植物生态学报 ›› 2022, Vol. 46 ›› Issue (4): 440-450.DOI: 10.17521/cjpe.2021.0186
韩旭丽1, 赵明水2, 王忠媛1, 叶琳峰1, 陆世通1, 陈森1, 李彦1,3, 谢江波1,*()
收稿日期:
2021-05-17
接受日期:
2021-11-24
出版日期:
2022-04-20
发布日期:
2022-02-16
通讯作者:
谢江波
作者简介:
*(0208xiejiangbo@163.com)
HAN Xu-Li1, ZHAO Ming-Shui2, WANG Zhong-Yuan1, YE Lin-Feng1, LU Shi-Tong1, CHEN Sen1, LI Yan1,3, XIE Jiang-Bo1,*()
Received:
2021-05-17
Accepted:
2021-11-24
Online:
2022-04-20
Published:
2022-02-16
Contact:
XIE Jiang-Bo
Supported by:
摘要:
生境异质性是影响植物生长发育的重要因素。植物木质部水力系统是土壤-植物-大气连续体的主要通路, 直接影响植物的基本行为和功能, 同时也反映了植物对环境变化的适应性。为对比天目山3种裸子植物枝条木质部水力功能、机械和解剖结构性状在不同生境(自然生境与人工生境)的差异, 揭示裸子植物对不同生境的适应机制, 该研究以金钱松(Pseudolarix amabilis)、杉木(Cunninghamia lanceolata)和雪松(Cedrus deodara)为研究对象, 测定枝木质部导水率、栓塞抗性(导水率损失50%时的水势)、机械以及解剖结构性状。结果发现: 1)人工生境植株比自然生境植株水力效率弱, 但栓塞抗性强。2)自然生境雪松木质部导水系统存在效率-安全权衡; 不论自然还是人工生境杉木、金钱松木质部导水系统均无效率-安全权衡。3)人工生境雪松和金钱松木质部存在机械-安全权衡。相比人工生境, 土壤水分有效性低的自然生境中, 植物采用增大纹孔膜直径来提高水力效率, 此外, 还可通过增加木材密度、扩大管胞直径来避免栓塞带来的威胁。
韩旭丽, 赵明水, 王忠媛, 叶琳峰, 陆世通, 陈森, 李彦, 谢江波. 三种裸子植物木质部结构与功能对不同生境的适应. 植物生态学报, 2022, 46(4): 440-450. DOI: 10.17521/cjpe.2021.0186
HAN Xu-Li, ZHAO Ming-Shui, WANG Zhong-Yuan, YE Lin-Feng, LU Shi-Tong, CHEN Sen, LI Yan, XIE Jiang-Bo. Adaptation of xylem structure and function of three gymnosperms to different habitats. Chinese Journal of Plant Ecology, 2022, 46(4): 440-450. DOI: 10.17521/cjpe.2021.0186
生境 Habitat | 经纬度 Latitude, longitude | 海拔 Altitude (m) | 坡向 Aspect | 坡度 Slope (°) | pH | 土壤含水量 Soil water content (%) |
---|---|---|---|---|---|---|
自然生境 Field habitat | 30.43° N, 120.22° E | 400-450 | 西南 Southwest | 9-12 | 4.85 ± 0.16 | 29.53 ± 1.21 |
人工生境 Garden habitat | 30.25° N, 119.72° E | 51-74 | 西南 Southwest | 15-20 | 5.23 ± 0.12 | 35.98 ± 1.22 |
表1 采样点基本概况
Table 1 Basic environmental conditions of the sampling points
生境 Habitat | 经纬度 Latitude, longitude | 海拔 Altitude (m) | 坡向 Aspect | 坡度 Slope (°) | pH | 土壤含水量 Soil water content (%) |
---|---|---|---|---|---|---|
自然生境 Field habitat | 30.43° N, 120.22° E | 400-450 | 西南 Southwest | 9-12 | 4.85 ± 0.16 | 29.53 ± 1.21 |
人工生境 Garden habitat | 30.25° N, 119.72° E | 51-74 | 西南 Southwest | 15-20 | 5.23 ± 0.12 | 35.98 ± 1.22 |
物种 Species | 科 Family | 生活型 Life form | 叶片习性 Leaf habit | 生境 Habitat | n | 胸径 DBH (cm) | 树高 PH (m) | 树龄 Tree age (a) | 冠幅 Crown (m) |
