植物生态学报 ›› 2022, Vol. 46 ›› Issue (8): 932-940.DOI: 10.17521/cjpe.2022.0164
所属专题: 入侵生态学
柳牧青1(), 杨小凤1(), 石钰铭1, 刘雨薇1, 李小蒙2,**(), 廖万金1
收稿日期:
2022-04-25
接受日期:
2022-05-05
出版日期:
2022-08-20
发布日期:
2022-08-20
通讯作者:
**李小蒙 (xiaomengli@bnu.edu.cn)
作者简介:
*同等贡献
基金资助:
LIU Mu-Qing1(), YANG Xiao-Feng1(), SHI Yu-Ming1, LIU Yu-Wei1, LI Xiao-Meng2,**(), LIAO Wan-Jin1
Received:
2022-04-25
Accepted:
2022-05-05
Online:
2022-08-20
Published:
2022-08-20
Contact:
**LI Xiao-Meng (xiaomengli@bnu.edu.cn)
About author:
Liu MQ, 201811200127@mail.bnu.edu.cnSupported by:
摘要:
植物种间相互作用对物种的生存至关重要。对于入侵植物而言, 更强的种间竞争能力是其成功入侵的重要机制。然而, 环境条件的变化可能会改变种间关系并影响植物入侵的最终结果。该研究主要探索当今严重的环境问题之一——酸雨对中国入侵植物豚草(Ambrosia artemisiifolia)和伴生本地种鬼针草(Bidens bipinnata)种间相互作用的影响, 进一步了解环境扰动对生物入侵的影响。该研究于2021年3月在北京师范大学室外条件下对豚草和鬼针草开展de Wit替代竞争实验, 并施加不同浓度的酸雨模拟溶液(pH = 3、4、5、7), 记录植株在第24、34、45天的株高以及生长季结束时的株高和地上生物量, 通过计算相对邻株效应指数(RNE)并绘制取代系列图表来评估两者的竞争关系。主要结果如下: 单一种植时, 中浓度酸雨(pH = 4)促进了豚草和鬼针草的早期生长, 而高浓度酸雨(pH = 3)显著抑制了两者的早期生长, 但不影响生长季结束时的株高。混合种植时, 高浓度酸雨(pH = 3)显著降低了豚草在第34、45天时的株高, 但在生长季结束时对豚草无影响, 而鬼针草在生长季结束时株高显著降低。鬼针草相对豚草的RNE在任何酸浓度下都不显著。而豚草相对鬼针草的RNE在无酸雨条件下显著, 酸雨处理时在鬼针草比例较低时显著。取代系列实验图表显示, 低浓度酸雨(pH = 5)增加了在低豚草比例下的鬼针草的竞争优势, 而高浓度酸雨增强了豚草的竞争优势。该研究表明酸雨显著影响了豚草和鬼针草的生长及种间竞争关系, 高浓度酸雨增加了入侵植物豚草的竞争优势。
柳牧青, 杨小凤, 石钰铭, 刘雨薇, 李小蒙, 廖万金. 模拟酸雨对入侵植物豚草与伴生种鬼针草竞争关系的影响. 植物生态学报, 2022, 46(8): 932-940. DOI: 10.17521/cjpe.2022.0164
LIU Mu-Qing, YANG Xiao-Feng, SHI Yu-Ming, LIU Yu-Wei, LI Xiao-Meng, LIAO Wan-Jin. Effects of simulated acid rain on the competitive relationship between invasive Ambrosia artemisiifolia and its co-occurring indigenous forb Bidens bipinnata. Chinese Journal of Plant Ecology, 2022, 46(8): 932-940. DOI: 10.17521/cjpe.2022.0164
图2 单栽时, 不同酸雨浓度水平下豚草和鬼针草的株高(平均值±标准差)。不同小写字母表示在不同酸雨水平下差异显著 (p < 0.05)。
Fig. 2 Plant height (mean ± SD) of Ambrosia artemisiifolia and Bidens bipinnata at different acid levels when planted separately. Different lowercase letters indicate a significant difference among acid levels (p < 0.05).
