植物生态学报 ›› 2018, Vol. 42 ›› Issue (1): 78-85.DOI: 10.17521/cjpe.2017.0253
所属专题: 生态化学计量; 青藏高原植物生态学:生态系统生态学
孙小妹1,陈菁菁2,李金霞1,李良1,韩国君1,陈年来1,*()
出版日期:
2018-01-20
发布日期:
2018-03-08
通讯作者:
陈年来
基金资助:
SUN Xiao-Mei1,CHEN Jing-Jing2,LI Jin-Xia1,LI Liang1,HAN Guo-Jun1,CHEN Nian-Lai1,*()
Online:
2018-01-20
Published:
2018-03-08
Contact:
Nian-Lai CHEN
Supported by:
摘要:
为了探明氮(N)限制的植物群落中物种水平和功能群水平的碳(C)、N、磷(P)含量以及C:N:P对P添加的响应是否一致,明确P添加对群落物种构成改变的内在机制。以青藏高原高寒草甸为研究对象, 通过P添加试验, 研究了功能群水平和物种水平生态化学计量比对P添加的响应, 以及P添加对物种水平的优势度和功能群水平生物量的影响。结果表明: 在青藏高原高寒草甸连续5年添加P显著改变了植物的C、N、P含量以及C:N:P, 且在物种水平和功能群水平(不含典型物种)的响应规律基本一致。在禾本科、莎草科和杂类草功能群(不含典型物种)和相应物种水平上P添加对C含量影响不显著。P添加显著增加了禾本科、莎草科、豆科和杂类草4个功能群(不含典型物种)和相应物种水平的植物P含量, 降低了C:P和N:P。禾本科和莎草科的N含量和C:N对P添加在物种水平和功能群水平上(不含典型物种)的响应规律一致, 表现为N含量显著降低, C:N显著增加; P添加使豆科物种水平上N含量显著增加而C:N显著降低, 但在功能群水平上(不含典型物种)无显著作用; 杂类草的N含量和C:N对P添加在物种水平和功能群水平上(不含典型物种)的响应规律均不一致。在N限制的生境中添加P, 禾本科物种在群落中逐渐占据优势跟其增高的N、P利用效率相关, 而杂类草由于逐渐降低的N和P利用效率使其生物量在群落中所占的比重逐渐下降。
孙小妹, 陈菁菁, 李金霞, 李良, 韩国君, 陈年来. 高寒草甸植物化学计量比对磷添加的分层响应. 植物生态学报, 2018, 42(1): 78-85. DOI: 10.17521/cjpe.2017.0253
SUN Xiao-Mei, CHEN Jing-Jing, LI Jin-Xia, LI Liang, HAN Guo-Jun, CHEN Nian-Lai. Hierarchical responses of plant stoichiometry to phosphorus addition in an alpine meadow community. Chinese Journal of Plant Ecology, 2018, 42(1): 78-85. DOI: 10.17521/cjpe.2017.0253
图1 P添加对典型种物种优势度和各功能群生物量(平均值±标准误差, n = 3)的影响。C、P5、P10、P15分别指P添加量为0、5、10、15 g·m-2·a-1。GR, 禾本科; SE, 莎草科; LE, 豆科; FO, 杂类草; E.n, 垂穗披碱草; K.h, 矮嵩草; O.o, 黄花棘豆; T.l, 川甘蒲公英; G.p, 甘青老鹳草。不同小写字母表示处理间差异显著(p < 0.05)。
Fig. 1 Effects of P addition on species dominance of exemplary species and biomass of each functional group (mean ± SE, n = 3). C, P5, P10, P15, nutrient addition 0, 5, 10, 15 g·m-2·a-1. GR, grasses; SE, sedges; LE, legumes; FO, forbs; E.n, Elymus nutans; K.h, Kobresia humili; O.o, Oxytropis ochoocephala; T.l, Taraxacum lugubre; G.p, Geranium pylzowianum. Different lowercase letters indicate significant differences between treatments (p < 0.05).
