0.001 | 1.945 (1.565, 2.419) | -1.075 (-1.446, -0.704) | 2.207 (1.937, 2.498) | 0.168 | -1.294a |
表3 青城山常绿阔叶林木本植物第一、二次抽枝间小枝功能特征的标准化主轴(SMA)分析
Table 3 Standardized major axis (SMA) regression analysis on the scaling relationships between the twig functional traits of the first (n = 50) and second (n = 35) shooting of evergreen broad-leaved forest woody species of Qingcheng Mountain
y-x | 抽枝批次 Batch of shooting | 回归系数 Regression coefficient | p | 分组斜率(置信区间) Group slope (CIs) | 截距(置信区间) Intercept (CIs) | 共同斜率(置信区间) Common slope (CIs) | p0 | 截距 Intercept |
---|---|---|---|---|---|---|---|---|
单叶面积-小枝长 Individual leaf area-Twig length | I | 0.741 | <0.001 | 1.358 (1.172, 1.573) | -0.455 (-0.619, -0.291) | 1.347 (1.198, 1.515) | 0.855 | -0.446a |
II | 0.679 | <0.001 | 1.327 (1.087, 1.620) | -0.309 (-0.545, -0.074) | -0.326b | |||
单叶面积-小枝直径 Individual leaf area-Twig diameter | I | 0.447 | <0.001 | 1.930 (1.558, 2.390) | -1.037 (-1.398, -0.676) | 2.206 (1.942, 2.487) | 0.136 | -1.268a |
II | 0.826 | <0.001 | 2.342 (2.021, 2.713) | -1.274 (-1.588, -0.960) | -1.151b | |||
单叶面积-叶片数 Individual leaf area-Leaf number | I | 0.633 | <0.001 | 1.334 (1.120, 1.589) | -0.426 (-0.618, -0.234) | 1.570 | 0.001 | |
II | 0.443 | <0.001 | 2.317 (1.784, 3.010) | -1.361 (-1.947, -0.775) | ||||
小枝长-小枝直径 Twig length-Twig diameter | I | 0.645 | <0.001 | 1.421 (1.196, 1.688) | -0.429 (-0.642, -0.216) | 1.554 (1.355, 1.778) | 0.111 | -0.540a |
II | 0.653 | <0.001 | 1.764 (1.434, 2.170) | -0.727 (-1.061, -0.393) | -0.537a | |||
总叶面积-小枝长 Total leaf area-Stem length | I | 0.720 | <0.001 | 1.369 (1.175, 1.596) | -0.488 (-0.660, -0.315) | 1.350 (1.205, 1.512) | 0.794 | -0.473a |
II | 0.761 | <0.001 | 1.327 (1.117, 1.576) | -0.312 (-0.515, -0.109) | -0.332b | |||
总叶面积-小枝直径 Total leaf area-Twig diameter | I | 0.427 | <0.001 | 1.945 (1.565, 2.419) | -1.075 (-1.446, -0.704) | 2.207 (1.937, 2.498) | 0.168 | -1.294a |
图4 青城山常绿阔叶林木本植物第一、二次抽枝小枝各构件属性间的异速生长关系。
Fig. 4 Scaling relationships of twig component traits between the first and second shooting of evergreen broad-leaved forest woody species of Qingcheng Mountain.
[1] |
Aanderud ZT, Bledsoe CS, Richards JH (2003). Contribution of relative growth rate to root foraging by annual and perennial grasses from California oak woodlands. Oecologia, 136, 424-430.