---|---|---|---|---|---|---|---|---|---|
雪松 Cedrus deodara | 松科 Pinaceae | 乔木 Tree | 常绿 Evergreen | 自然 Field | 20 | 36.03 ± 0.37 | 9.89 ± 0.36 | 40-45 | 7.03 ± 0.18 |
人工 Garden | 19 | 37.89 ± 0.28 | 11.52 ± 0.25 | 40-45 | 7.85 ± 0.13 | ||||
杉木 Cunninghamia lanceolata | 杉科 Taxodiaceae | 乔木 Tree | 常绿 Evergreen | 自然 Field | 19 | 10.62 ± 0.35 | 4.43 ± 0.32 | 25-30 | 1.63 ± 0.14 |
人工 Garden | 16 | 11.43 ± 0.23 | 5.12 ± 0.27 | 25-30 | 1.92 ± 0.09 | ||||
金钱松 Pseudolarix amabilis | 松科 Pinaceae | 乔木 Tree | 落叶 Deciduous | 自然 Field | 20 | 26.06 ± 0.49 | 12.54 ± 0.30 | 40-45 | 4.67 ± 0.23 |
人工 Garden | 15 | 26.62 ± 0.42 | 13.60 ± 0.22 | 40-45 | 5.25 ± 0.15 |
表2 自然和人工生境3种裸子植物基本概况(平均值±标准误)
Table 2 Overview of the three Gymnosperms in field and garden habitats (mean ± SE)
物种 Species | 科 Family | 生活型 Life form | 叶片习性 Leaf habit | 生境 Habitat | n | 胸径 DBH (cm) | 树高 PH (m) | 树龄 Tree age (a) | 冠幅 Crown (m) |
---|---|---|---|---|---|---|---|---|---|
雪松 Cedrus deodara | 松科 Pinaceae | 乔木 Tree | 常绿 Evergreen | 自然 Field | 20 | 36.03 ± 0.37 | 9.89 ± 0.36 | 40-45 | 7.03 ± 0.18 |
人工 Garden | 19 | 37.89 ± 0.28 | 11.52 ± 0.25 | 40-45 | 7.85 ± 0.13 | ||||
杉木 Cunninghamia lanceolata | 杉科 Taxodiaceae | 乔木 Tree | 常绿 Evergreen | 自然 Field | 19 | 10.62 ± 0.35 | 4.43 ± 0.32 | 25-30 | 1.63 ± 0.14 |
人工 Garden | 16 | 11.43 ± 0.23 | 5.12 ± 0.27 | 25-30 | 1.92 ± 0.09 | ||||
金钱松 Pseudolarix amabilis | 松科 Pinaceae | 乔木 Tree | 落叶 Deciduous | 自然 Field | 20 | 26.06 ± 0.49 | 12.54 ± 0.30 | 40-45 | 4.67 ± 0.23 |
人工 Garden | 15 | 26.62 ± 0.42 | 13.60 ± 0.22 | 40-45 | 5.25 ± 0.15 |
图1 三种裸子植物水力功能性状(平均值±标准误)。不同小写字母表示在α = 0.05水平上差异显著。
Fig. 1 Hydraulic functional traits of three Gymnosperm species (mean ± SE). Different lowercase letters indicate significant differences at α = 0.05.
图2 雪松(A)、杉木(B)和金钱松(C)在自然与人工生境比导率(Ks)与栓塞抗性(P50)相关性。
Fig. 2 Correlation between specific hydraulic conductivity (Ks) and embolism resistance (P50) of Cedrus deodara (A), Cunninghamia lanceolata (B) and Pseudolarix amabilis (C) in field and garden habitats.
图3 三种裸子植物木质部管胞特征(平均值±标准误)。不同小写字母表示在α = 0.05水平上差异显著。
Fig. 3 Xylem tracheid traits of three Gymnosperm species (mean ± SE). Different lowercase letters indicate significant differences at α = 0.05.
