植物生态学报 ›› 2018, Vol. 42 ›› Issue (1): 66-77.DOI: 10.17521/cjpe.2017.0251
所属专题: 青藏高原植物生态学:种群生态学
宋文琦1,朱良军1,张旭1,王晓春1,*(),张远东2,*(
)
出版日期:
2018-01-20
发布日期:
2018-01-18
通讯作者:
王晓春 ORCID: 0000-0002-8897-5077, 张远东
基金资助:
SONG Wen-Qi1,ZHU Liang-Jun1,ZHANG Xu1,WANG Xiao-Chun1,*(),ZHANG Yuan-Dong2,*(
)
Online:
2018-01-20
Published:
2018-01-18
Contact:
WANG Xiao-Chun ORCID: 0000-0002-8897-5077, ZHANG Yuan-Dong
Supported by:
摘要:
为了了解青藏高原东北部不同降水梯度下, 高山林线处的树木径向生长与气候关系是否存在差异, 在青海东北部从西北到东南沿降水梯度设置3个高山林线采样点: 乌兰县哈里哈图国家森林公园(HL, 年降水量217 mm)、都兰县曲什岗(QS, 281 mm)和同德县河北林场(HB, 470 mm), 运用树轮年轮学方法分析林线优势种祁连圆柏(Sabina przewalskii)的径向生长-气候关系随降水梯度的变化规律。结果表明: 不同降水梯度下, 降水对祁连圆柏径向生长的限制作用差异不明显, 但温度对祁连圆柏径向生长的影响存在显著差异。在低降水区域(HL), 冬、夏季最低气温主要限制祁连圆柏径向生长, 并且在不同气候特征年中无明显变化; 在中降水区域(QS), 祁连圆柏的径向生长明显受冬季最低气温影响, 与低降水区域相比, 春、夏季最低气温对祁连圆柏径向生长的限制作用减弱, 并且主要限制因子在不同气候特征年存在显著变化; 在高降水区域(HB), 冬、夏季最低气温对祁连圆柏径向生长的限制作用不显著, 而春、秋季最低气温对祁连圆柏径向生长的抑制作用显著增加, 并且主要集中在高温年和干旱年。该研究结果并未支持干旱(湿润)区高山林线树木径向生长主要由水分(温度)限制的假说, 但是林线处降水量会影响树木生长与温度的关系。随着青藏高原东北部暖湿化加剧, 不同地区林线处树木生长的气候限制因子可能存在复杂化趋势。
宋文琦, 朱良军, 张旭, 王晓春, 张远东. 青藏高原东北部不同降水梯度下高山林线祁连圆柏径向生长与气候关系的比较. 植物生态学报, 2018, 42(1): 66-77. DOI: 10.17521/cjpe.2017.0251
SONG Wen-Qi, ZHU Liang-Jun, ZHANG Xu, WANG Xiao-Chun, ZHANG Yuan-Dong. Comparison of growth-climate relationship of Sabina przewalskii at different timberlines along a precipitation gradient in the northeast Qinghai-Xizang Plateau, China. Chinese Journal of Plant Ecology, 2018, 42(1): 66-77. DOI: 10.17521/cjpe.2017.0251
图1 研究区域采样点、气象站及格点气象站分布位置。HB, 河北林场; HL, 哈里哈图国家森林公园; QS, 曲什岗地区。Prec, 降水量。
Fig. 1 Location of the sampling sites, weather stations and grid weather stations. HB, Hebei Forest Farm; HL, Halihatu National Forest Park; QS, Qushigang; Prec, precipitation.
