植物生态学报 ›› 2017, Vol. 41 ›› Issue (2): 238-251.DOI: 10.17521/cjpe.2016.0198
收稿日期:
2016-06-12
接受日期:
2017-01-03
出版日期:
2017-02-10
发布日期:
2017-03-16
通讯作者:
王晓春
作者简介:
* 通信作者Author for correspondence (E-mail:
基金资助:
Liang-Jun ZHU1, Zong-Shan LI2, Xiao-Chun WANG1,*()
Received:
2016-06-12
Accepted:
2017-01-03
Online:
2017-02-10
Published:
2017-03-16
Contact:
Xiao-Chun WANG
About author:
KANG Jing-yao(1991-), E-mail:
摘要:
树轮木质部解剖特征是树轮在细胞、亚细胞尺度上的表征, 其往往能从微观尺度解释树轮宽度等宏观结构的变化。因此, 探讨木质部解剖特征与环境变化的关系, 可为年轮气候学统计结果提供生理解释, 为研究树木生长对气候变化的适应过程与响应策略提供新视野。该文以树轮木质部解剖特征与气候关系为主线, 概述了木质部解剖特征记录环境信号的基本原理和机制, 阐述了木质部解剖过程中涉及的基本方法, 探讨了木质部解剖特征与气候因子的关系, 就现有研究中存在的问题指出今后可能的研究方向: (1)探寻径向和切向上木质部解剖特征的时空变异及其与环境变化的关系; (2)探索植物对环境塑性响应的阈值及其响应策略及适应过程; (3)探寻各树轮代用指标间的协同与拮抗作用及气候响应差异的形成机理, 确定各时期主要气候因子对树轮形成的具体作用及贡献量。
朱良军, 李宗善, 王晓春. 树轮木质部解剖特征及其与环境变化的关系. 植物生态学报, 2017, 41(2): 238-251. DOI: 10.17521/cjpe.2016.0198
Liang-Jun ZHU, Zong-Shan LI, Xiao-Chun WANG. Anatomical characteristics of xylem in tree rings and its relationship with environments. Chinese Journal of Plant Ecology, 2017, 41(2): 238-251. DOI: 10.17521/cjpe.2016.0198
图2 不同材性树种木质部解剖。A, 无孔材, 欧洲落叶松(Larix decidua)。B, 散孔材, 小叶椴(Tilia cordata)。C, 环孔材, 夏栎(Quercus robur)。D, 半环孔材, 胡桃(Juglans regia)。引自文献Schoch等(2004)。
Fig. 2 The anatomy of xylem in trees of differential wood porosity. A, Non-porous wood Larix decidua. B, Diffuse porous wood Tilia cordata. C, Ring porous wood Quercus robur. D, Semi-ring porous wood Juglans regia. Cited from Schoch et al., 2004.
图3 低降水与高温导致树木形成窄轮的部分响应机制。红色、蓝色和黑色区域分别表示生长季前、生长季及共同的过程; 高降水与低温导致树木形成宽轮的机制与其相反。改自Fritts (1976)。
Fig. 3 The partial response mechanisms of narrowing in tree-rings caused by low precipitation and high temperatures. The areas marked by blue, red and black indicate the processes occurring prior to the growing season, during the growing season and the entire time, respectively. The effects of high precipitation and low temperatures are in reverse, that is, ring width will increase. Modified from Fritts (1976).