DOI URL |
[2] | Calle Z, Schlumpberger BO, Piedrahita L, Leftin A, Hammer SA, Tye A, Borchert R (2010). Seasonal variation in daily insolation induces synchronous bud break and flowering in the tropics. Trees, 24, 865-877. |
[3] | Chabot BF, Hicks DJ (1982). The ecology of leaf life spans. Annual Review of Ecology and Systematics, 13, 229-259. |
[4] | Chmielewski FM, Rötzer T (2001). Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology, 108, 101-112. |
[5] | Conesa MÀ, Mus M, Galmés J (2019). Leaf size as a key determinant of contrasting growth patterns in closely related Limonium (Plumbaginaceae) species. Journal of Plant Physiology, 240, 152984. DOI: 10.1016/j.jplph.2019.05.011. |
[6] | Corner EJH (1949). The durian theory or the origin of the modern tree. Annals of Botany, 13, 367-414. |
[7] | Dale JE (1982). The Growth of Leaves. Edward Arnold Limited, London. 31-41. |
[8] | Doi H, Gordo O, Katano I (2008). Heterogeneous intra-annual climatic changes drive different phenological responses at two trophic levels. Climate Research, 36, 181-190. |
[9] | Dombroskie SL, Aarssen LW (2012). The leaf size/number trade-off within species and within plants for woody angiosperms. Plant Ecology and Evolution, 145, 38-45. |
[10] | Falster DS, Warton DI, Wright IJ (2006). User’s Guide to SMATR: Standardised Major Axis Tests & Routines Version 2.0. [2012-03-11]. http://www.bio.mq.edu.au/ecology/SMATR/. |
[11] | Guo QX, Chai J, Qian F, Zhang TD, Liu WD, Tao JP (2013). Leaf and stem traits of current-year twigs vary with different functional types of woody plant. Chinese Journal of Ecology, 32, 1465-1470. |
[ 郭庆学, 柴捷, 钱凤, 张腾达, 刘文丹, 陶建平 (2013). 不同木本植物功能型当年生小枝功能性状差异. 生态学杂志, 32, 1465-1470.] | |
[12] | He WM, Zhong ZC (2000). Morphological and growth responses of the climbing plant, Gynostemma pentaphyllum seedlings to varying light intensity. Acta Phytoecologica Sinica, 24, 375-378. |
[ 何维明, 钟章成 (2000). 攀援植物绞股蓝幼苗对光照强度的形态和生长反应. 植物生态学报, 24, 375-378.] | |
[13] | Hutchings MJ, de Kroon H (1994). Foraging in plants: the role of morphological plasticity in resource acquisition. Advances in Ecological Research, 25, 159-238. |
[14] | Koriba K (1958). On the periodicity of the tree-growth in the tropics, with reference to the mode of branching, the leaf-fall, and the formation of the resting bud. Gardens Bulletin, 17, 11-81. |
[15] | le Hir R, Leduc N, Jeannette E, Viemont JD, Pelleschi-Travier S (2006). Variations in sucrose and ABA concentrations are concomitant with heteroblastic leaf shape changes in a rhythmically growing species (Quercus robur). Tree Physiology, 26, 229-238. |
[16] | Liu FJ, Xiang S, Yang XC, Sun SC (2010). Comparison of leaf mass per area, photosynthetic capacity and chemical defense traits of four evergreen broad-leaved tree species under contrasting light conditions. Chinese Journal of Applied and Environmental Biology, 16, 462-467. |
[ 柳凤娟, 向双, 阳小成, 孙书存 (2010). 两种光照生境下4种常绿阔叶树的单位叶面积干重、光合能力与化学防御物质含量比较. 应用与环境生物学报, 16, 462-467.] | |
[17] | Lohier T, Jabot F, Meziane D, Shipley B, Reich PB, Deffuant G (2014). Explaining ontogenetic shifts in root-shoot scaling with transient dynamics. Annals of Botany, 114, 513-524. |
[18] | Long JY, Zhao YM, Kong XQ, Chen ZY, Wang XS, Zhao K, Cao R, Huang LS, Lü J, Cui Y, Yu YL, Xu CY (2018). Trade-offs between twig and leaf traits of ornamental shrubs grown in shade. Acta Ecologica Sinica, 38, 8022-8030. |
[ 龙嘉翼, 赵宇萌, 孔祥琦, 陈治羊, 王秀松, 赵凯, 曹然, 黄丽莎, 吕娇, 崔义, 余玉磊, 徐程扬 (2018). 观赏灌木小枝和叶性状在林下庇荫环境中的权衡关系. 生态学报, 38, 8022-8030.] | |
[19] | Lu E, Tsai C, Lin J, Yang S (2012). Leaf emergence, shedding, and lifespan of dominant hardwood species in Chitou, central Taiwan. Botanical Studies, 53, 255-264. |
[20] | Ma DW, Zhang G, Wang YH, Wang DM (2002). Studies on species diversity of forest vegetation on Qingcheng Mountain. Journal of Sichuan University (Natural Science Edition), 39, 115-123. |
[ 马丹炜, 张果, 王跃华, 王道模 (2002). 青城山森林植被物种多样性的研究. 四川大学学报(自然科学版), 39, 115-123.] | |
[21] | Martinez KA, Fridley JD (2018). Acclimation of leaf traits in seasonal light environments: Are non-native species more plastic? Journal of Ecology, 106, 2019-2030. |
[22] | Meng FQ, Zhang GF, Li XC, Niklas KJ, Sun SC (2015). Growth synchrony between leaves and stems during twig development differs among plant functional types of subtropical rainforest woody species. Tree Physiology, 35, 621-631. |
