植物生态学报 ›› 2021, Vol. 45 ›› Issue (5): 476-486.DOI: 10.17521/cjpe.2020.0274
所属专题: 青藏高原植物生态学:生态系统生态学; 生物多样性
收稿日期:
2020-08-10
接受日期:
2020-12-14
出版日期:
2021-05-20
发布日期:
2021-03-27
通讯作者:
郭正刚
作者简介:
*(guozhg@lzu.edu.cn)基金资助:
LI Jie, CHEN Ying-Ying, QIAO Fu-Yun, ZHI Di-Gang, GUO Zheng-Gang*()
Received:
2020-08-10
Accepted:
2020-12-14
Online:
2021-05-20
Published:
2021-03-27
Contact:
GUO Zheng-Gang
Supported by:
摘要:
β多样性反映生物群落沿某一环境梯度的物种周转速率, 该研究尝试采用β多样性揭示植物群落随小型啮齿草食动物干扰梯度变化的生态过程。该研究利用野外随机样地的采集数据, 分析了高原鼠兔(Ochotona curzoniae)不同干扰强度下Whittaker指数的变化特征, 并利用群落二元丰富度的方差分解法, 确定了单个物种(SCBD)和单个干扰位点(LCBD)对β多样性的贡献。主要结果: 随高原鼠兔干扰强度增加, 植物群落内物种周转速率呈先增加后降低的趋势; 占据位点数居中的物种对区域内的β多样性贡献较大, 其中冰草(Agropyron cristatum)、臭蒿(Artemisia hedinii)、小花草玉梅(Anemone rivularis var. flore-minore)等单个物种对整个区域内β多样性的贡献最为突出; 整个区域内干扰位点T0 (高原鼠兔干扰强度为0)对区域β多样性贡献值最大, LCBD值和该位点的群落丰富度呈显著负相关关系, 但与高原鼠兔干扰强度无显著关联。说明重点保护LCBD值高的干扰位点所在的高寒草甸, 以及SCBD值较高的冰草、臭蒿、小花草玉梅, 对保护高原鼠兔存在时高寒草甸植物群落多样性具有重要意义。
李捷, 陈莹莹, 乔福云, 郅堤港, 郭正刚. 高原鼠兔干扰对高寒草甸β多样性的影响. 植物生态学报, 2021, 45(5): 476-486. DOI: 10.17521/cjpe.2020.0274
LI Jie, CHEN Ying-Ying, QIAO Fu-Yun, ZHI Di-Gang, GUO Zheng-Gang. Effects of disturbance by plateau pika on the β diversity of an alpine meadow. Chinese Journal of Plant Ecology, 2021, 45(5): 476-486. DOI: 10.17521/cjpe.2020.0274
图1 高原鼠兔干扰下高寒草甸不同位点间的物种周转示意图。
Fig. 1 Species turnover between different sites along the gradient of disturbance induced by plateau pika in an alpine meadow.