类型 Type | 参数 Parameter | 特征 Feature | 作用 Function |
---|---|---|---|
导管 Vessel | Di, Nu, Ar, De, GF | 由死细胞串联而成, 由穿孔相互衔接 Long straight chain by dead cells, jointed each other by perforations | 输导水分和无机盐 Transport water and inorganic salt |
管胞 Tracheid | Di, Nu, Ar, De, CWT | 由单个细胞组成, 其不具穿孔 Consists of single cell without perforation | 运输水分及矿物质, 机械支持 Transport water and minerals, mechanical support |
树脂道 Resin canal | Di, Nu, An | 由分泌细胞彼此分离而形成, 贮存分泌物 Developed as the divergence of secretory cells, storing secretions | 对昆虫和病原菌防御反应的第一道防线 The first line of defense reaction to insects and pathogens |
木射线 Ray | Nu, CWT, An | 由活射线薄壁细胞构成 Consists of living ray parenchyma cells | 径向输导液流 Radial transmission of sap |
微纤丝 Micro-fibril | Nu, An | 由纤维素分子束聚合而成, 平行排列 Aggregated by cellulose molecular beams, with parallel arrangement | 细胞壁组分, 影响细胞及木材的机械性能 Components of cell wall, affect the mechanical properties of cell and wood |
表1 常用木质部解剖参数及特征
Table 1 Types and characteristics of common anatomical parameters of xylem
类型 Type | 参数 Parameter | 特征 Feature | 作用 Function |
---|---|---|---|
导管 Vessel | Di, Nu, Ar, De, GF | 由死细胞串联而成, 由穿孔相互衔接 Long straight chain by dead cells, jointed each other by perforations | 输导水分和无机盐 Transport water and inorganic salt |
管胞 Tracheid | Di, Nu, Ar, De, CWT | 由单个细胞组成, 其不具穿孔 Consists of single cell without perforation | 运输水分及矿物质, 机械支持 Transport water and minerals, mechanical support |
树脂道 Resin canal | Di, Nu, An | 由分泌细胞彼此分离而形成, 贮存分泌物 Developed as the divergence of secretory cells, storing secretions | 对昆虫和病原菌防御反应的第一道防线 The first line of defense reaction to insects and pathogens |
木射线 Ray | Nu, CWT, An | 由活射线薄壁细胞构成 Consists of living ray parenchyma cells | 径向输导液流 Radial transmission of sap |
微纤丝 Micro-fibril | Nu, An | 由纤维素分子束聚合而成, 平行排列 Aggregated by cellulose molecular beams, with parallel arrangement | 细胞壁组分, 影响细胞及木材的机械性能 Components of cell wall, affect the mechanical properties of cell and wood |
项目 Item | 显微切片法 Micro section method | 直接打磨法 Direct polishing method | |
---|---|---|---|
传统切片 Conventional slicing | 现代切片 Contemporary slicing | ||
适用样品类型 Applicable sample type | 微生长芯(短) Micro-core (short) | 普通生长芯(长) General core (long) | 普通生长芯或圆盘(长) General core or disk (long) |
样品预处理流程 Sample pretreatment process | 固定、脱水、透明、浸蜡、包埋、切片、粘片、 脱蜡、染色等 Fixation, dehydration, paraffin, embedding, sectioning, sticky pills, dewaxing and dyeing etc. | 切片及染色等 Sectioning and staining, etc. | 打磨、清洗及增加对比度等 Grinding, cleaning and increasing contrast, etc. |
适用尺度 Applicable scale | 细胞或亚细胞 Cells or subcellular | 细胞或亚细胞 Cells or subcellular | 细胞 Cell |
适宜组织部位 Applicable site | 韧皮部或木质部 Phloem or xylem | 木质部 Xylem | 木质部 Xylem |
分辨率 Resolution | 高 High | 高 High | 略低 Slightly low |
工作量 Workload | 重 Heavy | 轻 Light | 适中 Moderate |
主要设备 Major equipment | 普通切片机和成像显微镜 General microtome and imaging microscope | 专用切片机和成像显微镜 Specialized microtome and imaging microscope | 高分辨率相机或扫描仪 High resolution camera or scanner |
表2 主要木质部解剖方法概述
Table 2 Summary of the major methods in anatomical analysis of xylem
项目 Item | 显微切片法 Micro section method | 直接打磨法 Direct polishing method | |
---|---|---|---|
传统切片 Conventional slicing | 现代切片 Contemporary slicing | ||
适用样品类型 Applicable sample type | 微生长芯(短) Micro-core (short) | 普通生长芯(长) General core (long) | 普通生长芯或圆盘(长) General core or disk (long) |
