植物生态学报 ›› 2009, Vol. 33 ›› Issue (5): 958-965.DOI: 10.3773/j.issn.1005-264x.2009.05.015
收稿日期:
2008-11-25
修回日期:
2009-05-15
出版日期:
2009-11-25
发布日期:
2009-09-30
通讯作者:
王悠
作者简介:
*(wangyou@ouc.edu.cn)基金资助:
ZHAO Xiao-Wei1,2(), TANG Xue-Xi1, WANG You1,*(
)
Received:
2008-11-25
Revised:
2009-05-15
Online:
2009-11-25
Published:
2009-09-30
Contact:
WANG You
摘要:
在实验生态条件下研究了不同起始生物量比的两种海洋赤潮微藻赤潮异弯藻(Heterosigma akashiwo)和米氏凯伦藻(Karenia mikimotoi)的种群增长特征。结果发现: 1)在单培养体系中, H. akashiwo和K. mikimotoi的种群增长均可用逻辑斯谛增长模型(Logistic equation)拟合, 但不同的起始密度比对两种微藻的生长可产生显著影响: 随着起始密度的增加, 种群的瞬时增长率(r)随之增加, 但环境负载能力(K)逐渐降低, 进入指数增长期和静止期的时间也相应缩短。2)在共培养体系中, 两种微藻的K值都受到明显的抑制, 与对照组(单培养体系)相比差异显著(p<0.05); 不同起始生物量比对共培养体系中两种微藻的生长和竞争影响显著: 当H. akashiwo和K. mikimotoi的起始生物量比(H:K)为1:4和1:16时, K. mikimotoi在竞争中占据优势地位; 当H:K=1:1时, H. akashiwo在竞争中占绝对优势。他感作用是导致本实验结果的可能原因。
赵晓玮, 唐学玺, 王悠. 两种海洋赤潮微藻赤潮异弯藻和米氏凯伦藻之间的相互作用. 植物生态学报, 2009, 33(5): 958-965. DOI: 10.3773/j.issn.1005-264x.2009.05.015
ZHAO Xiao-Wei, TANG Xue-Xi, WANG You. INTERACTIONS BETWEEN TWO SPECIES OF MARINE BLOOM MICROALGAE UNDER CONTROLLED LABORATORY CONDITIONS: HETEROSIGMA AKASHIWO AND KARENIA MIKIMOTOI. Chinese Journal of Plant Ecology, 2009, 33(5): 958-965. DOI: 10.3773/j.issn.1005-264x.2009.05.015
种群生长参数 The growth parameters of population | 起始密度 Initial cell densities | ||
---|---|---|---|
0.5 (×104 cell·mL-1) | 1.0 (×104 cell·mL-1) | 5.0 (×104 cell·mL-1) | |
生长回归方程 The logistic equation | N=49.566 4/(1+e4.144 4-0.473 9t) (R2=0.992 5) | N=44.666 1/(1+e4.532 1-0.654 7t) (R2=0.957 8) | N=42.813 2/(1+e4.433 7-0.851 0t) (R2=0.964 9) |
环境负载能力K Environment carry capacity (×104 cell·mL-1) | 49.566 4 | 44.666 1 | 42.813 2 |
瞬时增长率 Instantaneous rate of increase (r) | 0.473 9 | 0.654 7 | 0.851 0 |
到达拐点时间Tp The time at inflexion point (d) | 8.7 | 6.9 | 5.2 |
进入指数生长期的时间 The time of entering exponential phase (d) | 6.0 | 5.0 | 3.0 |
进入静止期的时间 The time of entrering stationary growth phase (d) | 19.0 | 14.0 | 10.0 |
表1 不同起始密度下赤潮异弯藻种群的生长参数的比较
Table 1 The growth parameters of Heterosigma akashiwo population at different initial cell densities
种群生长参数 The growth parameters of population | 起始密度 Initial cell densities | ||
---|---|---|---|
0.5 (×104 cell·mL-1) | 1.0 (×104 cell·mL-1) | 5.0 (×104 cell·mL-1) | |
生长回归方程 The logistic equation | N=49.566 4/(1+e4.144 4-0.473 9t) (R2=0.992 5) | N=44.666 1/(1+e4.532 1-0.654 7t) (R2=0.957 8) | N=42.813 2/(1+e4.433 7-0.851 0t) (R2=0.964 9) |
环境负载能力K Environment carry capacity (×104 cell·mL-1) | 49.566 4 | 44.666 1 | 42.813 2 |
瞬时增长率 Instantaneous rate of increase (r) | 0.473 9 | 0.654 7 | 0.851 0 |
到达拐点时间Tp The time at inflexion point (d) | 8.7 | 6.9 | 5.2 |
进入指数生长期的时间 The time of entering exponential phase (d) | 6.0 | 5.0 | 3.0 |
进入静止期的时间 The time of entrering stationary growth phase (d) | 19.0 | 14.0 | 10.0 |
种群生长参数 The growth parameters of population | 起始密度 Initial cell densities | ||
---|---|---|---|
0.5 (×104 cell·mL-1) | 1.0 (×104 cell·mL-1) | 5.0 (×104 cell·mL-1) | |