图2 P添加对物种水平和功能群水平C、N、P含量的影响(平均值±标准误差, n = 3)。Duncan’s多重比较: ***, p < 0.001; **, p < 0.01; *, p < 0.05。C、P5、P10、P15分别指P添加量为0、5、10、15 g·m-2·a-1。GR, 禾本科; SE, 莎草科; LE, 豆科; FO, 杂类草; E.n, 垂穗披碱草; K.h, 矮嵩草; O.o, 黄花棘豆; T.l, 川甘蒲公英; G.p, 甘青老鹳草。
Fig. 2 Effects of P addition on C, N and P concentration at exemplar species and functional group levels (mean ± SE, n = 3). ***, p < 0.001; **, p < 0.01; *, p < 0.05 among treatments following Duncan’s multiple range tests. C, P5, P10, P15, nutrient addition 0, 5, 10, 15 g·m-2·a-1. GR, grasses; SE, sedges; LE, legumes; FO, forbs; E.n, Elymus nutans; K.h, Kobresia humili; O.o, Oxytropis ochoocephala; T.l, Taraxacum lugubre; G.p, Geranium pylzowianum.
图3 P添加对物种水平和功能群水平计量比特征的影响(平均值±标准误差, n = 3)。Duncan’s多重比较: ***, p < 0.001; **, p < 0.01; *, p < 0.05。C、P5、P10、P15分别指P添加量为0、5、10、15 g·m-2·a-1。GR, 禾本科; SE, 莎草科; LE, 豆科; FO, 杂类草; E.n, 垂穗披碱草; K.h, 矮嵩草; O.o, 黄花棘豆; T.l, 川甘蒲公英; G.p, 甘青老鹳草。
Fig. 3 Effects of P addition on C:N:P stoichiometric characters at exemplar species and functional groups-levels (mean ± SE, n = 3). ***, p < 0.001; **, p < 0.01; *, p < 0.05 among treatments following Duncan’s multiple range tests. C, P5, P10, P15, nutrient addition 0, 5, 10, 15 g·m-2·a-1. GR, grasses; SE, sedges; LE, legumes; FO, forbs; E.n, Elymus nutans; K.h, Kobresia humili; O.o, Oxytropis ochoocephala; T.l, Taraxacum lugubre; G.p, Geranium pylzowianum.
[1] | Chen LY, Zhao J, Zhang RY, Wang SM, Wang G ( 2010). Effects of nitrogen and phosphorus fertilization on legumes in Potentilla fruticosa shrub in alpine meadow. Ecological Science, 29, 512-517. |
[ 陈凌云, 赵君, 张仁懿, 王绍美, 王刚 ( 2010). 氮磷复合肥添加对高寒草甸金露梅灌丛中豆科植物的影响. 生态科学, 29, 512-517.] | |
[2] |
Chen X, Liu WY, Song L, Li S, Wu Y, Shi XM ( 2016). Physiological Responses of two epiphytic bryophytes to nitrogen, phosphorus and sulfur addition in a subtropical montane cloud forest. PLOS ONE, 11, e0161492. DOI: 10.1371/journal.pone.0161492.
DOI URL PMID |
[3] |
Danger M, Daufresne T, Lucas F, Pissard S, Lacroix G ( 2008). Does Liebig’s law of the minimum scale up from species to communities? Oikos, 117, 1741-1751.
DOI URL |
[4] |
de Long JR, Sundqvist MK, Gundale MJ, Giesler R, Wardle DA ( 2016). Effects of elevation and nitrogen and phosphorus fertilization on plant defence compounds in subarctic tundra heath vegetation. Functional Ecology, 30, 314-325.