图3 不同浓度水平的酸雨处理时, 不同混栽比例下豚草和鬼针草的株高(平均值±标准差)。不同小写字母表示同一混栽比例在不同酸雨水平下差异显著(p < 0.05)。混栽比例代表自身植株数在整盆中的比例。
Fig. 3 Plant height (mean ± SD) of Ambrosia artemisiifolia and Bidens bipinnata at different proportions of plants under the treatments of different acid levels. Different lowercase letters indicate a significant difference in the same proportion among different acid levels (p < 0.05). A density ratio represents the ratio of the number of each species to the total number of plants in each pot.
图4 豚草和鬼针草在不同混栽比例下的相对邻株效应(RNE, 平均值±标准差)。不同小写字母表示同一混栽比例在不同酸雨水平下差异显著(p < 0.05)。混栽比例代表各物种植株数在整盆中的比例。*代表RNE值与0具有显著差异, p < 0.05。
Fig. 4 Relative neighbor effect (RNE, mean ± SD) of Ambrosia artemisiifolia and Bidens bipinnata at different proportions. Different lowercase letters indicate a significant difference in the same proportion at different acid levels (p < 0.05). A density ratio represents the ratio of the number of each species to the total number of plants in each pot. * represents a significant difference between the RNE value and 0, p < 0.05.
图5 不同酸雨水平下的取代系列实验图表。Ya和Yb分别代表豚草和鬼针草每盆的实际生物量; Yab代表两混栽物种的实际总生物量。EYa和EYb分别代表按照豚草占比应得的豚草和鬼针草每盆的预期生物量; EYab代表两混栽物种的预期总生物量。预期值是指理想状态下, 即种内竞争等于种间竞争的前提下, 每盆中某种植物应达到的生物量。
Fig. 5 Replacement diagrams at different acid levels. Ya and Yb represent actual biomass of Ambrosia artemisiifolia and Bidens bipinnata each pot. Yab represents actual total biomass of the two species. EYa and EYb represent the expected biomass of A. artemisiifolia and B. bipinnata per pot according to the proportion of A. artemisiifolia. EYab represents the expected total biomass of the two species. The expected value refers to the biomass that a certain plant should achieve in a mixed planting pot under ideal conditions where interspecific and intraspecific competitions are equal.
[1] |
Barnes ER, Jhala AJ, Knezevic SZ, Sikkema PH, Lindquist JL (2019). Soybean and common ragweed (Ambrosia artemisiifolia) growth in monoculture and mixture. Weed Technology, 33, 481-489.
DOI URL |
[2] |
Blossey B, Notzold R (1995). Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. Journal of Ecology, 83, 887-889.
DOI URL |
[3] |
Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005). Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia, 144, 1-11.
PMID |
[4] |
Bottollier-Curtet M, Planty-Tabacchi AM, Tabacchi E (2013). Competition between young exotic invasive and native dominant plant species: implications for invasions within riparian areas. Journal of Vegetation Science, 24, 1033-1042.
DOI URL |
[5] |
Chen H, Chen LJ, Albright TP (2007). Predicting the potential distribution of invasive exotic species using GIS and information-theoretic approaches: a case of ragweed (Ambrosia artemisiifolia L.) distribution in China. Chinese Science Bulletin, 52, 1223-1230.
DOI URL |
[6] |
Čuda J, Skálová H, Janovský Z, Pyšek P (2015). Competition among native and invasive Impatiens species: the roles of environmental factors, population density and life stage. AoB PLANTS, 7, plv033. DOI: 10.1093/aobpla/plv033.