样品预处理流程 Sample pretreatment process | 固定、脱水、透明、浸蜡、包埋、切片、粘片、 脱蜡、染色等 Fixation, dehydration, paraffin, embedding, sectioning, sticky pills, dewaxing and dyeing etc. | 切片及染色等 Sectioning and staining, etc. | 打磨、清洗及增加对比度等 Grinding, cleaning and increasing contrast, etc. |
适用尺度 Applicable scale | 细胞或亚细胞 Cells or subcellular | 细胞或亚细胞 Cells or subcellular | 细胞 Cell |
适宜组织部位 Applicable site | 韧皮部或木质部 Phloem or xylem | 木质部 Xylem | 木质部 Xylem |
分辨率 Resolution | 高 High | 高 High | 略低 Slightly low |
工作量 Workload | 重 Heavy | 轻 Light | 适中 Moderate |
主要设备 Major equipment | 普通切片机和成像显微镜 General microtome and imaging microscope | 专用切片机和成像显微镜 Specialized microtome and imaging microscope | 高分辨率相机或扫描仪 High resolution camera or scanner |
[1] | Abrantes J, Campelo F, García-González I, Nabais C (2013). Environmental control of vessel traits in Quercus ilex under Mediterranean climate: Relating xylem anatomy to function.Trees, 27, 655-662. |
[2] | Aloni R (2001). Foliar and axial aspects of vascular differentia- tion: Hypotheses and evidence.Journal of Plant Growth Regulation, 20, 22-34. |
[3] | Arbellay E, Stoffel M, Bollschweiler M (2010). Wood ana- tomical analysis of Alnus incana and Betula pendula injured by a debris-flow event.Tree Physiology, 30, 1290-1298. |
[4] | Barbaroux C, Bréda N (2002). Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees.Tree Physiology, 22, 1201-1210. |
[5] | Battipaglia G, de Micco V, Brand WA, Linke P, Aronne G, Saurer M, Cherubini P (2010). Variations of vessel diameter and δ13C in false rings of Arbutus unedo L. reflect different environmental conditions.New Phytologist, 188, 1099-1112. |
[6] | Briffa K, Osborn T, Schweingruber F (2004). Large-scale temperature inferences from tree rings: A review.Global and Planetary Change, 40, 11-26. |
[7] | Campelo F, Nabais C, Carvalho A, Vieira J (2016). tracheideR —An R package to standardize tracheidograms.Dendrochronologia, 37, 64-68. |
[8] | Campelo F, Nabais C, Gutiérrez E, Freitas H, García-González I (2010). Vessel features of Quercus ilex L. growing under Mediterranean climate have a better climatic signal than tree-ring width.Trees, 24, 463-470. |
[9] | Campelo F, Vieira J, Battipaglia G, de Luis M, Nabais C, Freitas H, Cherubini P (2015). Which matters most for the formation of intra-annual density fluctuations in Pinus pinaster: Age or size?Trees, 29, 237-245. |
[10] | Carlquist S, Hoekman DA (1985). Ecological wood anatomy of the woody southern Californian flora.IAWA Journal, 6, 319-347. |
[11] | Carrer M, von AG, Castagneri D, Petit G (2015). Distilling allometric and environmental information from time series of conduit size: The standardization issue and its relationship to tree hydraulic architecture.Tree Physiology, 35, 27-33. |
[12] | Carvalho A, Nabais C, Vieira J, Rossi S, Campelo F (2015). Plastic response of tracheids in Pinus pinaster in a water- limited environment: Adjusting lumen size instead of wall thickness.PLOS ONE, 10, e0136305. doi: 10.1371/journal. pone.0136305. |
[13] | Castagneri D, Petit G, Carrer M (2015). Divergent climate response on hydraulic-related xylem anatomical traits of Picea abies along a 900-m altitudinal gradient.Tree Physiology, 35, 1378-1387. |
[14] | Corcuera L, Camarero JJ, Gil-Pelegrín E (2004). Effects of a severe drought on growth and wood anatomical properties of Quercus faginea.IAWA Journal, 25, 185-204. |