DOI URL |
[5] |
Dybzinski R, Fargione JE, Zak DR, Fornara D, Tilman D ( 2008). Soil fertility increases with plant species diversity in a long-term biodiversity experiment. Oecologia, 158, 85-93.
DOI URL |
[6] |
Evans JR ( 1989). Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78, 9-19.
DOI URL PMID |
[7] | Feller IC, Lovelock CE, Mckee KL ( 2007). Nutrient addition differentially affects ecological processes of Avicennia germinans in nitrogen versus phosphorus limited mangrove ecosystems. Ecosystems, 10, 347-359. |
[8] |
Güsewell S ( 2004). N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164, 243-266.
DOI URL |
[9] |
Han X, Sistla SA, Zhang Y, Lu XT, Han XG ( 2014). Hierarchical responses of plant stoichiometry to nitrogen deposition and mowing in a temperate steppe. Plant and Soil, 382, 175-187.
DOI URL |
[10] |
Heerwaarden LMV, Toet S, Aerts R ( 2003). Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. Journal of Ecology, 91, 1060-1070.
DOI URL |
[11] |
Hong JT, Wang XD, Wu JB ( 2015). Effects of soil fertility on the N:P stoichiometry of herbaceous plants on a nutrient-?limited alpine steppe on the northern Tibetan Plateau. Plant and Soil, 391, 179-194.
DOI URL |
[12] |
Iversen CM, Bridgham SD, Kellogg LE ( 2010). Scaling plant nitrogen use and uptake efficiencies in response to nutrient addition in peatlands. Ecology, 91, 693-707.
DOI URL PMID |
[13] |
Koerner SE, Avolio ML, La Pierre KJ, Wilcox KR, Smith MD, Collins SL ( 2016). Nutrient additions cause divergence of tallgrass prairie plant communities resulting in loss of ecosystem stability. Journal of Ecology, 104, 1478-1487.
DOI URL |
[14] |
Li L, Gao XP, Gui DW, Liu B, Zhang B, Li XY ( 2017). Stoichiometry in aboveground and fine roots of Seriphidium korovinii in desert grassland in response to artificial nitrogen addition. Journal of Plant Research, 130, 1-9.
DOI URL PMID |
[15] |
Li LJ, Zeng DH, Yu ZY, Fan ZP, Mao R, Peri PL ( 2011). Foliar N/P ratio and nutrient limitation to vegetation growth on Keerqin sandy grassland of Northeast China. Grass & Forage Science, 66, 237-242.
DOI URL |
[16] |
Luo YJ, Qin G, Du GZ ( 2006). Importance of assemblage-level thinning: A field experiment in an alpine meadow on the Tibet Plateau. Journal of Vegetation Science, 17, 417-424.
DOI URL |
[17] |
Mao R, Chen HM, Zhang XH, Shi FX, Song CC ( 2016). Effects of P addition on plant C:N:P stoichiometry in an N-limited temperate wetland of Northeast China. Science of the Total Environment, 559, 1-6.
DOI URL PMID |
[18] |
Mayor JR, Wright SJ, Turner BL ( 2014). Species-specific responses of foliar nutrients to long-term nitrogen and phosphorus additions in a lowland tropical forest. Journal of Ecology, 102, 36-44.
DOI URL |
[19] |
Méndez M, Karlsson PS ( 2005). Nutrient stoichiometry in Pinguicula vulgaris: Nutrient availability, plant size, and reproductive status. Ecology, 86, 982-991.
DOI URL |
[20] |
Miao SJ, Qiao YF, Han XZ ( 2006). Requirement of phosphorous for soybean cultivars nodulation and nitrogen fixation. Soil and Crop, 22, 276-278.
DOI URL |
[ 苗淑杰, 乔云发, 韩晓增 ( 2006). 大豆结瘤固氮对磷素的需求. 土壤与作物, 22, 276-278.]
DOI URL |
|
[21] |
Ostertag R ( 2010). Foliar nitrogen and phosphorus accumulation responses after fertilization: An example from nutrient-??limited Hawaiian forests. Plant and Soil, 334, 85-98.