采样点 Sampling sites | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) | 坡向 Aspect | 坡度 Slope (°) | 年降水量 Annual precipitation (mm) | 年平均气温 Annual mean air temperature (°C) |
---|---|---|---|---|---|---|---|
哈里哈图 Halihatu (HL) | 37.05° | 98.67° | 3β972 | 西 West | 25 | 217 | -2.0 |
曲什岗 Qushi hillock (QS) | 36.03° | 98.19° | 4β024 | 东 East | 20 | 281 | -1.8 |
河北林场 Hebei forest farm (HB) | 34.76° | 100.79° | 3β791 | 西南 Southwest | 21 | 470 | -1.2 |
表1 祁连圆柏标准年表采样点信息
Table 1 The information of the sampling sites for tree-ring standard chronologies of Sabina przewalskii
采样点 Sampling sites | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Altitude (m) | 坡向 Aspect | 坡度 Slope (°) | 年降水量 Annual precipitation (mm) | 年平均气温 Annual mean air temperature (°C) |
---|---|---|---|---|---|---|---|
哈里哈图 Halihatu (HL) | 37.05° | 98.67° | 3β972 | 西 West | 25 | 217 | -2.0 |
曲什岗 Qushi hillock (QS) | 36.03° | 98.19° | 4β024 | 东 East | 20 | 281 | -1.8 |
河北林场 Hebei forest farm (HB) | 34.76° | 100.79° | 3β791 | 西南 Southwest | 21 | 470 | -1.2 |
图2 各采样点1955-2015年各月和各季节平均气温、最高气温、最低气温和降水量。HB, 河北林场; HL, 哈里哈图国家森林公园; QS, 曲什岗地区。pWin, 上年冬季; Spr, 当年春季; Sum, 当年夏季; Aut, 当年秋季。
Fig. 2 Monthly and seasonally mean, maximum, and minimum air temperatures, and precipitation at each sampling site, 1955-2015. HB, Hebei Forest Farm; HL, Halihatu National Forest Park; QS, Qushigang. pWin, last winter; Spr, current spring; Sum, current summer; Aut, current autumn.
图3 林线祁连圆柏树木年轮指数及各年表样本量。左图为低龄年表, 右图为高龄年表。HB, 河北林场; HL, 哈里哈图国家森林公园; QS, 曲什岗地区。
Fig. 3 Tree-ring index of Sabina przewalskii in timberline and sampling depth of each chronology. The left and right figures indicate the tree-ring index of young- and old-growth S. przewalskii respectively. HB, Hebei Forest Farm; HL, Halihatu National Forest Park; QS, Qushigang.
采样点 Sampling site | 时间跨度 Time span | 标准年表特征值 Eigenvalue of standard chronology | 公共区间统计量 Common interval analysis | |||||
---|---|---|---|---|---|---|---|---|
MS | SD | MC | AC | SNR | EPS | VF | ||
HL (高龄) HL (Old-growth) | 1β112-2β015 | 0.17 | 0.22 | 0.29 | 0.45 | 27.1 | 0.96 | 30.7 |
HL (低龄) HL (Young-growth) | 1β845-2β015 | 0.13 | 0.22 | 0.51 | 0.76 | 19.6 | 0.95 | 56.6 |
QS (高龄) QS (Old-growth) | 1β275-2β015 | 0.14 | 0.18 | 0.20 | 0.50 | 15.2 | 0.94 | 25.0 |
QS (低龄) QS (Young-growth) | 1β825-2β015 | 0.23 | 0.29 | 0.26 | 0.52 | 1.70 | 0.63 | 51.7 |
HB (低龄) HB (Young-growth) | 1β841-2β015 | 0.24 | 0.27 | 0.29 | 0.48 | 17.6 | 0.95 | 32.7 |
表2 林线祁连圆柏标准年表的主要统计特征
Table 2 Statistics of the standard chronologies of Sabina przewalskii
采样点 Sampling site | 时间跨度 Time span | 标准年表特征值 Eigenvalue of standard chronology | 公共区间统计量 Common interval analysis | |||||
---|---|---|---|---|---|---|---|---|
MS | SD | MC | AC | SNR | EPS | VF | ||
HL (高龄) HL (Old-growth) | 1β112-2β015 | 0.17 | 0.22 | 0.29 | 0.45 | 27.1 | 0.96 | 30.7 |
HL (低龄) HL (Young-growth) | 1β845-2β015 | 0.13 | 0.22 | 0.51 | 0.76 | 19.6 | 0.95 | 56.6 |
QS (高龄) QS (Old-growth) | 1β275-2β015 | 0.14 | 0.18 | 0.20 | 0.50 | 15.2 | 0.94 | 25.0 |
QS (低龄) QS (Young-growth) | 1β825-2β015 | 0.23 | 0.29 | 0.26 | 0.52 | 1.70 | 0.63 | 51.7 |
HB (低龄) HB (Young-growth) | 1β841-2β015 | 0.24 | 0.27 | 0.29 | 0.48 | 17.6 | 0.95 | 32.7 |
图4 不同降水强度林线祁连圆柏径向生长与季节气候数据的相关性。红色表示正值; 蓝色表示负值; 底色阴影为显著相关(p < 0.05)。HB, 河北林场; HL, 哈里哈图国家森林公园; QS, 曲什岗地区。
Fig. 4 Correlation coefficients between the radial growth of Qilian juniper and seasonal climatic data along the precipitation gradient. The red rectangles denote positive correlations. The blue rectangles denote negative correlations. The shaded background denotes significance at p < 0.05 level of Pearson correlation. HB, Hebei Forest Farm; HL, Halihatu National Forest Park; QS, Qushigang.