[15] | D’Arrigo R, Frank D, Jacoby G, Pederson N (2001). Spatial response to major volcanic events in or about AD 536, 934 and 1258: Frost rings and other dendrochronological evidence from Mongolia and Northern Siberia: comment on RB Stothers, ‘Volcanic dry fogs, climate cooling, and plague pandemics in Europe and the Middle East’.Climatic Change, 49, 239-246. |
[16] | de Luis M, Novak K, Raventós J, Gričar J, Prislan P, Čufar K (2011). Climate factors promoting intra-annual density fluctuations in Aleppo pine (Pinus halepensis) from semiarid sites.Dendrochronologia, 29, 163-169. |
[17] | de Micco V, Campelo F, Luis MD, Brauning A, Grabner M, Battipaglia G (2016). Intra-annual density fluctuations in tree rings: How, when, where, and why?IAWA Journal, 37, 232-259. |
[18] | Denne M (1971). Temperature and tracheid development in Pinus sylvestris seedlings.Journal of Experimental Botany, 22, 362-370. |
[19] | Deslauriers A, Morin H (2005). Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables.Trees, 19, 402-408. |
[20] | Deslauriers A, Morin H, Begin Y (2003). Cellular phenology of annual ring formation of Abies balsamea in the Québec boreal forest (Canada).Canadian Journal of Forest Research, 33, 190-200. |
[21] | DeSoto L, de la Cruz M, Fonti P (2011). Intra-annual patterns of tracheid size in the Mediterranean tree Juniperus thurifera as an indicator of seasonal water stress.Canadian Journal of Forest Research, 41, 1280-1294. |
[22] | Eilmann B, Zweifel R, Buchmann N, Pannatier EG, Rigling A (2011). Drought alters timing, quantity, and quality of wood formation in Scots pine.Journal of Experimental Botany, 62, 2763-2771. |
[23] | Esper J, Büntgen U, Frank DC, Nievergelt D, Liebhold A (2007). 1200 years of regular outbreaks in alpine insects.Proceedings of the Royal Society of London B: Biological Sciences, 274, 671-679. |
[24] | Esper J, Cook ER, Schweingruber FH (2002). Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability.Science, 295, 2250-2253. |
[25] | February EC (1994). Rainfall reconstruction using wood charcoal from two archaeological sites in south Africa.Quaternary Research, 42, 100-107. |
[26] | Fonti P, Bryukhanova MV, Myglan VS, Kirdyanov AV, Naumova OV, Vaganov EA (2013). Temperature-induced responses of xylem structure of Larix sibirica (Pinaceae) from the Russian Altay.American Journal of Botany, 100, 1332-1343. |
[27] | Fonti P, García-González I (2004). Suitability of chestnut earlywood vessel chronologies for ecological studies.New Phytologist, 163, 77-86. |
[28] | Fonti P, von Arx G, García-González I, Eilmann B, Sass- Klaassen U, Gärtner H, Eckstein D (2010). Studying global change through investigation of the plastic responses of xylem anatomy in tree rings.New Phytologist, 185, 42-53. |
[29] | Fritts HC (1976). Tree Rings and Climate. Elsevier, Amsterdam, the Netherland. |
[30] | García-González I, Fonti P (2006). Selecting earlywood vessels to maximize their environmental signal.Tree Physiology, 26, 1289-1296. |
[31] | García-González I, Fonti P (2008). Ensuring a representative sample of earlywood vessels for dendroecological studies: An example from two ring-porous species.Trees, 22, 237-244. |