DOI URL |
[22] |
Pe?uelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA ( 2013). Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4, 2934-2943.
DOI URL PMID |
[23] |
Reich PB, Oleksyn J ( 2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI URL PMID |
[24] | Sterner RW, Elser JJ ( 2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, USA. |
[25] |
Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL ( 2005). Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 102, 4387-4392.
DOI URL PMID |
[26] |
Sun XM, Yu KL, Shugart HH, Wang G ( 2016). Species richness loss after nutrient addition as affected by N:C ratios and phytohormone GA3 contents in an alpine meadow community. Journal of Plant Ecology, 9, 201-211.
DOI URL |
[27] |
Townsend AR, Asner GP ( 2013). Multiple dimensions of resource limitation in tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 110, 4864-4865.
DOI URL |
[28] |
Ventura M, Liboriussen L, Lauridsen TL, S?ndergaard M, Jeppesen E ( 2008). Effects of increased temperature and nutrient enrichment on the stoichiometry of primary producers and consumers in temperate shallow lakes. Freshwater Biology, 53, 1434-1452.
DOI URL |
[29] |
Vitousek P ( 1982). Nutrient cycling and nutrient use efficiency. The American Naturalist, 119, 553-572.
DOI URL |
[30] |
Wang N, Xu SS, Jia X, Gao J, Zhang WP, Qiu YP ( 2013). Variations in foliar stable carbon isotopes among functional groups and along environmental gradients in China—A meta-analysis. Plant Biology, 15, 144-151.
DOI URL PMID |
[31] |
Yan ZB, Kim NY, Han WX, Guo YL, Han TS, Du EZ ( 2015). Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry, and nutrient resorption of Arabidopsis thaliana. Plant and Soil, 388, 147-155.
DOI URL |
[32] |
Yuan ZY, Chen HY ( 2015). Negative effects of fertilization on plant nutrient resorption. Ecology, 96, 373-380.
DOI URL PMID |
[33] |
Zhang RY, Gou X, Bai Y, Zhao J, Chen LY, Song XY ( 2011). Biomass fraction of graminoids and forbs in N-limited alpine grassland: N:P stoichiometry. Polish Journal of Ecology, 59, 105-114.
DOI URL |
[1] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[2] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[3] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[4] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[5] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[6] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
[7] | 赵阳, 栾军伟, 王一, 杨怀, 刘世荣. 模拟干旱和磷添加对热带低地雨林氮矿化过程的影响[J]. 植物生态学报, 2022, 46(1): 102-113. |
[8] | 李捷, 陈莹莹, 乔福云, 郅堤港, 郭正刚. 高原鼠兔干扰对高寒草甸β多样性的影响[J]. 植物生态学报, 2021, 45(5): 476-486. |
[9] | 董利军, 李金花, 陈珊, 张瑞, 孙建, 马妙君. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析[J]. 植物生态学报, 2021, 45(5): 507-515. |
[10] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[11] | 马书琴, 汪子微, 陈有超, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报, 2021, 45(5): 516-527. |
[12] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[13] | 陈锦, 宋明华, 李以康. 13C脉冲标记揭示放牧对高寒草甸同化碳分配的影响[J]. 植物生态学报, 2019, 43(7): 576-584. |
[14] | 李全弟, 刘旻霞, 夏素娟, 南笑宁, 蒋晓轩. 甘南高寒草甸群落的物种-多度关系沿坡向的变化[J]. 植物生态学报, 2019, 43(5): 418-426. |
[15] | 曹登超, 高霄鹏, 李磊, 桂东伟, 曾凡江, 匡文浓, 尹明远, 李言言, 艾力•甫拉提. 氮磷添加对昆仑山北坡高山草地N2O排放的影响[J]. 植物生态学报, 2019, 43(2): 165-173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19