生长回归方程 The logistic equation | N=80.631 2/(1+e3.575 8-0.324 2t) (R2=0.990 3) | N=77.928 8/(1+e3.655 4-0.384 2t) (R2=0.993 6) | N=76.711 1/(1+e3.161 9-0.494 0t) (R2=0.985 1) |
环境负载能力K Environment carry capacity (×104 cell·mL-1) | 80.631 2 | 77.928 8 | 76.711 1 |
瞬时增长率 Instantaneous rate of increase (r) | 0.324 2 | 0.384 2 | 0.494 0 |
到达拐点时间Tp The time at inflexion point (d) | 11.0 | 9.5 | 6.4 |
进入指数生长期的时间 The time of entering exponential phase (d) | 9.0 | 7.0 | 4.0 |
进入静止期的时间 The time of entrering stationary growth phase (d) | 26.0 | 22.0 | 12.0 |
表2 不同起始密度下米氏凯伦藻的生长参数的比较
Table 2 The growth parameters of Karenia mikimotoi population at different initial cell densities
种群生长参数 The growth parameters of population | 起始密度 Initial cell densities | ||
---|---|---|---|
0.5 (×104 cell·mL-1) | 1.0 (×104 cell·mL-1) | 5.0 (×104 cell·mL-1) | |
生长回归方程 The logistic equation | N=80.631 2/(1+e3.575 8-0.324 2t) (R2=0.990 3) | N=77.928 8/(1+e3.655 4-0.384 2t) (R2=0.993 6) | N=76.711 1/(1+e3.161 9-0.494 0t) (R2=0.985 1) |
环境负载能力K Environment carry capacity (×104 cell·mL-1) | 80.631 2 | 77.928 8 | 76.711 1 |
瞬时增长率 Instantaneous rate of increase (r) | 0.324 2 | 0.384 2 | 0.494 0 |
到达拐点时间Tp The time at inflexion point (d) | 11.0 | 9.5 | 6.4 |
进入指数生长期的时间 The time of entering exponential phase (d) | 9.0 | 7.0 | 4.0 |
进入静止期的时间 The time of entrering stationary growth phase (d) | 26.0 | 22.0 | 12.0 |
图3 在起始生物量比为1:4的共培养体系中赤潮异弯藻和米氏凯伦藻生长的变化(处理I)
Fig. 3 The growth of Heterosigna akashiwo and Karenia mikimotoi in co-culture at an initial biomass ratio of 1:4
图4 在起始生物量比为1:1的共培养体系中赤潮异弯藻和米氏凯伦藻生长的变化(处理II)
Fig. 4 The growth of Heterosigma akashiwo and Karenia mikimotoi in co-culture at an initial biomass ratio of 1:1
图5 在起始生物量比为1:16的共培养体系中赤潮异弯藻和米氏凯伦藻生长的变化(处理Ⅲ)
Fig. 5 The growth of Heterosigma akashiwo and Karenia mikimotoi in co-culture at an initial biomass ratio of 1:16
[1] | Armstrong RA (2003). A hybrid spectral representation of phytoplankton growth and zooplankton response: the “control rod” model of plankton interaction. Deep-Sea Research, 50, 2895-2916. |
[2] | Black EA, Whyte JNC, Bagshaw JW, Ginther NG (1991). The effects of Heterosigma akashiwo on juvenile Oncorhynchus tshawytscha and its implication for fish culture. Journal of Applied Electrochemistry, 7, 168-175. |
[3] | Cai HJ (蔡恒江), Tang XX (唐学玺), Zhang PY (张培玉), Yang Z (杨震) ( 2005). Effects of initial cell density on the population growth of three species of red tide microalgae. Marine Environmental Science (海洋环境科学), 24(3), 37-39. (in Chinese with English abstract) |
[4] | Chang FH, Andenson C, Bouslend NC (1990). First record of a Heterosigma (Raphidophyceae) bloom with associated mortality of cage reared salmon in Big Glory Bay. Journal of Marine and Freshwater Research, 24, 461-469. |
[5] |
Egge JK (1998). Are diatoms poor competitors at low phosphate concentrations. Journal of Marine Systems, 16, 191-198.