位点 Site | 有效洞口密度 Active burrow entrance (burrows·hm-2) | 物种数1) Species number1) | 丰富度2) Species richness2) |
---|---|---|---|
T0 | 0 | 22 | 20.2 |
T1 | 335 | 26 | 20.4 |
T2 | 417 | 30 | 20.6 |
T3 | 555 | 34 | 22.4 |
T4 | 710 | 39 | 23.4 |
T5 | 759 | 36 | 23.0 |
T6 | 906 | 31 | 19.6 |
T7 | 1 004 | 29 | 19.4 |
T8 | 1 186 | 27 | 17.6 |
T9 | 1 360 | 24 | 15.8 |
T10 | 1 633 | 21 | 13.8 |
表1 高原鼠兔不同干扰位点下高寒草甸植物群落内累计物种数和物种丰富度
Table 1 Total species number and richness of plant communities under different disturbance by plateau pika in an alpine meadow
位点 Site | 有效洞口密度 Active burrow entrance (burrows·hm-2) | 物种数1) Species number1) | 丰富度2) Species richness2) |
---|---|---|---|
T0 | 0 | 22 | 20.2 |
T1 | 335 | 26 | 20.4 |
T2 | 417 | 30 | 20.6 |
T3 | 555 | 34 | 22.4 |
T4 | 710 | 39 | 23.4 |
T5 | 759 | 36 | 23.0 |
T6 | 906 | 31 | 19.6 |
T7 | 1 004 | 29 | 19.4 |
T8 | 1 186 | 27 | 17.6 |
T9 | 1 360 | 24 | 15.8 |
T10 | 1 633 | 21 | 13.8 |
物种 Species | 位点数 No. of site | 物种 Species | 位点数 No. of site |
---|---|---|---|
SP1 高山嵩草 Kobresia pygmaea | 11 | SP25 圆穗蓼 Polygonum macrophyllum | 10 |
SP2 青藏薹草 Carex moorcroftii | 11 | SP26 西伯利亚蓼 Polygonum sibiricum | 3 |
SP3 高山豆 Tibetia himalaica | 11 | SP27 酸模 Rumex acetosa | 5 |
SP4 多枝黄耆 Astragalus polycladus | 8 | SP28 珠芽蓼 Polygonum viviparum | 4 |
SP5 黄花棘豆 Oxytropis ochrocephala | 11 | SP29 多裂委陵菜 Potentilla multifida | 9 |
SP6 披针叶黄华 Thermopsis lanceolata | 4 | SP30 二裂委陵菜 Potentilla bifurca | 7 |
SP7 针茅 Stipa capillata | 6 | SP31 莓叶委陵菜 Potentilla fragarioides | 11 |
SP8 紫羊茅 Festuca rubra | 11 | SP32 鹅绒委陵菜 Potentilla anserina | 5 |
SP9 垂穗披碱草 Elymus nutans | 4 | SP33 獐牙菜 Swertia bimaculata | 7 |
SP10 高原早熟禾 Poa alpigena | 11 | SP34 达乌里秦艽 Gentiana dahurica | 9 |
SP11 冰草 Agropyron cristatum | 5 | SP35 刺芒龙胆 Gentiana aristata | 11 |
SP12 美丽风毛菊 Saussurea pulchra | 11 | SP36 矮生嵩草 Kobresia humilis | 8 |
SP13 矮火绒草 Leontopodium nanum | 8 | SP37 肉果草 Lancea tibetica | 10 |
SP14 蒲公英 Taraxacum mongolicum | 8 | SP38 婆婆纳 Veronica didyma | 5 |
SP15 甘肃马先蒿 Pedicularis kansuensis | 8 | SP39 打碗花 Calystegia hederacea | 6 |
SP16 紫苑 Aster tataricus | 4 | SP40 车前 Plantago asiatica | 9 |
SP17 臭蒿 Artemisia hedinii | 6 | SP41 狼毒 Euphorbia fischeriana | 7 |
SP18 乳白香青 Anaphalis lactea | 9 | SP42 微孔草 Microula sikkimensis | 3 |
SP19 细叶亚菊 Ajania tenuifolia | 8 | SP43 长茎藁本 Ligusticum thomsonii | 3 |
SP20 唐松草 Thalictrum aquilegifolium | 10 | SP44 地锦 Euphorbia humifusa | 1 |
SP21 钝裂银莲花 Anemone obtusiloba | 6 | SP45 鸢尾 Iris tectorum | 3 |
SP22 高原毛莨 Ranunculus tanguticus | 4 | SP46 女娄菜 Silene aprica | 4 |
SP23 疏齿银莲花 Anemone obtusiloba | 2 | SP47 细果角茴香 Hypecoum leptocarpum | 2 |
SP24 小花草玉梅 Anemone rivularis var. flore-minore | 4 |
表2 物种占据的位点数
Table 2 Appearance site numbers of each species
