植物生态学报 ›› 2010, Vol. 34 ›› Issue (9): 1117-1124.DOI: 10.3773/j.issn.1005-264x.2010.09.012
• 简报 • 上一篇
收稿日期:
2009-11-12
接受日期:
2010-01-22
出版日期:
2010-11-12
发布日期:
2010-10-08
通讯作者:
江洪
作者简介:
* E-mail: hongjiang1.china@gmail.com
JIN Qing1, JIANG Hong1,2,*(), YU Shu-Quan1, YIN Xiu-Min1
Received:
2009-11-12
Accepted:
2010-01-22
Online:
2010-11-12
Published:
2010-10-08
Contact:
JIANG Hong
摘要:
常绿阔叶树苦槠(Castanopsis sclerophylla)是亚热带地带性顶极群落的建群种之一, 在区域森林资源保护和可持续利用方面具有重要的地位。在该区域日益严重的酸雨胁迫下, 研究其对于胁迫的生理生态响应具有重要的理论价值和实践意义。该文以苦槠幼苗为研究材料, 研究了酸雨胁迫对苦槠幼苗光合生理的影响。结果表明: (1)短时间内, pH 2.5处理下的幼苗叶绿素相对含量最低, 且与pH 5.6处理下的存在显著性差异(p < 0.05); 经过一段时间处理后, pH 4.0处理下的叶绿素相对含量最高, 表明低浓度的酸雨会促进叶绿素相对含量的增加。(2) 2007年4月, 光合速率(Pn)、PSⅡ最大光化学效率(Fv/Fm)和PSⅡ的潜在活性(Fv/F0)在不同酸雨浓度处理下基本无变化。随着酸雨处理时间的延长, pH 2.5处理下的Pn、光饱和点、光补偿点和暗呼吸速率有显著降低, 且与pH 5.6处理下的存在显著性差异(p < 0.05)。pH 2.5处理组与pH 5.6处理组之间的Fv/Fm和Fv/F0差异性逐渐减小。表观量子效率和气孔导度变化规律不明显。综合来说, 酸雨处理前期, 高浓度的酸雨胁迫对苦槠幼苗叶绿素相对含量、光合生理参数有显著影响, 但随着酸雨处理时间的增加, 酸雨胁迫对苦槠幼苗的影响逐渐减小, 表明其对外界不良环境具有一定的抵御能力和适应能力。
金清, 江洪, 余树全, 殷秀敏. 酸雨胁迫对苦槠幼苗气体交换与叶绿素荧光的影响. 植物生态学报, 2010, 34(9): 1117-1124. DOI: 10.3773/j.issn.1005-264x.2010.09.012
JIN Qing, JIANG Hong, YU Shu-Quan, YIN Xiu-Min. Effects of acid rain stress on gas exchange and chlorophyll fluorescence of Castanopsis sclerophylla seedlings. Chinese Journal of Plant Ecology, 2010, 34(9): 1117-1124. DOI: 10.3773/j.issn.1005-264x.2010.09.012
图1 不同酸雨浓度处理下苦槠幼苗叶绿素相对含量的年变化(平均值±标准误差)。 柱上不同字母表示存在显著差异(p = 0.05)。
Fig. 1 Annual variation of chlorophyll relative content on Castanopsis sclerophylla seedlings under different acid rain treatments (mean ± SE). Bars with different letters are significantly different at p = 0.05 level.
图2 不同酸雨浓度处理下苦槠幼苗的光合作用-光响应曲线。 A, B, C, D, E, F, 分别为2007年4月、7月、10月及2008年4月、7月、10月, 苦槠幼苗在不同酸雨浓度处理下的光合作用-光响应曲线。
Fig. 2 Photosynthesis-light response curves of Castanopsis sclerophylla seedlings under different acid rain treatments. A, B, C, D, E, F, the photosynthesis-response curves of Castanopsis sclerophylla seedlings under different acid rain treatments in April 2007, July 2007, October 2007, April 2008, July 2008 and October 2008. Pn, photosynthetic rate; PPFD, photosynthetic photon quanta flux density.
图3 不同酸雨浓度处理下苦槠幼苗气孔导度(Gs)的年变化(平均值±标准误差)。 图注同图1。
Fig. 3 Annual variation of stomatal conductance (Gs) on Castanopsis sclerophylla seedlings under different acid rain treatments (mean ± SE). Notes see Fig. 1.
图4 不同酸雨浓度处理下苦槠幼苗的PSII最大光化学效率(Fv/Fm) (A)和PSII的潜在活性(Fv/F0) (B)的年变化(平均值±标准误差)。
Fig. 4 Annual variation of maximal photochemical efficiency of photosystem II (Fv/Fm) (A) and potential activity of photosystem II (Fv/F0) (B) on Castanopsis sclerophylla seedlings under different acid rain treatments (mean ± SE).