[23] | Messier J, Lechowicz MJ, McGill BJ, Violle C, Enquist BJ (2017). Interspecific integration of trait dimensions at local scales: the plant phenotype as an integrated network. Journal of Ecology, 105, 1775-1790. |
[24] | Mizumachi E, Mori A, Osawa N, Akiyama R, Tokuchi N (2006). Shoot development and extension of Quercus serrata saplings in response to insect damage and nutrient conditions. Annals of Botany, 98, 219-226. |
[25] | Moles AT, Westoby M (2000). Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos, 90, 517-524. |
[26] | Nitta I, Ohsawa M (1997). Leaf dynamics and shoot phenology of eleven warm-temperate evergreen broad-leaved trees near their northern limit in central Japan. Plant Ecology, 130, 71-88. |
[27] | Ozawa H, Itoh K, Hori Y (2000). Shoot structure and dynamics of saplings and canopies of three deciduous broad-leaved trees of a coppice forest in central Japan. Trees, 14, 206-214. |
[28] | Pichon C, Hladik A, Hladik M, Tarnaud L, Roger E (2015). Leaf phenological patterns of trees, shrubs and lianas in a dry semi-deciduous forest of northwestern Madagascar: functional types and adaptive significance. Revue D Ecologie, 70, 197-212. |
[29] | Pickup M, Westoby M, Basden A (2005). Dry mass costs of deploying leaf area in relation to leaf size. Functional Ecology, 19, 88-97. |
[30] | Ralhan PK, Khanna RK, Singh SP, Singh JS (1985). Certain phenological characters of the shrub layer of Kumaun Himalayan forests. Vegetatio, 63, 113-119. |
[31] | Rathcke B, Lacey EP (1985). Patterns of terrestrial plants. Annual Review of Ecology and Systematics, 16, 179-214. |
[32] | Sultan SE (2000). Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5, 537-542. |
[33] | Shi P (2016). Proportion and Dynamic of the Second Shooting in Woody Species from Deciduous Broad-leaved Forest in Xianlin, Nanjing. Master degree dissertation, Nanjing Normal University, Nanjing |
[ 时盼 (2016). 南京仙林地区落叶阔叶林中木本植物二次抽枝的发生比例及动态研究. 硕士学位论文, 南京师范大学, 南京.] | |
[34] | Shi YC, Zhao CZ, Song QH, Du J, Chen J, Wang JW (2015). Slope-related variations in twig and leaf traits of Robinia pseudoacacia in the northern mountains of Lanzhou. Chinese Journal of Plant Ecology, 39, 362-370. |
[ 史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟 (2015). 兰州北山刺槐枝叶性状的坡向差异性. 植物生态学报, 39, 362-370.] | |
[35] | Sun M, Tian K, Zhang Y, Wang H, Guan DX, Yue HT (2017). Research on leaf functional traits and their environmental adaptation. Plant Science Journal, 35, 940-949. |
[ 孙梅, 田昆, 张贇, 王行, 管东旭, 岳海涛 (2017). 植物叶片功能性状及其环境适应研究. 植物科学学报, 35, 940-949.] | |
[36] | Sun SC, Jin DM, Shi PL (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Annals of Botany, 97, 97-107. |
[37] | The Editorial Committee of Flora Reipubulicae Popularis Sinicae(1980). Flora Reipubulicae Popularis Sinicae. Science Press, Beijing. |
[ 中国科学院中国植物志编辑委员会(1980). 中国植物志. 科学出版社, 北京.] | |
[38] | Vitasse Y, Lenz A, Hoch G, Körner C (2014). Earlier leaf-out rather than difference in freezing resistance puts juvenile trees at greater risk of damage than adult trees. Journal of Ecology, 102, 981-988. |
[39] | Volkenburgh EV (1999). Leaf expansion: an integrating plant behaviour. Plant, Cell & Environment, 22, 1463-1473. |
[40] | Wang RX (2015). Leaf Population Dynamic of Main Plant Species from Deciduous Broad-leaved Forest in Xianlin, Nanjing.. Master degree dissertation, Nanjing Normal University, Nanjing. |
[ 王瑞雪 (2015). 南京仙林落叶阔叶林中主要植物的叶群体动态. 硕士学位论文, 南京师范大学, 南京.] | |
[41] | Wang ZM (2018). The Strategies of Woody Saplings Adapting to the Light and Temperature Environments in the Subtropical Evergreen Broad-leaved Forests. Master degree dissertation, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu. |
[ 王振孟 (2018). 亚热带常绿阔叶林木本植物幼树阶段光温适应对策研究. 硕士学位论文, 中国科学院成都生物研究所, 成都.] | |
[42] | Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models. Biometrical Journal, 44, 161-174. |
[43] | Weed AS, Gassmann A, Casagrande RA (2011). Effects of leaf and root herbivory by potential insect biological control agents on the performance of invasive Vincetoxicum spp. Biological Control, 56, 50-58. |
[44] | Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135, 621-628. |
[45] |
Xia YJ, Tang JQ, Zhang GF, Huang C, Meng FQ, Sun SC (2013). First and second sets of shoots in five evergreen woody species from Tiantong National Forest Park of Zhejiang, China. Chinese Journal of Plant Ecology, 37, 220-229.