图4 三种裸子植物木质部纹孔特征(平均值±标准误)。不同小写字母表示在α = 0.05水平上差异显著。
Fig. 4 Xylem pit structure traits in three Podocarpus species (mean ± SE). Different lowercase letters indicate significant differences at α = 0.05.
图5 三种裸子植物木质部机械强度比较(平均值±标准误)。不同小写字母表示在α = 0.05水平上差异显著。
Fig. 5 Xylem mechanical traits of three Gymnosperm species (mean ± SE). Different lowercase letters indicate significant differences at α = 0.05.
图6 三种裸子植物自然(A-C)、人工生境(D-E)木质部水力功能和解剖结构性状相关性分析。*, p < 0.05; **, p < 0.01。 Dh, 水力直径(μm); Dpa, 纹孔口直径(μm); Dpm, 纹孔膜直径(μm); Fa, 纹孔开口比; Ks, 比导率(kg·m-1∙MPa-1·s-1); Nt, 管胞密度(No.·mm-2); P50, 栓塞抗性(-MPa); Ttob, 管胞厚度跨度比((t/b)2); Tw, 管胞壁厚(μm); WD, 木材密度(g·cm-2)。
Fig. 6 Correlation analysis between xylem hydraulic function and anatomical structural traits of three Gymnosperm species in field (A-C) and garden habitats (D-E). *, p < 0.05; **, p < 0.01. Dh, hydraulic diameter (μm); Dpa, pit aperture diameter (μm); Dpm, pit membrane diameter (μm); Fa, aperture opening ratio; Ks, specific hydraulic conductivity (kg·m-1·MPa-1·s-1); Nt, tracheid density (No.·mm2); P50, the xylem water potential causing 50% loss of hydraulic conductivity (-MPa); Ttob, tracheid thickness to span ratio ((t/b)2); Tw, double thickness of vessel wall (μm); WD, wood density (g·cm-2).
[1] |
Aguilar-Romero R, Pineda-Garcia F, Paz H, González- Rodríguez A, Oyama K (2017). Differentiation in the water-use strategies among oak species from central Mexico. Tree Physiology, 37, 915-925.
DOI PMID |
[2] |
Allen K, Dupuy JM, Gei MG, Hulshof C, Medvigy D, Pizano C, Salgado-Negret B, Smith CM, Trierweiler A, van Bloem SJ, Waring BG, Xu XT, Powers JS (2017). Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environmental Research Letters, 12, 023001. DOI: 10.1088/1748-9326/aa5968.
DOI URL |
[3] |
Anderegg WRL, Kane JM, Anderegg LDL (2013). Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3, 30-36.
DOI URL |
[4] |
Arndt SK, Sanders GJ, Bristow M, Hutley LB, Beringer J, Livesley SJ (2015). Vulnerability of native savanna trees and exotic Khaya senegalensis to seasonal drought. Tree Physiology, 35, 783-791.
DOI URL |
[5] | Baas PA, Ewers FW, Davis SD, Wheeler E (2004). Evolution of xylem physiology//Hemsley AR, Poole I. The Evolution of Plant Physiology. Elsevier, Oxford, UK. 273-295. |
[6] |
Bouche PS, Larter M, Domec JC, Burlett R, Gasson P, Jansen S, Delzon S (2014). A broad survey of hydraulic and mechanical safety in the xylem of conifers. Journal of Experimental Botany, 65, 4419-4431.
DOI URL |
[7] |
Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005). Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 102, 15144-15148.
PMID |
[8] | Brodersen CR (2016). Finding support for theoretical tradeoffs in xylem structure and function. New Phytologist, 209, 18-10. |
[9] |
Brodersen CR, McElrone AJ, Choat B, Lee EF, Matthews MA (2013). In vivo visualizations of drought-induced embolism spread in Vitis vinifera. Plant Physiology, 161, 1820- 1829.
DOI PMID |
[10] |
Brodribb TJ, Cochard H (2009). Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiology, 149, 575-584.
DOI PMID |
[11] |
Brodribb TJ, Holbrook NM (2003). Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiology, 132, 2166-2173.