图5 沿降水梯度祁连圆柏径向生长与不同气温、不同降水年季节气候因子的相关性。红色表示正值; 蓝色表示负值; 底色阴影为显著相关(p < 0.05); GHT, 生长季高温年; GLT, 生长季低温年; PHT, 生长季前高温年; PLT, 生长季前低温年。GD, 生长季干旱年; GW, 生长季湿润年; PD, 生长季前干旱年; PW, 生长季前湿润年。
Fig. 5 Correlation coefficients between the radial growth of Qilian juniper and seasonal climate data in different temperature and precipitation years along the precipitation gradient. The red rectangles denote the positive value. The blue rectangles denote the negative value. The shaded background denotes significance at p < 0.05 level of Pearson correlation. GHT, year of growing-season high temperature; GLT, year of growing-season low temperature; PHT, year of pre-season high temperature; PLT, year of pre-season low temperature. GD, year of drought growing season; GW, year of wet growing season; PD, year of drought pre-season; PW, year of wet pre-season. HB, Hebei Forest Farm; HL, Halihatu National Forest Park; QS, Qushigang.
[1] |
Allen SK, Plattner GK, Nauels A, Xia Y, Stocker TF ( 2013). Climate change 2013: The physical science basis. An overview of the Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Computational Geometry, 18, 95-123.
DOI URL |
[2] |
Carnwath GC, Nelson CR, Zhou S ( 2016). The effect of competition on responses to drought and interannual climate variability of a dominant conifer tree of western North America. Journal of Ecology, 104, 1421-1431.
DOI URL |
[3] |
Cavin L, Jump AS ( 2017). Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Global Change Biology, 23, 362-379.
DOI URL PMID |
[4] | Cook ER, Holmes RL ( 1984). Program ARSTAN User Manual. Laboratory of Tree Ring Research, University of Arizona, Tucson. |
[5] | Cui HT, Liu HY, Dai JH ( 2005). Mountain Ecology and Alpine Timberline Research. Science Press, Beijing. |
[ 崔海亭, 刘鸿雁, 戴君虎 ( 2005). 山地生态学与高山林线研究. 科学出版社, 北京.] | |
[6] |
Dodson R, Marks D ( 1997). Daily air temperature interpolated at high spatial resolution over a large mountainous region. Climate Research, 8, 1-20.
DOI URL |
[7] | Editorial Board of Forest in China ( 1999). Forest in China. China Forestry Publishing House, Beijing. 1108-1115. |
[ 中国森林编辑委员会 ( 1999). 中国森林. 中国林业出版社, 北京. 1108-1115.] | |
[8] |
Elliott GP, Baker WL ( 2004). Quaking aspen (Populus tremuloides Michx.) at treeline: A century of change in the San Juan Mountains, Colorado, USA. Journal of Biogeography, 31, 733-745.
DOI URL |
[9] |
Feurdean A, Galka M, Tantau I, Geanta A, Hutchinson SM, Hickler T ( 2016). Tree and timberline shifts in the northern Romanian Carpathians during the Holocene and the responses to environmental changes. Quaternary Science Reviews, 134, 100-113.
DOI URL |
[10] |
Gao L, Gou X, Deng Y, Liu W, Yang M, Zhao Z ( 2012). Climate-growth analysis of Qilian juniper across an altitudinal gradient in the central Qilian Mountains, northwest China. Trees, 27, 379-388.
DOI URL |
[11] |
Grace J, Norton DA ( 1990). Climate and growth of Pinus sylvestris at its upper altitudinal limit in Scotland: Evidence from tree growth-rings. Journal of Ecology, 78, 601-610.
DOI URL |
[12] |
Harsch MA, Hulme PE, McGlone MS, Duncan RP ( 2009). Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters, 12, 1040-1049.
DOI URL PMID |
[13] |
Holtmeier FK, Broll G ( 2005). Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology and Biogeography, 14, 395-410.