[32] | Gärtner H, Cherubini P, Fonti P, von Arx G, Schneider L, Nievergelt D, Verstege A, Bast A, Schweingruber FH, Büntgen U (2015). A technical perspective in modern tree-ring research—How to overcome dendroecological and wood anatomical challenges.Journal of Visualized Experiments, 97, e52337. doi: 10.3791/52337. |
[33] | Gärtner H, Lucchinetti S, Schweingruber FH (2014). New perspectives for wood anatomical analysis in dendrosci- ences: The GSL1-microtome.Dendrochronologia, 32, 47-51. |
[34] | Gärtner H, Nievergelt D (2010). The core-microtome: A new tool for surface preparation on cores and time series analysis of varying cell parameters.Dendrochronologia, 28, 85-92. |
[35] | Gea-Izquierdo G, Fonti P, Cherubini P, Martín-Benito D, Chaar H, Cañellas I (2012). Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability.Tree Physiology, 32, 401-423. |
[36] | Giantomasi MA, Junent FAR, Villagra PE, Srur AM (2009). Annual variation and influence of climate on the ring width and wood hydrosystem of Prosopis flexuosa DC. trees using image analysis.Trees, 23, 117-126. |
[37] | Grabner M (2005). Functional Tree Ring Analysis: Wood as an Information Source to Understand Physiological, Environ- mental and Technological Questions. PhD dissertation, University of Natural Resources and Life Sciences, Vienna. |
[38] | Gričar J, de Luis M, Hafner P, Levanič T (2013). Anatomical characteristics and hydrologic signals in tree-rings of oaks (Quercus robur L.).Trees, 27, 1669-1680. |
[39] | Gričar J, Zupančič M, Čufar K, Koch G, Schmitt U, Oven P (2006). Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies).Annals of Botany, 97, 943-951. |
[40] | Gruber A, Strobl S, Veit B, Oberhuber W (2010). Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris.Tree Physiology, 30, 490-501. |
[41] | Hacke UG, Sperry JS, Wheeler JK, Castro L (2006). Scaling of angiosperm xylem structure with safety and efficiency.Tree Physiology, 26, 689-701. |
[42] | Kozlowski TT, Pallardy SG (1997). Growth Control in Woody Plants. Academic Press, New York. |
[43] | Leal S, Sousa VB, Knapic S, Louzada JL, Pereira H (2011). Vessel size and number are contributors to define wood density in cork oak.European Journal of Forest Research, 130, 1023-1029. |
[44] | Leikola M (1969). The influence of environmental factors on the diameter growth of forest trees: Auxanometric study.Acta Forestalia Fennica, 92, 59-88. |
[45] | Liang W, Heinrich I, Simard S, Helle G, Liñán ID, Heinken T (2013). Climate signals derived from cell anatomy of Scots pine in NE Germany.Tree Physiology, 33, 833-844. |
[46] | Liu YJ, Zhu LJ, Su JJ, Wang XC (2015). Impact of decreasing precipitation on Larix gmelinii radial growth in Maoershan, Xiaoxing’an Mountain, China.Acta Ecologica Sinica, 35, 4527-4537.(in Chinese with English abstract) [刘玉佳, 朱良军, 苏金娟, 王晓春 (2015). 模拟降水减少对帽儿山地区兴安落叶松径向生长的影响. 生态学报, 35, 4527-4537.] |
[47] | Loepfe L, Martinez-Vilalta J, Pinol J, Mencuccini M (2007). The relevance of xylem network structure for plant hydraulic efficiency and safety.Journal of Theoretical Biology, 247, 788-803. |
[48] | Martin-Benito D, Beeckman H, Canellas I (2013). Influence of drought on tree rings and tracheid features of Pinus nigra and Pinus sylvestris in a mesic Mediterranean forest.European Journal of Forest Research, 132, 33-45. |