PMID |
[12] |
Bucci SJ, Scholz FG, Campanello PI, Montti L, Jimenez-Castillo M, Rockwell FA, Manna LL, Guerra P, Bernal PL, Troncoso O, Enricci J, Holbrook MN, Goldstein G (2012). Hydraulic differences along the water transport system of South American Nothofagus species: Do leaves protect the stem functionality? Tree Physiology, 32,880-893.
DOI URL |
[13] | Cai J, Tyree MT (2010). The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant, Cell & Environment, 33, 1059-1069. |
[14] |
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351-366.
DOI URL |
[15] |
Chen JW, Zhang Q, Li XS, Cao KF (2009). Independence of stem and leaf hydraulic traits in six Euphorbiaceae tree species with contrasting leaf phenology. Planta, 230, 459- 468.
DOI URL |
[16] | Chen ZC, Jiang LN, Feng JX, Wan XC (2018). Progress and controversy of xylem embolism determination techniques in woody plants. Scientia Silvae Sinicae, 54(5), 143-151. |
[ 陈志成, 姜丽娜, 冯锦霞, 万贤崇 (2018). 木本植物木质部栓塞测定技术的争议与进展. 林业科学, 54(5), 143-151.] | |
[17] |
Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, et al. (2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755.
DOI URL |
[18] | Delzon S, Douthe C, Sala AN, Cochard H (2010). Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding. Plant, Cell & Environment, 33, 2101- 2111. |
[19] |
Domec JC, Lachenbruch B, Meinzer FC (2006). Bordered pit structure and function determine spatial patterns of air- seeding thresholds in xylem of Douglas-fir (Pseudotsuga menziesii; Pinaceae) trees. American Journal of Botany, 93, 1588-1600.
DOI URL |
[20] |
Fan ZX, Sterck F, Zhang SB, Fu PL, Hao GY (2017). Tradeoff between stem hydraulic efficiency and mechanical strength affects leaf-stem allometry in 28 Ficus tree species. Frontiers in Plant Science, 8, 1619. DOI: 10.3389/ fpls.2017.01619.
DOI URL |
[21] |
Gazol A, Camarero JJ, Anderegg WRL, Vicente-Serrano SM (2017). Impacts of droughts on the growth resilience of Northern Hemisphere forests. Global Ecology and Biogeography, 26, 166-176.
DOI URL |
[22] |
Gleason CA, Jenkins NT, Johnson WB (2008). The contagion effects of accounting restatements. The Accounting Review, 83, 83-110.
DOI URL |
[23] |
Hacke UG, Jansen S (2009). Embolism resistance of three boreal conifer species varies with pit structure. New Phytologist, 182, 675-686.
DOI PMID |
[24] |
Hacke UG, Plavcová L, Almeida-Rodriguez A, King-Jones S, Zhou WC, Cooke JEK (2010). Influence of nitrogen fertilization on xylem traits and aquaporin expression in stems of hybrid poplar. Tree Physiology, 30, 1016-1025.
DOI PMID |
[25] |
Hacke UG, Sperry JS, Pittermann J (2000). Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic and Applied Ecology, 1, 31-41.
DOI URL |
[26] |
Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001). Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126, 457-461.
DOI PMID |
[27] |
Hartmann H, Ziegler W, Kolle O, Trumbore S (2013). Thirst beats hunger—Declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytologist, 200, 340-349.
DOI PMID |
[28] | Holste EK, Jerke MJ, Matzner SL (2006). Long-term acclimatization of hydraulic properties, xylem conduit size, wall strength and cavitation resistance in Phaseolus vulgaris in response to different environmental effects. Plant, Cell & Environment, 29, 836-843. |
[29] |
Jansen S, Choat B, Pletsers A (2009). Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. American Journal of Botany, 96, 409-419.
DOI URL |
[30] |
Jansen S, Gortan E, Lens F, Lo Gullo MA, Salleo S, Scholz A, Stein A, Trifilò P, Nardini A (2011). Do quantitative vessel and pit characters account for ion-mediated changes in the hydraulic conductance of angiosperm xylem? New Phytologist, 189, 218-228.
DOI URL |
[31] |
Johansson I, Karlsson M, Johanson U, Larsson C, Kjellbom P (2000). The role of aquaporins in cellular and whole plant water balance. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1465, 324-342.