DOI URL |
[ 夏洋洁, 唐坚强, 张光富, 黄超, 蒙凤群, 孙书存 (2013). 浙江天童国家森林公园5种常绿阔叶植物的一次和二次抽枝进程. 植物生态学报, 37, 220-229.] | |
[46] | Xiang S, Wu N, Sun SC (2009). Within-twig biomass allocation in subtropical evergreen broad-leaved species along an altitudinal gradient: allometric scaling analysis. Trees, 23, 637-647. |
[47] | Xu GX, Luo SX, Guo QS, Pei SX, Shi ZM, Zhu L, Zhu NN (2014). Responses of leaf unfolding and flowering to climate change in 12 tropical evergreen broadleaf tree species in Jianfengling, Hainan Island. Chinese Journal of Plant Ecology, 38, 585-598. |
[ 许格希, 罗水兴, 郭泉水, 裴顺祥, 史作民, 朱莉, 朱妮妮 (2014). 海南岛尖峰岭12种热带常绿阔叶乔木展叶期与开花期对气候变化的响应. 植物生态学报, 38, 585-598.] | |
[48] | Yan ER, Wang XH, Chang SX, He FL (2013). Scaling relationships among twig size, leaf size and leafing intensity in a successional series of subtropical forests. Tree Physiology, 33, 609-617. |
[49] | Yang F, Wang ZM, Zhu DH, Yang XC, Xiang S (2019). Dynamic characteristics of non-structural carbohydrates in leaves of six woody plants from an evergreen broad-leaved forest. Chinese Journal of Applied and Environmental Biology, 25, 1075-1083. |
[ 杨芳, 王振孟, 朱大海, 阳小成, 向双 (2019). 常绿阔叶林林下6种木本植物叶片非结构性碳水化合物的动态特征. 应用与环境生物学报, 25, 1075-1083.] | |
[50] | Zhu XB, Liu YM, Sun SC (2005). Leaf expansion of the dominant woody species of three deciduous oak forests in Nanjing, East China. Acta Phytoecologica Sinica, 29, 128-136. |
[ 朱旭斌, 刘娅梅, 孙书存 (2005). 南京地区落叶栎林主要木本植物的展叶动态研究. 植物生态学报, 29, 128-136.] | |
[51] | Zou ZL (1980). Insect Ecology. Shanghai Scientific & Technical Publishers. Shanghai. |
[ 邹钟琳 (1980). 昆虫生态学. 上海科学技术出版社, 上海.] | |
[52] | Zvereva EL, Kozlov MV (2006). Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a meta analysis. Global Change Biology, 12, 27-41. |
[1] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[2] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[3] | 李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(2): 145-169. |
[4] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[5] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[6] | 魏龙鑫, 耿燕, 崔可达, 乔雪涛, 岳庆敏, 范春雨, 张春雨, 赵秀海. 阔叶红松林不同林层和生长阶段树木生长对采伐强度的响应[J]. 植物生态学报, 2022, 46(6): 642-655. |
[7] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[8] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[9] | 翟江维, 林馨慧, 武瑞哲, 徐义昕, 靳豪豪, 金光泽, 刘志理. 小兴安岭不同功能型阔叶植物的柄叶权衡[J]. 植物生态学报, 2022, 46(6): 700-711. |
[10] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[11] | 韩旭丽, 赵明水, 王忠媛, 叶琳峰, 陆世通, 陈森, 李彦, 谢江波. 三种裸子植物木质部结构与功能对不同生境的适应[J]. 植物生态学报, 2022, 46(4): 440-450. |
[12] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[13] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[14] | 代远萌, 李满乐, 徐铭泽, 田赟, 赵洪贤, 高圣杰, 郝少荣, 刘鹏, 贾昕, 查天山. 毛乌素沙地沙丘不同固定阶段黑沙蒿叶性状特征[J]. 植物生态学报, 2022, 46(11): 1376-1387. |
[15] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19