DOI URL |
[14] | Hu HR, Liang L ( 2013). Temporal and spatial variations of rainfall at the east of Qinghai-Tibet Plateau in last 50 years. Plateau and Mountain Meteorology Research, 33(4), 1-7, 15. |
[ 胡豪然, 梁玲 ( 2013). 近50年青藏高原东部降水的时空变化特征. 高原山地气象研究, 33(4), 1-7, 15.] | |
[15] |
Lavergne A, Daux V, Villalba R, Barichivich J ( 2015). Temporal changes in climatic limitation of tree-growth at upper treeline forests: Contrasted responses along the west-to- east humidity gradient in Northern Patagonia. Dendrochronologia, 36, 49-59.
DOI URL |
[16] | Leuschner C, Schulte M ( 1991). Microclimatological investigations in the tropical alpine scrub of Maui, Hawaii: Evidence for a drought-induced alpine timberline. Pacific Science, 45, 152-168. |
[17] | Li B, Yang C, Lin P ( 2000). Ecology. Higher Education Press, Beijing. |
[ 李博, 杨持, 林鹏 ( 2000). 生态学. 高等教育出版社, 北京.] | |
[18] |
Liang E, Dawadi B, Pederson N, Eckstein D ( 2014). Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature? Ecology, 95, 2453-2465.
DOI URL |
[19] | Liang E, Wang Y, Xu Y, Liu B, Shao X ( 2010). Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau. Trees, 24, 363-373. |
[20] |
Liu GF, Lu HL ( 2010). Basic characteristics of major climatic factors on Qinghai-Tibet Plateau in recent 45 years. Geography Research, 29, 2281-2288.
DOI URL |
[ 刘桂芳, 卢鹤立 ( 2010). 1961-2005年来青藏高原主要气候因子的基本特征. 地理研究, 29, 2281-2288.]
DOI URL |
|
[21] |
Lloyd AH, Fastie CL ( 2002). Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Climatic Change, 52, 481-509.
DOI URL |
[22] |
Lloyd AH, Rupp TS, Fastie CL, Starfield AM ( 2002). Patterns and dynamics of treeline advance on the Seward Peninsula, Alaska. Journal of Geophysical Research, 108, 8161. DOI: 10.1029/2001JD000852.
DOI URL |
[23] |
Lü L, Zhang Q ( 2013). Tree-ring based summer minimum temperature reconstruction for the southern edge of the Qinghai-Tibetan Plateau, China. Climate Research, 56, 91-101.
DOI URL |
[24] |
Macalady AK, Bugmann H ( 2014). Growth-mortality relationships in pinon pine (Pinus edulis) during severe droughts of the past century: Shifting processes in space and time. PLOS ONE, 9, e92770. DOI: 10.1371/journal.pone.? 0092770.
DOI URL PMID |
[25] |
Minder JR, Mote PW, Lundquist JD ( 2010). Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. Journal of Geophysical Research, 115, 1307-1314.
DOI URL |
[26] |
Morales JM, Haydon DT, Frair J, Holsinger KE, Fryxell JM ( 2004). Extracting more out of relocation ata: Building movement models as mixtures of random walks. Ecology, 85, 2436-2445.
DOI URL |
[27] |
Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW ( 2003). Climate- driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560-1563.
DOI URL PMID |
[28] | Pan RC, Wang XJ, Li NH ( 2012). Plant Physiology. Higher Education Press, Beijing. |
[ 潘瑞炽, 王小菁, 李娘辉 ( 2012). 植物生理学. 高等教育出版社, 北京.] | |
[29] |
Peng JF, Gou XH, Chen FH, Fang KY, Zhang F ( 2010). Influences of slope aspect on the growth of Sabina przewalskii along an elevation gradient in China’s Qinghai Province. Chinese Journal of Plant Ecology, 34, 517-525.
DOI URL |
[ 彭剑峰, 勾晓华, 陈发虎, 方克艳, 张芬 ( 2010). 坡向对海拔梯度上祁连圆柏树木生长的影响. 植物生态学报, 34, 517-525.]
DOI URL |
|
[30] |
Peng JF, Gou XH, Chen FH, Li JB, Liu P, Zhang Y, Fang KY ( 2008). Difference in tree growth responses to climate at the upper treeline: Qilian juniper in the Anyemaqen Mountains. Journal of Integrative Plant Biology, 50, 982-990.
DOI URL PMID |
[31] |
Piper FI, Vi?egla B, Linares JC, Camarero JJ, Cavieres LA, Fajardo A ( 2016). Mediterranean and temperate treelines are controlled by different environmental drivers. Journal of Ecology, 104, 691-702.
DOI URL |
[32] |
Qi Z, Liu H, Wu X, Hao Q ( 2015). Climate-driven speedup of alpine treeline forest growth in the Tianshan Mountains, Northwestern China. Global Change Biology, 21, 816-826.