DOI |
[7] | Deng ZZ, Bai JD, Zhao CY, Li JS (2015). Advance in invasion mechanisms of Ambrosia artemisiifolia. Pratacultural Science, 32(1), 54-63. |
[邓贞贞, 白加德, 赵彩云, 李俊生 (2015). 外来植物豚草入侵机制. 草业科学, 32(1), 54-63.] | |
[8] | de Vries W, Hettelingh JP, Posch M (2015). Critical Loads and Dynamic Risk Assessments: Nitrogen, Acidity and Metals in Terrestrial and Aquatic Ecosystems. Springer, Dordrecht, the Netherlands. |
[9] |
Diagne C, Leroy B, Vaissière AC, Gozlan RE, Roiz D, Jarić I, Salles JM, Bradshaw CJA, Courchamp F (2021). High and rising economic costs of biological invasions worldwide. Nature, 592, 571-576.
DOI URL |
[10] | Du EZ, Dong D, Zeng XT, Sun ZZ, Jiang XF, de Vries W (2017). Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China. Science of the Total Environment, 605- 606, 764-769. |
[11] |
Duan L, Chen X, Ma XX, Zhao B, Larssen T, Wang SX, Ye ZX (2016). Atmospheric S and N deposition relates to increasing riverine transport of S and N in southwest China: implications for soil acidification. Environmental Pollution, 218, 1191-1199.
DOI PMID |
[12] |
Ferenc V, Merkert C, Zilles F, Sheppard CS (2021). Native and alien species suffer from late arrival, while negative effects of multiple alien species on natives vary. Oecologia, 197, 271-281.
DOI PMID |
[13] | Fu XP, Tian DL (2006). Research progress of the effect of acid rain on plant. Journal of Northwest Forestry University, 21(4), 23-27. |
[付晓萍, 田大伦 (2006). 酸雨对植物的影响研究进展. 西北林学院学报, 21(4), 23-27.] | |
[14] |
Gioria M, Osborne BA (2014). Resource competition in plant invasions: emerging patterns and research needs. Frontiers in Plant Science, 5, 501. DOI: 10.3389/fpls.2014.00501.
DOI PMID |
[15] |
Jolliffe PA (2000). The replacement series. Journal of Ecology, 88, 371-385.
DOI URL |
[16] |
Keddy P, Gaudet C, Fraser LH (2000). Effects of low and high nutrients on the competitive hierarchy of 26 shoreline plants. Journal of Ecology, 88, 413-423.
DOI URL |
[17] |
King WM, Wilson JB (2006). Differentiation between native and exotic plant species from a dry grassland: fundamental responses to resource availability, and growth rates. Austral Ecology, 31, 996-1004.
DOI URL |
[18] |
Lee Y, Park J, Im K, Kim K, Lee J, Lee K, Park JA, Lee TK, Park DS, Yang JS, Kim D, Lee S (2006). Arabidopsis leaf necrosis caused by simulated acid rain is related to the salicylic acid signaling pathway. Plant Physiology and Biochemistry, 44, 38-42.
DOI URL |
[19] |
Leskovšek R, Datta A, Simončič A, Knezevic SZ (2012a). Influence of nitrogen and plant density on the growth and seed production of common ragweed (Ambrosia artemisiifolia L.). Journal of Pest Science, 85, 527-539.
DOI URL |
[20] |
Leskovšek R, Eler K, Batič F, Simončič A (2012b). The influence of nitrogen, water and competition on the vegetative and reproductive growth of common ragweed (Ambrosia artemisiifolia L.). Plant Ecology, 213, 769-781.
DOI URL |
[21] | Liao ZY, Peng SL (2007). Effects of acid rain on the invasion of non-native plants. Ecology and Environment, 16, 639-643. |
[廖周瑜, 彭少麟 (2007). 酸雨对外来植物入侵的影响. 生态环境, 16, 639-643.] | |
[22] |
Liu XJ, Duan L, Mo JM, Du EZ, Shen JL, Lu XK, Zhang Y, Zhou XB, He CE, Zhang FS (2011). Nitrogen deposition and its ecological impact in China: an overview. Environmental Pollution, 159, 2251-2264.