物种 Species | 位点数 No. of site | 物种 Species | 位点数 No. of site |
---|---|---|---|
SP1 高山嵩草 Kobresia pygmaea | 11 | SP25 圆穗蓼 Polygonum macrophyllum | 10 |
SP2 青藏薹草 Carex moorcroftii | 11 | SP26 西伯利亚蓼 Polygonum sibiricum | 3 |
SP3 高山豆 Tibetia himalaica | 11 | SP27 酸模 Rumex acetosa | 5 |
SP4 多枝黄耆 Astragalus polycladus | 8 | SP28 珠芽蓼 Polygonum viviparum | 4 |
SP5 黄花棘豆 Oxytropis ochrocephala | 11 | SP29 多裂委陵菜 Potentilla multifida | 9 |
SP6 披针叶黄华 Thermopsis lanceolata | 4 | SP30 二裂委陵菜 Potentilla bifurca | 7 |
SP7 针茅 Stipa capillata | 6 | SP31 莓叶委陵菜 Potentilla fragarioides | 11 |
SP8 紫羊茅 Festuca rubra | 11 | SP32 鹅绒委陵菜 Potentilla anserina | 5 |
SP9 垂穗披碱草 Elymus nutans | 4 | SP33 獐牙菜 Swertia bimaculata | 7 |
SP10 高原早熟禾 Poa alpigena | 11 | SP34 达乌里秦艽 Gentiana dahurica | 9 |
SP11 冰草 Agropyron cristatum | 5 | SP35 刺芒龙胆 Gentiana aristata | 11 |
SP12 美丽风毛菊 Saussurea pulchra | 11 | SP36 矮生嵩草 Kobresia humilis | 8 |
SP13 矮火绒草 Leontopodium nanum | 8 | SP37 肉果草 Lancea tibetica | 10 |
SP14 蒲公英 Taraxacum mongolicum | 8 | SP38 婆婆纳 Veronica didyma | 5 |
SP15 甘肃马先蒿 Pedicularis kansuensis | 8 | SP39 打碗花 Calystegia hederacea | 6 |
SP16 紫苑 Aster tataricus | 4 | SP40 车前 Plantago asiatica | 9 |
SP17 臭蒿 Artemisia hedinii | 6 | SP41 狼毒 Euphorbia fischeriana | 7 |
SP18 乳白香青 Anaphalis lactea | 9 | SP42 微孔草 Microula sikkimensis | 3 |
SP19 细叶亚菊 Ajania tenuifolia | 8 | SP43 长茎藁本 Ligusticum thomsonii | 3 |
SP20 唐松草 Thalictrum aquilegifolium | 10 | SP44 地锦 Euphorbia humifusa | 1 |
SP21 钝裂银莲花 Anemone obtusiloba | 6 | SP45 鸢尾 Iris tectorum | 3 |
SP22 高原毛莨 Ranunculus tanguticus | 4 | SP46 女娄菜 Silene aprica | 4 |
SP23 疏齿银莲花 Anemone obtusiloba | 2 | SP47 细果角茴香 Hypecoum leptocarpum | 2 |
SP24 小花草玉梅 Anemone rivularis var. flore-minore | 4 |
图2 不同干扰位点有效洞口密度下β多样性的变化。阴影部分表示95%的置信区间。
Fig. 2 Variation of the β diversity of the plateau pika under different disturbance intensities. The shaded part indicates the 95% confidence interval.
图3 高原鼠兔干扰梯度下群落差异与环境差异的关系。
Fig. 3 Relationship between community deviation and environment deviation along the gradient of disturbance of plateau pika.
图4 单一物种对高寒草甸β多样性的贡献(SCBD)值(A)及其分布(B)。物种同表2。
Fig. 4 Value (A) and distribution (B) of the individual species contribution to beta diversity (SCBD) in an alpine meadow. See Table 2 for species.
图5 单一物种对高寒草甸β多样性的贡献(SCBD)值与物种占据位点数关系。阴影部分表示95%的置信区间。
Fig. 5 Relationship between species contribution to beta diversity (SCBD) values and the numbers of sites occupied by species in an alpine meadow. The shaded part indicates the 95% confidence interval.
图6 单一位点对高寒草甸β多样性贡献(LCBD)值(A)及其分布(B)。
Fig. 6 Value (A) and distribution (B) of the local contribution to beta diversity (LCBD) for each distribution site in an alpine meadow.