[49] | Matisons R, Elferts D, Brūmelis G (2012). Changes in climatic signals of English oak tree-ring width and cross-section area of earlywood vessels in Latvia during the period 1900-2009.Forest Ecology and Management, 279, 34-44. |
[50] | Mencuccini M (2003). The ecological significance of long-distance water transport: Short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms.Plant, Cell & Environment, 26, 163-182. |
[51] | Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005). Highly variable northern hemisphere temperatures reconstructed from low- and high-resolution proxy data.Nature, 433, 613-617. |
[52] | Novak K, Luís MD, Raventós J, Čufar K (2013). Climatic signals in tree-ring widths and wood structure of Pinus halepensis in contrasted environmental conditions.Trees, 27, 927-936. |
[53] | Olano JM, Arzac A, García-Cervigón AI, Arx G, Rozas V (2013). New star on the stage: Amount of ray parenchyma in tree rings shows a link to climate.New Phytologist, 198, 486-495. |
[54] | Olano JM, Eugenio M, García-Cervigón AI, Folch M, Rozas V (2012). Quantitative tracheid anatomy reveals a complex environmental control of wood structure in continental Mediterranean climate.International Journal of Plant Sciences, 173, 137-149. |
[55] | Panyushkina IP, Hughes MK, Vaganov EA, Munro MA (2003). Summer temperature in northeastern Siberia since 1642 reconstructed from tracheid dimensions and cell numbers of Larix cajanderi.Canadian Journal of Forest Research, 33, 1905-1914. |
[56] | Pérez-De-Lis G, Rossi S, Vázquez-Ruiz RA, Rozas V, García- González I (2016). Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks.New Phytologist, 209, 521-530. |
[57] | Peters RL, Groenendijk P, Vlam M, Zuidema PA (2015). Detecting long-term growth trends using tree rings: A critical evaluation of methods.Global Change Biology, 21, 2040-2054. |
[58] | Piermattei A, Crivellaro A, Carrer M, Urbinati C (2014). The “blue ring”: Anatomy and formation hypothesis of a new tree-ring anomaly in conifers.Trees, 29, 455-461. |
[59] | Pritzkow C, Heinrich I, Grudd H, Helle G (2014). Relationship between wood anatomy, tree-ring widths and wood density of Pinus sylvestris L. and climate at high latitudes in northern Sweden.Dendrochronologia, 32, 295-302. |
[60] | Pritzkow C, Wazny T, Heußner KU, Słowiński M, Bieber A, Liñán ID (2016). Minimum winter temperature reconstruc- tion from average earlywood vessel area of european European oak (Quercus robur) in N-Poland.Palaeoge- ography Palaeoclimatology Palaeoecology, 449, 520-530. |
[61] | Rigling A, Brühlhart H, Bräker OU, Forster T, Schweingruber FH (2003). Effects of irrigation on diameter growth and vertical resin duct production in Pinus sylvestris L. on dry sites in the central Alps, Switzerland.Forest Ecology & Management, 175, 285-296. |
[62] | Rita A, Cherubini P, Leonardi S, Todaro L, Borghetti M (2015). Functional adjustments of xylem anatomy to climatic variability: Insights from long-term Ilex aquifolium tree-ring series.Tree Physiology, 35, 817-828. |
[63] | Rodríguez-García A, Martín JA, López R, Mutke S, Pinillos F, Gil L (2015). Influence of climate variables on resin yield and secretory structures in tapped Pinus pinaster Ait. in central Spain.Agricultural & Forest Meteorology, 202, 83-93. |
[64] | Rossi S, Deslauriers A, Griçar J, Seo JW, Rathgeber CB, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R (2008). Critical temperatures for xylogenesis in conifers of cold climates.Global Ecology and Biogeography, 17, 696-707. |