DOI PMID |
[23] |
Liu ZQ, Yang JY, Zhang JE, Xiang HM, Wei H (2019). A bibliometric analysis of research on acid rain. Sustainability, 11, 3077. DOI: 10.3390/su11113077.
DOI URL |
[24] | Markham JH, Chanway CP (1996). Measuring plant neighbour effects. Functional Ecology, 10, 548-549. |
[25] |
Moura RF, Queiroga D, Vilela E, Moraes AP (2021). Polyploidy and high environmental tolerance increase the invasive success of plants. Journal of Plant Research, 134, 105-114.
DOI PMID |
[26] |
Pabian SE, Ermer NM, Tzilkowski WM, Brittingham MC (2012). Effects of liming on forage availability and nutrient content in a forest impacted by acid rain. PLOS ONE, 7, e39755. DOI: 10.1371/journal.pone.0039755.
DOI URL |
[27] | Paudel S, Milleville A, Battaglia LL (2018). Responses of native and invasive floating aquatic plant communities to salinity and desiccation stress in the southeastern US coastal floodplain forests. Estuaries and Coasts, 41, 2331-2339. |
[28] |
Pejchar L, Mooney HA (2009). Invasive species, ecosystem services and human well-being. Trends in Ecology & Evolution, 24, 497-504.
DOI URL |
[29] |
Price JN, Berney PJ, Ryder D, Whalley RDB, Gross CL (2011). Disturbance governs dominance of an invasive forb in a temporary wetland. Oecologia, 167, 759-769.
DOI PMID |
[30] |
Pyšek P, Richardson DM (2010). Invasive species, environmental change and management, and health. Annual Review of Environment and Resources, 35, 25-55.
DOI URL |
[31] |
Rauch BJ, Bellinder RR, Brainard DC (2007). Using common ragweed (Ambrosia artemisiifolia) control as a basis for reduction of fomesafen use in snap and dry beans (Phaseolus vulgaris). Weed Technology, 21, 623-628.
DOI URL |
[32] |
Singh A, Agrawal M (2008). Acid rain and its ecological consequences. Journal of Environmental Biology, 29, 15-24.
PMID |
[33] |
Torres C, Mimosa M, Ferreira MF, Galetto L (2013). Reproductive strategies of Datura ferox, an abundant invasive weed in agro-ecosystems from central Argentina. Flora, 208, 253-258.
DOI URL |
[34] |
Vallano DM, Selmants PC, Zavaleta ES (2012). Simulated nitrogen deposition enhances the performance of an exotic grass relative to native serpentine grassland competitors. Plant Ecology, 213, 1015-1026.
DOI URL |
[35] |
van Kleunen M, Weber E, Fischer M (2010). A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters, 13, 235-245.
DOI PMID |
[36] | Wan FH, Xie BY, Yang GQ (2011) Invasion Biology. Science Press, Beijing. 291-311. |
[万方浩, 谢丙炎, 杨国庆 (2011). 入侵生物学. 科学出版社, 北京. 291-311.] | |
[37] |
Wan LY, Qi SS, Zou CB, Dai ZC, Ren GQ, Chen Q, Zhu B, Du DL (2019). Elevated nitrogen deposition may advance invasive weed, Solidago canadensis, in calcareous soils. Journal of Plant Ecology, 12, 846-856.
DOI URL |
[38] |
Wang CY, Wu BD, Jiang K, Zhou JW (2018). Differences in functional traits between invasive and native Amaranthus species under simulated acid deposition with a gradient of pH levels. Acta Oecologica, 89, 32-37.
DOI URL |
[39] |
Wang JP, Dong LJ, Sang WG (2012) Effects of different nitrogen regimes on competition between Ambrosia artemisiifolia, an invasive species, and two native species, Artemisia annua and Artemisia mongolica. Biodiversity Science, 20, 3-11.
DOI URL |
[王晋萍, 董丽佳, 桑卫国 (2012). 不同氮素水平下入侵种豚草与本地种黄花蒿、蒙古蒿的竞争关系. 生物多样性, 20, 3-11.]