图7 单一位点对高寒草甸β多样性贡献(LCBD)值与物种丰富度(A)和有效洞口密度(B)的关系。阴影部分表示95%的置信区间。
Fig. 7 Relationship between the local contribution to beta diversity (LCBD) with species richness (A) and active burrow entrances (B) in an alpine meadow. The shaded part indicates the 95% confidence interval.
[1] |
Anderson MJ,Crist TO,Chase JM,Vellend M,Inouye BD,Freestone AL,Sanders NJ,Cornell HV,Comita LS,Davies KF,Harrison SP,Kraft NJB,Stegen JC,Swenson NG(2011).Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist.Ecology Letters,14, 19-28.
DOI PMID |
[2] |
Archidona-Yuste A,Wiegand T,Castillo P,Navas-Cortés JA(2020).Spatial structure and soil properties shape local community structure of plant-parasitic nematodes in cultivated olive trees in southern Spain.Agriculture, Ecosystems & Environment,287, 106688. DOI:10.1016/j.agee.2019.106688.
DOI URL |
[3] |
Bagchi S,Namgail T,Ritchie ME(2006).Small mammalian herbivores as mediators of plant community dynamics in the high-altitude arid rangelands of Trans-Himalaya.Biological Conservation,127, 438-442.
DOI URL |
[4] |
Bakker ES,Ritchie ME,Olff H,Milchunas DG,Knops JMH(2006).Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size.Ecology Letters,9, 780-788.
DOI URL |
[5] | Bangert RK,Slobodchikoff CN(2006).Conservation of prairie dog ecosystem engineering may support arthropod beta and gamma diversity.Journal of Arid Environments,67, 100-115. |
[6] |
da Silva PG,Hernández MIM,Heino J(2018).Disentangling the correlates of species and site contributions to beta diversity in dung beetle assemblages.Diversity and Distributions,24, 1674-1686.
DOI URL |
[7] |
Gaston KJ,Borges PAV,He F,Gaspar C(2006).Abundance, spatial variance and occupancy: arthropod species distribution in the Azores.Journal of Animal Ecology,75, 646-656.
DOI URL |
[8] |
Gibson DJ(1989).Effects of animal disturbance on tallgrass prairie vegetation.American Midland Naturalist,121, 144-154.
DOI URL |
[9] |
Guo ZG,Li XF,Liu XY,Zhou XR(2012).Response of alpine meadow communities to burrow density changes of plateau pika (Ochotona curzoniae) in the Qinghai-Tibet Plateau.Acta Ecologica Sinica,32, 44-49.
DOI URL |
[10] |
Hagenah N,Bennett NC(2013).Mole rats act as ecosystem engineers within a biodiversity hotspot, the Cape Fynbos.Journal of Zoology,289, 19-26.
DOI URL |
[11] | Jia TT,Mao L,Guo ZG(2014).Effect of available burrow densities of plateau pika (Ochotona curzoniae) on plant niche of alpine meadow communities in the Qinghai-Tibet Plateau.Acta Ecologica Sinica,34, 869-877. |
[贾婷婷,毛亮,郭正刚(2014).高原鼠兔有效洞穴密度对青藏高原高寒草甸群落植物生态位的影响.生态学报,34, 869-877.] | |
[12] |
Jones CC,Halpern CB,Niederer J(2008).Plant succession on gopher mounds in western Cascade meadows: consequences for species diversity and heterogeneity.The American Midland Naturalist,159, 275-286.
DOI URL |
[13] | Legendre P(2007).Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis.Journal of Plant Ecology (Chinese Version),31, 976-981. |
[Legendre P(2007).β-多样性的研究: 应用多元回归和典范分析研究生态方差的分解.植物生态学报,31, 976-981.] | |
[14] |
Legendre P,Borcard D,Peres-Neto PR(2005).Analyzing beta diversity: partitioning the spatial variation of community composition data.Ecological Monographs,75, 435-450.
DOI URL |
[15] |
Legendre P,de Cáceres M(2013).Beta diversity as the variance of community data: dissimilarity coefficients and partitioning.Ecology Letters,16, 951-963.