[65] | Rossi S, Morin H, Deslauriers A, Plourde PY (2011). Predicting xylem phenology in black spruce under climate warming.Global Change Biology, 17, 614-625. |
[66] | Sass U, Eckstein D (1995). The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation.Trees, 9, 247-252. |
[67] | Schmitt U, Möller R, Eckstein D (2000). Seasonal wood formation dynamics of beech (Fagus sylvatica L.) and black locust (Robinia pseudoacacia L.) as determined by the “pinning” technique.Angewandte Botanik, 74, 10-16. |
[68] | Schoch WH, Heller I, Schweingruber FH, Kienast F (2004). Wood Anatomy of Central European Species.(. Cited: 2016-09-16. |
[69] | Schume H, Grabner M, Eckmüllner O (2004). The influence of an altered groundwater regime on vessel properties of hybrid poplar.Trees, 18, 184-194. |
[70] | Smith KT, Sutherland EK (1999). Fire-scar formation and compartmentalization in oak.Canadian Journal of Forest Research, 29, 166-171. |
[71] | Sperry JS, Hacke UG, Pittermann J (2006). Size and function in conifer tracheids and angiosperm vessels.American Journal of Botany, 93, 1490-1500. |
[72] | Stoffel M, Bollschweiler M (2008). Tree-ring analysis in natural hazards research? An overview.Natural Hazards and Earth System Science, 8, 187-202. |
[73] | Suzuki M, Yoda K, Suzuki H (1996). Phenological comparison of the onset of vessel formation between ring-porous and diffuse-porous deciduous trees in a Japanese temperate forest.IAWA Journal, 17, 431-444. |
[74] | Tyree MT, Sperry JS (1989). Vulnerability of xylem to cavitation and embolism.Annual Review of Plant Biology, 40, 19-36. |
[75] | Tyree MT, Zimmermann MH (2013). Xylem Structure and the Ascent of Sap. Springer, Berlin. |
[76] | Ursache R, Nieminen K, Helariutta Y (2013). Genetic and hormonal regulation of cambial development.Physiologia Plantarum, 147, 36-45. |
[77] | Vaganov EA (1990). The Tracheidogram Method in Tree-Ring Analysis and Its Application. Methods of Dendrochro- nology: Applications in the Environmental Science. Kluwer Academic Publishers, Dordrecht, the Netherlands. 63-75. |
[78] | Vaganov EA (1996).Recording of Warming in Current Century by Tracheids of the Annual Tree Rings. Doklady Akademii Nauk, Moscow, Russia. |
[79] | Vaganov EA, Anchukaitis KJ, Evans MN (2011). How well understood are the processes that create dendroclimatic records? A mechanistic model of the climatic control on conifer tree-ring growth dynamics.Dendroclimatology, 11, 37-75. |
[80] | Vaganov EA, Hughes MK, Shashkin AV (2006). Growth Dynamics of Conifer Tree Rings. Springer, Berlin. |
[81] | Venegas-González A, von Arx G, Chagas MP, Tomazello Filho M (2015). Plasticity in xylem anatomical traits of two tropical species in response to intra-seasonal climate variability.Trees, 29, 423-435. |
[82] | Vieira J, Campelo F, Rossi S, Carvalho A, Freitas H, Nabais C (2015). Adjustment capacity of maritime pine cambial activity in drought-prone environments.PLOS ONE, 10, e0126223. doi:10.1371/journal.pone.0126223. |
[83] | von Arx G, Carrer M (2014). ROXAS—A new tool to build centuries-long tracheid-lumen chronologies in conifers.Dendrochronologia, 32, 290-293. |