DOI URL PMID |
[33] |
Ren P, Rossi S, Gricar J, Liang E, Cufar K ( 2015). Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau? Annals of Botany, 115, 629-639.
DOI URL PMID |
[34] |
Rollinson CR, Kaye MW, Canham CD ( 2016). Interspecific variation in growth responses to climate and competition of five eastern tree species. Ecology, 97, 1003-1011.
DOI URL PMID |
[35] |
Shi C, Masson-Delmotte V, Daux V, Li Z, Carre M, Moore JC ( 2014). Unprecedented recent warming rate and temperature variability over the east Tibetan Plateau inferred from alpine treeline dendrochronology. Climate Dynamics, 45, 1367-1380.
DOI URL |
[36] |
Smith WK, Germino MJ, Johnson DM, Reinhardt K ( 2009). The altitude of alpine treeline: A bellwether of climate change effects. The Botanical Review, 75, 163-190.
DOI URL |
[37] |
Solberg B, Hofgaard A, Hytteborn H ( 2016). Shifts in radial growth responses of coastal Picea abies induced by climatic change during the 20th Century, central Norway. Ecoscience, 9, 79-88.
DOI URL |
[38] | Stokes MA, Smiley TL ( 1968). An Introduction to Tree-ring Dating. University of Arizona Press, Tucson, USA. |
[39] |
Sutherland WJ, Freckleton RP, Godfray HCJ, Beissinger SR, Benton T, Cameron DD, Carmel Y, Coomes DA, Coulson T, Emmerson MC, Hails RS, Hays GC, Hodgson DJ, Hutchings MJ, Johnson D, Jones JPG, Keeling MJ, Kokko H, Kunin WE, Lambin X, Lewis OT, Malhi Y, Mieszkowska N, Milner-Gulland EJ, Norris K, Phillimore AB, Purves DW, Reid JM, Reuman DC, Thompson K, Travis JMJ, Turnbull LA, Wardle DA, Wiegand T, Gibson D ( 2013). Identification of 100 fundamental ecological questions. Journal of Ecology, 101, 58-67.
DOI URL |
[40] |
Takahashi K, Azuma H, Yasue K ( 2003). Effects of climate on the radial growth of tree species in the upper and lower distribution limits of an altitudinal ecotone on Mount Norikura, central Japan. Ecological Research, 18, 549-558.
DOI URL |
[41] |
Toromani E, Sanxhaku M, Pasho E ( 2011). Growth responses to climate and drought in silver fir (Abies alba) along an altitudinal gradient in southern Kosovo. Canadian Journal of Forest Research, 41, 1795-1807.
DOI URL |
[42] |
Vicenteserrano SM, Begueria S, Lorenzolacruz J, Camarero JJ, Lopezmoreno JI, Azorinmolina C, Revuelto J, Morantejeda E, Sanchezlorenzo A ( 2012). Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interactions, 16, 1-27.
DOI URL |
[43] | Wang QS, Wang XP, Luo JC, Feng ZW, Li JT, Ma YH, Su YH ( 1997). Ecotones and biodiversity. Chinese Biodiversity, 2, 47-52. |
[ 王庆锁, 王襄平, 罗菊春, 冯宗炜, 李经天, 马玉华, 苏玉华 ( 1997). 生态交错带与生物多样性. 生物多样性, 2, 47-52.] | |
[44] |
Wang T, Peng S, Lin X, Chang J ( 2013). Declining snow cover may affect spring phenological trend on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 110, 2854-2855.
DOI URL PMID |
[45] |
Wang W, Liu X, Shao X, Qin D, Xu G, Wang B, Zeng X, Wu G, Zhang X ( 2015). Differential response of Qilian juniper radial growth to climate variations in the middle of Qilian Mountains and the northeastern Qaidam Basin. Climatic Change, 133, 237-251.
DOI URL |
[46] |
Wang XC, Zhou XF, Li SJ, Sun L, Mu CC ( 2004). The effect of climate warming on the structure characteristic of the timberline in Laotudingzi Mountain. Acta Ecologica Sinica, 11, 2412-2421.
DOI URL |
[ 王晓春, 周晓峰, 李淑娟, 孙龙, 牟长城 ( 2004). 气候变暖对老秃顶子林线结构特征的影响. 生态学报, 11, 2412-2421.]
DOI URL |
|
[47] |
Wilmking M, Myers-Smith I ( 2008). Changing climate sensitivity of black spruce (Picea mariana Mill.) in a peatlandforest landscape in Interior Alaska. Dendrochronologia, 25, 167-175.