DOI PMID |
[16] |
Levin SA(1992).The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture.Ecology,73, 1943-1967.
DOI URL |
[17] | Li H,Wu SK(1985).The floristic structure of Qinghai-Xizang Plateau subkingdom in Xizang.Scientia Geographica Sinica,5(1), 20-29. |
[李恒,武素功(1985).青藏高原植物亚区(西藏部分)的区系结构.地理科学,5(1), 20-29.] | |
[18] |
Lindtner P,Svitok M,Ujházy K,Kubovčík V(2020).Disturbances by the European ground squirrel enhance diversity and spatial heterogeneity of plant communities in temperate grassland.Biodiversity and Conservation,29, 853-867.
DOI |
[19] | Liu W,Zhang Y,Wang X,Zhao JZ,Xu QM,Zhou L(2008).Food selection by plateau pikas in different habitats during plant growing season.Acta Theriologica Sinica,28, 358-366. |
[刘伟,张毓,王溪,赵建中,许庆民,周立(2008).植物生长季节不同栖息地高原鼠兔的食物选择.兽类学报,28, 358-366.] | |
[20] | Liu XQ,Zhang X,Zhang LF,Li YN,Zhao L,Xu SX,Li HQ,Ma RR,Niu B,Gao YB,Gu S(2016).Effects of exclosure duration on the community structure and species diversity of an alpine meadow in the Qinghai-Tibet Plateau.Acta Ecologica Sinica,36, 5150-5162. |
[刘晓琴,张翔,张立锋,李英年,赵亮,徐世晓,李红琴,马荣荣,牛犇,高玉葆,古松(2016).封育年限对高寒草甸群落组分和物种多样性的影响.生态学报,36, 5150-5162.] | |
[21] |
Liu YS,Fan JW,Harris W,Shao QQ,Zhou YC,Wang N,Li YZ(2013).Effects of plateau pika (Ochotona curzoniae) on net ecosystem carbon exchange of grassland in the Three Rivers Headwaters region, Qinghai-Tibet, China.Plant and Soil,366, 491-504.
DOI URL |
[22] | Luo YY,Meng QT,Zhang JH,Zhao XY,Qin Y(2014).Species diversity and biomass in relation to soil properties of alpine meadows in the eastern Tibetan Plateau in different degradation stages.Journal of Glaciology and Geocryology,36, 1298-1305. |
[罗亚勇,孟庆涛,张静辉,赵学勇,秦彧(2014).青藏高原东缘高寒草甸退化过程中植物群落物种多样性、生产力与土壤特性的关系.冰川冻土,36, 1298-1305.] | |
[23] | Ma KP,Liu CR,Liu YM(1995).Biological community diversity measure II: beta diversity measure method.Chinese Biodiversity,3, 38-43. |
[马克平,刘灿然,刘玉明(1995).生物群落多样性的测度方法II: β多样性的测度方法.生物多样性,3, 38-43.] | |
[24] |
Maloufi S,Catherine A,Mouillot D,Louvard C,Couté A,Bernard C,Troussellier M(2016).Environmental heterogeneity among lakes promotes hyper β-diversity across phytoplankton communities.Freshwater Biology,61, 633-645.
DOI URL |
[25] | Niu YF(1999).Research on the ecological environment of the Qinghai-Tibet Plateau.Progress in Geography,18, 164-171. |
[牛亚菲(1999).青藏高原生态环境问题研究.地理科学进展,18, 164-171.] | |
[26] |
Pang XP,Guo ZG(2017).Plateau pika disturbances alter plant productivity and soil nutrients in alpine meadows of the Qinghai-Tibetan Plateau, China.The Rangeland Journal,39, 133-144.
DOI URL |
[27] |
Pang XP,Guo ZG(2018).Effects of plateau pika disturbance levels on the plant diversity and biomass of an alpine meadow.Grassland Science,64, 159-166.