PMID |
[32] |
Jump AS, Ruiz-Benito P, Greenwood S, Allen CD, Kitzberger T, Fensham R, Martínez-Vilalta J, Lloret F (2017). Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Global Change Biology, 23, 3742-3757.
DOI URL |
[33] |
Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S (2011). Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 190, 709-723.
DOI URL |
[34] |
Lewis AM (1992). Measuring the hydraulic diameter of a pore or conduit. American Journal of Botany, 79, 1158-1161.
DOI PMID |
[35] |
Li JY, Zhai HB (2000). Hydraulic architecture and drought resistance of woody plants. Chinese Journal of Applied Ecology, 11, 301-305.
PMID |
[ 李吉跃, 翟洪波 (2000). 木本植物水力结构与抗旱性. 应用生态学报, 11, 301-305.]
PMID |
|
[36] |
Loepfe L, Martinez-Vilalta J, Piñol J, Mencuccini M (2007). The relevance of xylem network structure for plant hydraulic efficiency and safety. Journal of Theoretical Biology, 247, 788-803.
PMID |
[37] |
Maherali H, Pockman WT, Jackson RB (2004). Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85, 2184-2199.
DOI URL |
[38] |
Markesteijn L, Poorter L, Bongers F, Paz H, Sack L (2011). Hydraulics and life history of tropical dry forest tree species: Coordination of species’ drought and shade tolerance. New Phytologist, 191, 480-495.
DOI PMID |
[39] |
Martínez-Cabrera HI, Jones CS, Espino S, Schenk HJ (2009). Wood anatomy and wood density in shrubs: responses to varying aridity along transcontinental transects. American Journal of Botany, 96, 1388-1398.
DOI PMID |
[40] |
Martínez-Vilalta J, Prat E, Oliveras I, Piñol J (2002). Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia, 133, 19-29.
DOI PMID |
[41] |
Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015). Aquaporins in plants. Physiological Reviews, 95, 1321-1358.
DOI URL |
[42] |
McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739.
DOI PMID |
[43] |
McDowell NG, Williams AP, Xu C, Pockman WT, Dickman LT, Sevanto S, Pangle R, Limousin J, Plaut J, MacKay DS, Ogee J, Domec JC, Allen CD, Fisher RA, Jiang X, et al. (2016). Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nature Climate Change, 6, 295-300.
DOI URL |
[44] | Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH (2006a). Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant, Cell & Environment, 29, 1618-1628. |
[45] |
Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Wheeler JK, Sikkema EH (2006b). Inter-tracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection. American Journal of Botany, 93, 1265-1273.
DOI URL |
[46] | Plavcová L, Hacke UG, Sperry JS (2011). Linking irradiance- induced changes in pit membrane ultrastructure with xylem vulnerability to cavitation. Plant, Cell & Environment, 34, 501-513. |
[47] |
Pockman WT, Sperry JS (2000). Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation. American Journal of Botany, 87, 1287-1299.
PMID |
[48] |
Pratt RB, Jacobsen AL, Ewers FW, Davis SD (2007a). Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytologist, 174, 787-798.
DOI URL |
[49] |
Pratt RB, Jacobsen AL, Golgotiu KA, Sperry JS, Ewers FW, Davis SD (2007b). Life history type and water stress tolerance in nine California chaparral species (Rhamnaceae). Ecological Monographs, 77, 239-253.
DOI URL |
[50] | Pratt RB, North GB, Jacobsen AL, Ewers FW, Davis SD (2010). Xylem root and shoot hydraulics is linked to life history type in chaparral seedlings. Functional Ecology, 24, 70-81. |
[51] | Rowland L, da Costa ACL, Galbraith DR, Oliveira RS, Binks OJ, Oliveira AAR, Pullen AM, Doughty CE, Metcalfe DB, Vasconcelos SS, Ferreira LV, Malhi Y, Grace J, Mencuccini M, Meir P (2015). Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature, 528, 119-122. |
[52] |
Schuldt B, Knutzen F, Delzon S, Jansen S, Müller-Haubold H, Burlett R, Clough Y, Leuschner C (2016). How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? New Phytologist, 210, 443-458.