DOI URL |
[6] |
Fistarol GO, Legrand C, Granéli E (2003). Allelopathic effect of Prymnesium parvum on a natural plankton community. Marine Ecology Progress Series, 255, 115-125.
DOI URL |
[7] | Gentien P (2006). Allelopathy in Karenia mikimotoi: a case study. 12th International Conference on Harmful Algae,Denmark, 49. |
[8] |
Granéli E, Johansson N (2003). Increase in the production of allelopathlc substances by Prymnesium parvumcells grown under N- or P-deficient conditions. Harmful Algae, 2, 135-145.
DOI URL |
[9] | Granéli E, Turner JT (2006). Ecology of Harmful Algae (Ecological Studies) 1st edn. Springer-Verlag, Berlin, 189-201. |
[10] | Guillard RRL (1975). Culture of phytoplankton for feeding marine invertebrates, In: Smith WL, Chanley MH eds.Culture of Marine Animals. Plenum Press, New York, 26-60. |
[11] | Honjo T (1993). Overview on bloom dynamics and physiological ecology of Heterosigma akashiwo. In: Smayda TJ, Shimizu Y eds. Toxic Phytoplankton Blooms in the Sea. Elsevier, New York, 33-41. |
[12] |
Honjo T (1994). The biology and prediction of representative red tide associated with fish kills in Japan. Research of Fish Science, 2, 225-253.
DOI URL |
[13] |
Keating KI (1978). Blue-green algal inhibition of diatom growth: transitionfrom mesotrophicto eutrophic community structure. Science, 199, 971-973.
DOI URL PMID |
[14] | Kubanek J, Prince EK, Myers T, Naar J (2006). Allelopathic interactions modulate brevetoxin production by the red tide dinoflagellate Karenia brevis . International Conference on Harmful Algae, Copenhagen,Denmark, 49. |
[15] | Legrand C, Rengefors K, Fistarol GO, Granéli E (2003). Allelopathy in phytoplankton-biochemical, ecological, and evolutionary aspects. Phycologia, 42(4), 70-83. |
[16] | Liu JS (刘洁生), Peng XC (彭喜春), Yang WD (杨维东) (2006). Growth and hemolytic activities of Phaeocystis globosa Scherfel at different nutrients condition. Acta Ecologiaca Sinica (生态学报), 26, 780-785. (in Chinese with English abstract) |
[17] | Maestrini SY, Bonin DJ (1981). Allelopathic relationships between phytoplankton species. Canadian Bulletin of Fisheries and Aquatic Sciences, 210, 323-338. |
[18] | Pan KH (潘克厚), Wang JF (王金凤), Zhu BH (朱葆华) (2007). Progress on study of competition among marine microalgae. Marine Sciences (海洋科学), 31(5), 58-62. (in Chinese with English abstract) |
[19] |
Pratt R, Fong J (1940). Studies on Chlorella vulgaris. II. Further evidence that Chlorella cells form a growth-inhibiting substance. American Journal of Botany, 27, 431-436.
DOI URL |
[20] | Qi YZ (齐雨藻) (1999). Red Tides (赤潮). Guangdong Science and Technology Press,Guangzhou, 16-l8. (in Chinese) |
[21] | Rice EL (1984). Allelopathy 2nd edn. Academic Press, London, 422. |
[22] |
Roy S, Alam S, Chattopadhyay J (2006). Competing effects of toxin-producing phytoplankton on overall plankton populations in the Bay of Bengal. Bulletin of Mathematical Biology, 68, 2303-2320.
DOI URL |
[23] |
Sinkkonen A (2001). Density-dependent chemical interference―an extension of the biological response model. Journal of Chemical Ecology, 27, 1513-1523.
DOI URL |
[24] |
Sinkkonen A (2003). A model describing chemical interference caused by decomposing residues at different densities of growing plants. Plant and Soil, 250, 315-322.
DOI URL |
[25] |
Suikkanen S, Fistarol GO, Granéli E (2004). Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. Journal of Experimental Marine Biology and Ecology, 308, 85-101.
DOI URL |
[26] | Taylor FJR, Haigh R (1993). The ecology of fish-killing blooms of the chloromonad flagellate Heterosigma in the Strait of Georgia and adjacent waters. In: Smayda TJ, Shimizu Y eds. Toxic Phytoplankton Blooms in the Sea. Elsevier Science Publishers, New York, 705-710. |
[27] | Uchida T, Matsuyama Y, Yamaguchi M, Honjo T (1996). Growth interactions between a red tide dinoflagellate Heterocapsa circularisquama and some other phytoplankton species in culture. In: Yasumoto T, Oshima Y, Fukuyo Y eds. Harmful and Toxic Algal Blooms. Intergovernmental Oceanographic Commission of UNESCO,Paris , 369-372. |
[28] |
Uchida T, Toda S, Matsuyarna Y, Yamaguchi M, Kotani Y, Honjo T (1999). Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture. Journal of Experimental Marine Biology and Ecology, 241, 285-299.