DOI URL |
[48] |
Yang B, He M, Melvin TM, Zhao Y, Briffa KR ( 2013). Climate control on tree growth at the upper and lower treelines: A case study in the Qilian Mountains, Tibetan Plateau. PLOS ONE, 8, e69065. DOI: 10.1371/journal.pone.0069065.
DOI URL PMID |
[49] |
Yang B, He M, Shishov V, Tychkov I, Vaganov E, Rossi S, Ljungqvist FC, Brauning A, Griessinger J ( 2017). New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proceedings of the National Academy of Sciences of the United States of America, 114, 6966-6971.
DOI URL PMID |
[50] |
Yin ZY, Li M, Zhang Y, Shao X ( 2016). Growth climate relationships along an elevation gradient on a southeast- facing mountain slope in the semi-arid eastern Qaidam Basin, northeastern Tibetan Plateau. Trees, 30, 1095-1109.
DOI URL |
[51] |
Zhang H, Shao X, Zhang Y ( 2015 a). Which climatic factors limit radial growth of Qilian juniper at the upper treeline on the northeastern Tibetan Plateau? Journal of Geographical Sciences, 25, 1173-1182.
DOI URL |
[52] | Zhang J, Gou X, Zhang Y, Lu M, Xu X, Zhang F, Liu W, Gao L ( 2015 b). Forward modeling analyses of Qilian Juniper (Sabina przewalskii) growth in response to climate factors in different regions of the Qilian Mountains, northwestern China. Trees, 30, 175-188. |
[53] |
Zhang Y, Shao X, Yin Z, Wang Y ( 2014). Millennial minimum temperature variations in the Qilian Mountains, China: Evidence from tree rings. Climate of the Past, 10, 1763-1778.
DOI URL |
[54] |
Zhang Y, Tian Q, Guillet S, Stoffel M ( 2016). 500-yr. precipitation variability in Southern Taihang Mountains, China, and its linkages to ENSO and PDO. Climatic Change, 144, 419-432.
DOI URL |
[55] |
Zhang Y, Wilmking M ( 2010). Divergent growth responses and increasing temperature limitation of Qinghai spruce growth along an elevation gradient at the northeast Tibet Plateau. Forest Ecology and Management, 260, 1076-1082.
DOI URL |
[56] |
Zheng YH, Liang EY, Zhu HF, Shao XM ( 2008). Response of radial growth of Qilian juniper to climatic change under different habitats. Journal of Beijing Forestry University, 30(3), 7-12.
DOI URL |
[ 郑永宏, 梁尔源, 朱海峰, 邵雪梅 ( 2008). 不同生境祁连圆柏径向生长对气候变化的响应. 北京林业大学学报, 30(3), 7-12.]
DOI URL |
|
[57] |
Zhu H, Zheng Y, Shao X, Xu Y, Liang E ( 2008). Millennial temperature reconstruction based on tree-ring widths of Qilian juniper from Wulan, Qinghai Province, China. Chinese Science Bulletin, 53, 3914-3920.
DOI URL |
[58] |
Zimmermann J, Hauck M, Dulamsuren C, Leuschner C ( 2015). Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in central European mixed forests. Ecosystems, 18, 560-572.
DOI URL |
[1] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[2] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[3] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[4] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[5] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[6] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[7] | 金伊丽, 王皓言, 魏临风, 侯颖, 胡景, 吴铠, 夏昊钧, 夏洁, 周伯睿, 李凯, 倪健. 青藏高原植物群落样方数据集[J]. 植物生态学报, 2022, 46(7): 846-854. |
[8] | 卢晶, 马宗祺, 高鹏斐, 樊宝丽, 孙坤. 祁连山区演替先锋物种西藏沙棘的种群结构及动态对海拔梯度的响应[J]. 植物生态学报, 2022, 46(5): 569-579. |
[9] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[10] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[11] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[12] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[13] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[14] | 聂秀青, 王冬, 周国英, 熊丰, 杜岩功. 三江源地区高寒湿地土壤微生物生物量碳氮磷及其化学计量特征[J]. 植物生态学报, 2021, 45(9): 996-1005. |
[15] | 陈哲, 汪浩, 王金洲, 石慧瑾, 刘慧颖, 贺金生. 基于物候相机归一化植被指数估算高寒草地植物地上生物量的季节动态[J]. 植物生态学报, 2021, 45(5): 487-495. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19