DOI URL |
[28] | Pang XP,Jia TT,Li QQ,Luo MW,Xiao Y,Zhao X,Guo ZG(2015a).Effect of available burrow densities of plateau pika (Ochotona curzoniae) on characteristics and distribution pattern of Kobresia pygmaea community.Acta Ecologica Sinica,35, 873-884. |
[庞晓攀,贾婷婷,李倩倩,雒眀伟,肖玉,赵旭,郭正刚(2015a).高原鼠兔有效洞穴密度对高山嵩草群落及其主要种群空间分布特征的影响.生态学报,35, 873-884.] | |
[29] | Pang XP,Wang Q,Jia TT,Li QQ,Guo ZG(2015b).Effect of burrow entrance densities of plateau pika (Ochotona curzoniae) on interspecific association in Kobresia pygmaea meadow.Acta Prataculturae Sinica,24, 224-230. |
[庞晓攀,王倩,贾婷婷,李倩倩,郭正刚(2015b).高原鼠兔有效洞口数密度对高山嵩草草甸植物种间联结性的影响.草业学报,24, 224-230.] | |
[30] |
Pang XP,Wang Q,Zhang J,Xu HP,Zhang WN,Wang J,Guo ZG(2020).Responses of soil inorganic and organic carbon stocks of alpine meadows to the disturbance by plateau pikas.European Journal of Soil Science,71, 706-715.
DOI URL |
[31] |
Qiao XJ,Li QX,Jiang QH,Lu JM,Franklin S,Tang ZY,Wang QG,Zhang JX,Lu ZJ,Bao DC,Guo YL,Liu HB,Xu YZ,Jiang MX(2015).Beta diversity determinants in Badagongshan, a subtropical forest in central China.Scientific Reports,5, 17043. DOI:10.1038/srep17043.
DOI URL |
[32] |
Seabloom EW,Bjørnstad ON,Bolker BM,Reichman OJ(2005).Spatial signature of environmental heterogeneity, dispersal, and competition in successional grasslands.Ecological Monographs,75, 199-214.
DOI URL |
[33] |
Smith AT,Badingqiuying ,Wilson MC,Hogan BW(2019).Functional-trait ecology of the plateau pika Ochotona curzoniae in the Qinghai-Tibetan Plateau ecosystem.Integrative Zoology, 14, 87-103.
DOI URL |
[34] | Suonan LM(2015).Main types of natural and degradation situation in Gangcha County.Qinghai Prataculture,24(3), 53-56. |
[索南拉毛(2015).刚察县天然草地主要类型及退化状况.青海草业,24(3), 53-56.] | |
[35] |
Szabó B,Lengyel E,Padisák J,Stenger-Kovács C(2019).Benthic diatom metacommunity across small freshwater lakes: driving mechanisms, β-diversity and ecological uniqueness.Hydrobiologia,828, 183-198.
DOI URL |
[36] |
Tan LZ,Fan CY,Zhang CY,Zhao XH(2019).Understanding and protecting forest biodiversity in relation to species and local contributions to beta diversity.European Journal of Forest Research,138, 1005-1013.
DOI URL |
[37] |
Wang J,Legendre P,Soininen J,Yeh CF,Graham E,Stegen J,Casamayor EO,Zhou JZ,Shen J,Pan FY(2020).Temperature drives local contributions to beta diversity in mountain streams: stochastic and deterministic processes.Global Ecology and Biogeography,29, 420-432.
DOI URL |
[38] | Wang KX,Shen Y,Li Y,Ma HB(2019).Effects of grazing systems on the diversity and stability of plant communities in desert steppe.Heilongjiang Animal Science and Veterinary Medicine,8, 103-108. |
[王科鑫,沈艳,李阳,马红彬(2019).放牧制度对荒漠草原植物群落多样性及稳定性的影响.黑龙江畜牧兽医,8, 103-108.] | |
[39] | Wen L,Dong SK,Zhu L,Shi JJ,Liu DM,Wang YL,Ma YS(2011).The effect of natural factors and disturbance intensity on spacial heterogeneity of plant diversity in alpine meadow.Acta Ecologica Sinica,31, 1844-1854. |
[温璐,董世魁,朱磊,施建军,刘德梅,王彦龙,马玉寿(2011).环境因子和干扰强度对高寒草甸植物多样性空间分异的影响.生态学报,31, 1844-1854.] | |
[40] |
Whittaker RH(1960).Vegetation of the Siskiyou Mountains, Oregon and California.Ecological Monographs,30, 279-338.