DOI URL |
[29] | Uchida T, Yamaguchi Y, Matsuyama Y, Honjo T (1995). The red-tide dinoflagellateHeterocapsa sp. kills Gyrodinium instriatum by cell contact. Marine Ecology-Progress Series, 118, 301-303. |
[30] |
Yan T (颜天), Zhou MJ (周名江), Fu M (傅萌), Yu RC (于仁诚), Wang YF (王云峰), Li J (李钧), Tan ZJ (谭志军) (2003). The preliminary study on toxicity of Heterosigma akashiwo and the toxicity source. Oceanologia et Limnologia Sinica (海洋与湖泊), 34, 50-55. (in Chinese with English abstract)
DOI URL |
[31] | Yoshinaga I, Ishida Y, Kim MC (1998). Dynamics and population analysis of algicidal bacteria targeting marine microalgae during red tides by RLP of 16s RNA gene. In: Reguera B, Blanco J, Fernandez ML eds. Harmful Algae. Xunta de Galicia and Intergover- nmental Oceanographic Commission of UNESCO, 398-401. |
[32] | Zhou CX (周成旭), Fu YJ (傅永静), Yan XJ (严小军) (2007). Hemolytic activity studies of several harmful alga strains. Asian Journal of Ecotoxicology (生态毒理学报), 2, 78-82. (in Chinese with English abstract) |
[1] | 邓文婕, 吴华征, 李添翔, 周丽娜, 胡仁勇, 金鑫杰, 张永普, 张永华, 刘金亮. 洞头国家级海洋公园主要植被类型及其特征[J]. 植物生态学报, 2024, 48(2): 254-268. |
[2] | 柳牧青, 杨小凤, 石钰铭, 刘雨薇, 李小蒙, 廖万金. 模拟酸雨对入侵植物豚草与伴生种鬼针草竞争关系的影响[J]. 植物生态学报, 2022, 46(8): 932-940. |
[3] | 叶幼亭, 史大林. 全球变化对海洋生态系统初级生产关键过程的影响[J]. 植物生态学报, 2020, 44(5): 575-582. |
[4] | 葛蔚, 汪芳, 柴超. 氮和磷浓度对中肋骨条藻和锥状斯氏藻种间竞争的影响[J]. 植物生态学报, 2012, 36(7): 697-704. |
[5] | 葛俊, 邢福. 克隆植物对种间竞争的适应策略[J]. 植物生态学报, 2012, 36(6): 587-596. |
[6] | 黄逸君, 江志兵, 曾江宁, 陈全震. 石油烃污染对海洋浮游植物群落的短期毒性效应[J]. 植物生态学报, 2010, 34(9): 1095-1106. |
[7] | 江志兵, 曾江宁, 陈全震, 廖一波, 寿鹿, 徐晓群, 刘晶晶, 黄逸君. 热冲击和加氯后亚热带海区浮游植物细胞数量的动态变化[J]. 植物生态学报, 2008, 32(6): 1386-1396. |
[8] | 杜峰, 梁宗锁, 山仑, 陈小燕. 黄土丘陵区不同立地条件下猪毛蒿种内、种间竞争[J]. 植物生态学报, 2006, 30(4): 601-609. |
[9] | 王悠, 俞志明. 海洋有害赤潮的生物防治对策[J]. 植物生态学报, 2005, 29(4): 665-671. |
[10] | 张培玉, 唐学玺, 蔡恒江, 于娟, 杨震. 3种海洋赤潮微藻蛋白质和核酸合成对UV-B辐射增强的响应[J]. 植物生态学报, 2005, 29(3): 505-509. |
[11] | 段仁燕, 王孝安. 太白红杉种内和种间竞争研究[J]. 植物生态学报, 2005, 29(2): 242-250. |
[12] | 刘登义, Lars Ericson. 种间竞争梯度对白车轴草与其病原菌白车轴草单孢锈菌相互作用的影响(英文) 刘登义 Lars Ericson[J]. 植物生态学报, 2001, 25(3): 334-350. |
[13] | 刘金福, 洪伟. 格氏栲种群优势度增长改进模型的研究[J]. 植物生态学报, 2001, 25(2): 225-229. |
[14] | 邹春静, 徐文铎. 沙地云杉种内、种间竞争的研究[J]. 植物生态学报, 1998, 22(3): 269-274. |
[15] | 赵学农. 哀牢山木果石栎林种群调节与竞争的初步研究[J]. 植物生态学报, 1991, 15(2): 183-190. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19