DOI URL |
[53] |
Schumann K, Leuschner C, Schuldt B (2019). Xylem hydraulic safety and efficiency in relation to leaf and wood traits in three temperate Acer species differing in habitat preferences. Trees, 33, 1475-1490.
DOI URL |
[54] | Sperry JS, Donnelly JR, Tyree MT (1988). A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell & Environment, 11, 35-40. |
[55] |
Sperry JS, Hacke UG (2004). Analysis of circular bordered pit function I. Angiosperm vessels with homogenous pit membranes. American Journal of Botany, 91, 369-385.
DOI PMID |
[56] | Sperry JS, Tyree MT (1990). Water-stress-induced xylem embolism in three species of conifers. Plant, Cell & Environment, 13, 427-436. |
[57] |
Tissier J, Lambs L, Peltier JP, Marigo G (2004). Relationships between hydraulic traits and habitat preference for six Acer species occurring in the French Alps. Annals of Forest Science, 61, 81-86.
DOI URL |
[58] | Trueba S, Pouteau R, Lens F, Feild TS, Isnard S, Olson ME, Delzon S (2017). Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island. Plant, Cell & Environment, 40, 277-289. |
[59] | Tyree MT, Zimmermann MH (2002). Xylem Structure and the Ascent of Sap. Springer, Berlin. |
[60] |
Vayreda J, Martinez-Vilalta J, Gracia M, Canadell JG, Retana J (2016). Anthropogenic-driven rapid shifts in tree distribution lead to increased dominance of broadleaf species. Global Change Biology, 22, 3984-3995.
DOI PMID |
[61] | Wan XC, Meng P (2007). Physilogical and ecological mechanisms of long-distance water transport in plants: a review of recent issues. Journal of Plant Ecology (Chinese Version), 31, 804-813. |
[ 万贤崇, 孟平 (2007). 植物体内水分长距离运输的生理生态学机制. 植物生态学报, 31, 804- 813.]
DOI |
|
[62] | Wheeler JK, Huggett BA, Tofte AN, Rockwell FE, Holbrook NM (2013). Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant, Cell & Environment, 36, 1938-1949. |
[63] | Wheeler JK, Sperry JS, Hacke UG, Hoang N (2005). Inter- vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell & Environment, 28, 800-812. |
[64] |
Young DJN, Stevens JT, Earles JM, Moore J, Ellis A, Jirka AL, Latimer AM (2017). Long-term climate and competition explain forest mortality patterns under extreme drought. Ecology Letters, 20, 78-86.
DOI URL |
[65] |
Zhang JZ, Gou XH, Zhao ZQ, Liu WH, Zhang F, Cao ZY, Zhou FF (2013). Improved method of obtaining micro-core paraffin sections in dendroecological research. Chinese Journal of Plant Ecology, 37, 972-977.
DOI URL |
[ 张军周, 勾晓华, 赵志千, 刘文火, 张芬, 曹宗英, 周非飞 (2013). 树轮生态学研究中微树芯石蜡切片制作的方法探讨. 植物生态学报, 37, 972-977.]
DOI |
[1] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[2] | 王嘉仪, 王襄平, 徐程扬, 夏新莉, 谢宗强, 冯飞, 樊大勇. 北京市行道树绒毛梣的水力结构对城市不透水表面比例的响应[J]. 植物生态学报, 2023, 47(7): 998-1009. |
[3] | 方菁, 叶琳峰, 陈森, 陆世通, 潘天天, 谢江波, 李彦, 王忠媛. 自然和人工生境被子植物枝木质部结构与功能差异[J]. 植物生态学报, 2021, 45(6): 650-658. |
[4] | 李志民, 王传宽. 木本植物木质部的冻融栓塞应对研究进展[J]. 植物生态学报, 2019, 43(8): 635-647. |
[5] | 朱良军, 李宗善, 王晓春. 树轮木质部解剖特征及其与环境变化的关系[J]. 植物生态学报, 2017, 41(2): 238-251. |
[6] | 范泽鑫, 曹坤芳, 邹寿青. 云南哀牢山6种常绿阔叶树木质部解剖特征的轴向和径向变化[J]. 植物生态学报, 2005, 29(6): 968-975. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19