DOI |
|
[40] | Xu RM, Ye WH (2003). Biological Invasion, Theory and Practice. Science Press, Beijing. 26-40. |
[徐汝梅, 叶万辉 (2003). 生物入侵--理论与实践. 科学出版社, 北京. 26-40.] | |
[41] | Yu Q, Duan L, Hao JM (2021). Acid deposition in China: sources, effects and control. Acta Scientiae Circumstantiae, 41, 731-746. |
[余倩, 段雷, 郝吉明 (2021). 中国酸沉降: 来源、影响与控制. 环境科学学报, 41, 731-746.] |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 罗来聪, 赖晓琴, 白健, 李爱新, 方海富, Nasir SHAD, 唐明, 胡冬南, 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(2): 206-215. |
[3] | 邓邦良, 刘倩, 刘喜帅, 郑利亚, 江亮波, 郭晓敏, 刘苑秋, 张令. UV-B辐射增强和氮沉降对入侵植物乌桕生长的影响[J]. 植物生态学报, 2017, 41(4): 471-479. |
[4] | 胡朝臣, 刘学炎, 类延宝, 谭运洪, 张鹏, 董玉平, 刘丛强. 西双版纳外来入侵植物及其共存种叶片氮、磷化学计量特征[J]. 植物生态学报, 2016, 40(11): 1145-1153. |
[5] | 杨清培, 杨光耀, 宋庆妮, 施建敏, 欧阳明, 祁红艳, 方向民. 竹子扩张生态学研究: 过程、后效与机制[J]. 植物生态学报, 2015, 39(1): 110-124. |
[6] | 郭慧媛, 马元丹, 王丹, 左照江, 高岩, 张汝民, 王玉魁. 模拟酸雨对毛竹叶片抗氧化酶活性及释放绿叶挥发物的影响[J]. 植物生态学报, 2014, 38(8): 896-903. |
[7] | 葛蔚, 汪芳, 柴超. 氮和磷浓度对中肋骨条藻和锥状斯氏藻种间竞争的影响[J]. 植物生态学报, 2012, 36(7): 697-704. |
[8] | 葛俊, 邢福. 克隆植物对种间竞争的适应策略[J]. 植物生态学报, 2012, 36(6): 587-596. |
[9] | 金清, 江洪, 余树全, 殷秀敏. 酸雨胁迫对苦槠幼苗气体交换与叶绿素荧光的影响[J]. 植物生态学报, 2010, 34(9): 1117-1124. |
[10] | 麦博儒, 郑有飞, 吴荣军, 梁骏, 刘霞. 模拟硫酸型、硝酸型及其混合型酸雨对油菜生理特性、生长和产量的影响[J]. 植物生态学报, 2010, 34(4): 427-437. |
[11] | 李志勇, 王彦辉, 于澎涛, 张治军, 杜士才, 何萍, 王祥, 段健, 李振华. 重庆酸雨区马尾松香樟混交林的土壤化学性质和林木生长特征[J]. 植物生态学报, 2010, 34(4): 387-395. |
[12] | 王艳红, 江洪, 余树全, 李巍, 林曦乔. 硫稳定同位素技术在生态学研究中的应用[J]. 植物生态学报, 2010, 34(2): 179-185. |
[13] | 赵晓玮, 唐学玺, 王悠. 两种海洋赤潮微藻赤潮异弯藻和米氏凯伦藻之间的相互作用[J]. 植物生态学报, 2009, 33(5): 958-965. |
[14] | 李志勇, 陈建军, 王彦辉, 于澎涛, 杜士才, 何萍, 段健. 重庆酸雨区人工木荷林对土壤化学性质的影响[J]. 植物生态学报, 2008, 32(3): 632-638. |
[15] | 吴晓雯, 罗晶, 陈家宽, 李博. 中国外来入侵植物的分布格局及其与环境因子和人类活动的关系[J]. 植物生态学报, 2006, 30(4): 576-584. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19