DOI URL |
[41] | Xu HP,Yu C,Shu CC,Jin SH,Pang XP,Guo ZG(2019).The effect of plateau pika disturbance on plant community diversity and stability in an alpine meadow.Acta Prataculturae Sinica,28, 90-99. |
[徐海鹏,于成,舒朝成,金少红,庞晓攀,郭正刚(2019).高原鼠兔干扰对高寒草甸植物群落多样性和稳定性的影响.草业学报,28, 90-99.] | |
[42] |
Yang J,Chu PF,Chen DM,Wang MJ,Bai YF(2014).Mechanisms underlying the impacts of grazing on plant α, β and γ diversity in a typical steppe of the Inner Mongolia grassland.Chinese Journal of Plant Ecology,38, 188-200.
DOI URL |
[杨婧,褚鹏飞,陈迪马,王明玖,白永飞(2014).放牧对内蒙古典型草原α、β和γ多样性的影响机制.植物生态学报,38, 188-200.] | |
[43] | Yang LM,Li JD,Yang YF(1999).β-diversity of grassland communities along gradient of grazing disturbance.Chinese Journal of Applied Ecology,10, 442-446. |
[杨利民,李建东,杨允菲(1999).草地群落放牧干扰梯度β多样性研究.应用生态学报,10, 442-446.] | |
[44] | Ye GH,Chu B,Zhou R,Zhang FY,Hua XZ,Hua R,Wang T,Hua LM(2019).Impact of plateau pika (Ochotona curzoniae) disturbance on larger soil animal fauna in alpine meadow.Journal of Gansu Agricultural University,54, 150-158. |
[叶国辉,楚彬,周睿,张飞宇,华铣泽,花蕊,王婷,花立民(2019).高原鼠兔干扰对高寒草甸大型土壤动物类群的影响.甘肃农业大学学报,54, 150-158.] | |
[45] |
Zhang WN,Wang Q,Zhang J,Pang XP,Xu HP,Wang J,Guo ZG(2020).Clipping by plateau pikas and impacts to plant community.Rangeland Ecology & Management,73, 368-374.
DOI URL |
[46] | Zhou XR,Guo ZG,Guo XH(2010).The role of plateau pika and plateau zokor in alpine meadow.Pratacultural Science,27(5), 38-44. |
[周雪荣,郭正刚,郭兴华(2010).高原鼠兔和高原鼢鼠在高寒草甸中的作用.草业科学,27(5), 38-44.] |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[3] | 李红琴, 张法伟, 仪律北. 高寒草甸表层土壤和优势植物叶片的化学计量特征对降水改变和氮添加的响应[J]. 植物生态学报, 2023, 47(7): 922-931. |
[4] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[5] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[6] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[7] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[8] | 王德利, 梁存柱. 退化草原的恢复状态: 气候顶极或干扰顶极?[J]. 植物生态学报, 2023, 47(10): 1464-1470. |
[9] | 柳牧青, 杨小凤, 石钰铭, 刘雨薇, 李小蒙, 廖万金. 模拟酸雨对入侵植物豚草与伴生种鬼针草竞争关系的影响[J]. 植物生态学报, 2022, 46(8): 932-940. |
[10] | 刘艳方, 王文颖, 索南吉, 周华坤, 毛旭锋, 王世雄, 陈哲. 青海海北植物群落类型与土壤线虫群落相互关系[J]. 植物生态学报, 2022, 46(1): 27-39. |
[11] | 秦倩倩, 邱聪, 郑大柽, 刘艳红. 油松人工林火烧迹地早期土壤入渗动态[J]. 植物生态学报, 2021, 45(8): 903-917. |
[12] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[13] | 马书琴, 汪子微, 陈有超, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报, 2021, 45(5): 516-527. |
[14] | 董利军, 李金花, 陈珊, 张瑞, 孙建, 马妙君. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析[J]. 植物生态学报, 2021, 45(5): 507-515. |
[15] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19