[84] | Wang LL, Payette S, Bégin Y (2002). Relationships between anatomical and densitometric characteristics of black spruce and summer temperature at tree line in northern Quebec.Canadian Journal of Forest Research, 32, 477-486. |
[85] | Wertz EL, St George S, Zeleznik JD (2013). Vessel anomalies in Quercus macrocarpa tree rings associated with recent floods along the Red River of the North, United States.Water Resources Research, 49, 630-634. |
[86] | Wimmer R (2002). Wood anatomical features in tree-rings as indicators of environmental change.Dendrochronologia, 20, 21-36. |
[87] | Wimmer R, Grabner M (1997). Effects of climate on vertical resin duct density and radial growth of norway spruce [Picea abies (L.) Karst.].Trees, 11, 271-276. |
[88] | Wimmer R, Grabner M (2000). A comparison of tree-ring features in Picea abies as correlated with climate.IAWA Journal, 21, 403-416. |
[89] | Wimmer R, Vetter RE (1999). Tree-ring analysis biological, methodological and environmental aspects. In: Wimmer R, Grabner M, Strumia G eds. Significance of Vertical Ducts in the Tree Rings of Spruce. CABI Publishing, London. 1107-1110. |
[90] | Wood LJ, Smith DJ, Hartley ID (2016). Predicting softwood quality attributes from climate data in interior British Columbia, Canada.Forest Ecology and Management, 361, 81-89. |
[91] | Xu JM, Lv JX, Bao FC, Evans R, Downes G, Huang RF, Zhao YK (2012). Cellulose microfibril angle variation in Picea crassifolia tree rings improves climate signals on the Tibetan Plateau.Trees, 26, 1007-1016. |
[92] | Yang B, Qin C, Wang J, He M, Melvin TM, Osborn TJ, Briffa KR (2014). A 3,500-year tree-ring record of annual pre- cipitation on the northeastern Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 111, 2903-2908. |
[93] | Yasue K, Funada R, Kobayashi O, Ohtani J (2000). The effects of tracheid dimensions on variations in maximum density of Picea glehnii and relationships to climatic factors.Trees, 14, 223-229. |
[94] | Zimrnennann M (1983). Xylem Structure and the Ascent of Sap. Springer, Berlin, Germany. |
[1] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[2] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[3] | 何敏, 许秋月, 夏允, 杨柳明, 范跃新, 杨玉盛. 植物磷获取机制及其对全球变化的响应[J]. 植物生态学报, 2023, 47(3): 291-305. |
[4] | 韩旭丽, 赵明水, 王忠媛, 叶琳峰, 陆世通, 陈森, 李彦, 谢江波. 三种裸子植物木质部结构与功能对不同生境的适应[J]. 植物生态学报, 2022, 46(4): 440-450. |
[5] | 方菁, 叶琳峰, 陈森, 陆世通, 潘天天, 谢江波, 李彦, 王忠媛. 自然和人工生境被子植物枝木质部结构与功能差异[J]. 植物生态学报, 2021, 45(6): 650-658. |
[6] | 秦文超, 陶至彬, 王永健, 刘艳杰, 黄伟. 资源脉冲对外来植物入侵影响的研究进展和展望[J]. 植物生态学报, 2021, 45(6): 573-582. |
[7] | 张宏锦, 王娓. 生态系统多功能性对全球变化的响应: 进展、问题与展望[J]. 植物生态学报, 2021, 45(10): 1112-1126. |
[8] | 井新, 贺金生. 生物多样性与生态系统多功能性和多服务性的关系: 回顾与展望[J]. 植物生态学报, 2021, 45(10): 1094-1111. |
[9] | 王晴晴, 高燕, 王嵘. 全球变化对食物网结构影响机制的研究进展[J]. 植物生态学报, 2021, 45(10): 1064-1074. |
[10] | 邢鹏, 李彪, 韩一萱, 顾秋锦, 万洪秀. 淡水生态系统对全球变化的响应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 565-574. |
[11] | 张扬建, 朱军涛, 沈若楠, 王荔. 放牧对草地生态系统影响的研究进展[J]. 植物生态学报, 2020, 44(5): 553-564. |
[12] | 彭书时, 岳超, 常锦峰. 陆地生物圈模型的发展与应用[J]. 植物生态学报, 2020, 44(4): 436-448. |
[13] | 宋慧清, 倪鸣源, 朱师丹. 乔木与木质藤本的水力与光合性状的差异: 以热带森林崖豆藤属和买麻藤属为例[J]. 植物生态学报, 2020, 44(3): 192-204. |
[14] | 宋文琦, 朱良军, 张旭, 王晓春, 张远东. 青藏高原东北部不同降水梯度下高山林线祁连圆柏径向生长与气候关系的比较[J]. 植物生态学报, 2018, 42(1): 66-77. |
[15] | 方欧娅, 贾恒锋, 邱红岩, 任海保. 青海省同德县乔木状甘蒙柽柳的年龄及其生长对环境的响应[J]. 植物生态学报, 2017, 41(7): 738-748. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19