时间 Date | 处理 Treatment | 光补偿点 LCP (μmol·m-2·s-1) | 光饱和点 LSP (μmol·m-2·s-1) | 最大净光合速率Amax (μmol·m-2·s-1) | 表观光合量子效率AQY (μmol·m-2·s-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) |
---|---|---|---|---|---|---|
200704 | pH 2.5 | 9.8 ± 0.31b | 129 ± 5.2b | 4.79 ± 0.23a | 0.049 4 ± 0.001 4a | -0.77 ± 0.06a |
pH 4.0 | 15.6 ± 0.53a | 157 ± 6.7b | 6.70 ± 0.57a | 0.036 1 ± 0.002 9b | -1.26 ± 0.12b | |
pH 5.6 | 20.6 ± 0.71a | 248 ± 12.5a | 5.86 ± 0.49a | 0.046 2 ± 0.003 8a | -1.23 ± 0.11b | |
200707 | pH 2.5 | 25.5 ± 0.18a | 182 ± 13.5c | 9.65 ± 0.24a | 0.056 3 ± 0.003 4a | -1.41 ± 0.11a |
pH 4.0 | 31.9 ± 3.30a | 261 ± 22.8b | 12.3 ± 1.43a | 0.053 4 ± 0.002 3a | -1.68 ± 0.25a | |
pH 5.6 | 28.7 ± 0.58a | 370 ± 17.3a | 13.8 ± 1.71a | 0.045 4 ± 0.005 4a | -1.61 ± 0.26a | |
200710 | pH 2.5 | 16.1 ± 1.50b | 112 ± 10.7a | 5.87 ± 0.18b | 0.065 3 ± 0.007 0a | -0.56 ± 0.06a |
pH 4.0 | 27.7 ± 1.54ab | 146 ± 13.8a | 7.91 ± 0.54a | 0.056 0 ± 0.004 6b | -0.89 ± 011ab | |
pH 5.6 | 32.7 ± 3.97a | 148 ± 10.5a | 8.52 ± 0.33a | 0.067 0 ± 0.003 1a | -1.39 ± 0.12b | |
200804 | pH 2.5 | 7.7 ± 0.11b | 129 ± 2.5a | 6.52 ± 0.64a | 0.061 7 ± 0.005 0a | -0.43 ± 0.01a |
pH 4.0 | 13.4 ± 0.17a | 143 ± 12.8a | 8.22 ± 0.10a | 0.058 3 ± 0.001 1a | -0.47 ± 0.04ab | |
pH 5.6 | 14.5 ± 0.51a | 160 ± 14.0a | 7.05 ± 0.90a | 0.044 7 ± 0.003 6b | -0.68 ± 0.02b | |
200807 | pH 2.5 | 13.6 ± 0.81b | 158 ± 17.3b | 6.88 ± 0.86b | 0.050 5 ± 0.005 6a | -0.63 ± 0.06a |
pH 4.0 | 26.6 ± 1.15a | 238 ± 13.8a | 7.94 ± 0.40ab | 0.038 6 ± 0.003 4a | -0.99 ± 0.12ab | |
pH 5.6 | 26.7 ± 2.48a | 248 ± 12.3a | 11.1 ± 0.71a | 0.050 6 ±0.001 7a | -1.34 ± 0.10b | |
200810 | pH 2.5 | 17.0 ± 1.31b | 174 ± 15.5b | 5.69 ± 0.42b | 0.037 0 ± 0.003 5b | -0.61 ± 0.06a |
pH 4.0 | 21.6 ± 2.38a | 190 ± 11.6ab | 7.77 ± 0.52a | 0.045 9 ± 0.000 6a | -0.99 ± 0.08ab | |
pH 5.6 | 34.8 ± 1.70a | 230 ± 15.6a | 5.85 ± 0.19b | 0.031 3 ± 0.002 0b | -1.41 ± 0.07b |
表1 不同酸雨浓度处理下苦槠幼苗光合作用-光响应曲线的特征参数值(平均值±标准误差) (p = 0.05)
Table 1 Photosynthesis-light response curves characteristic parameter values of Castanopsis sclerophylla seedling under different densities acid rain treatments (mean ± SE) (p = 0.05)
时间 Date | 处理 Treatment | 光补偿点 LCP (μmol·m-2·s-1) | 光饱和点 LSP (μmol·m-2·s-1) | 最大净光合速率Amax (μmol·m-2·s-1) | 表观光合量子效率AQY (μmol·m-2·s-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) |
---|---|---|---|---|---|---|
200704 | pH 2.5 | 9.8 ± 0.31b | 129 ± 5.2b | 4.79 ± 0.23a | 0.049 4 ± 0.001 4a | -0.77 ± 0.06a |
pH 4.0 | 15.6 ± 0.53a | 157 ± 6.7b | 6.70 ± 0.57a | 0.036 1 ± 0.002 9b | -1.26 ± 0.12b | |
pH 5.6 | 20.6 ± 0.71a | 248 ± 12.5a | 5.86 ± 0.49a | 0.046 2 ± 0.003 8a | -1.23 ± 0.11b | |
200707 | pH 2.5 | 25.5 ± 0.18a | 182 ± 13.5c | 9.65 ± 0.24a | 0.056 3 ± 0.003 4a | -1.41 ± 0.11a |
pH 4.0 | 31.9 ± 3.30a | 261 ± 22.8b | 12.3 ± 1.43a | 0.053 4 ± 0.002 3a | -1.68 ± 0.25a | |
pH 5.6 | 28.7 ± 0.58a | 370 ± 17.3a | 13.8 ± 1.71a | 0.045 4 ± 0.005 4a | -1.61 ± 0.26a | |
200710 | pH 2.5 | 16.1 ± 1.50b | 112 ± 10.7a | 5.87 ± 0.18b | 0.065 3 ± 0.007 0a | -0.56 ± 0.06a |
pH 4.0 | 27.7 ± 1.54ab | 146 ± 13.8a | 7.91 ± 0.54a | 0.056 0 ± 0.004 6b | -0.89 ± 011ab | |
pH 5.6 | 32.7 ± 3.97a | 148 ± 10.5a | 8.52 ± 0.33a | 0.067 0 ± 0.003 1a | -1.39 ± 0.12b | |
200804 | pH 2.5 | 7.7 ± 0.11b | 129 ± 2.5a | 6.52 ± 0.64a | 0.061 7 ± 0.005 0a | -0.43 ± 0.01a |
pH 4.0 | 13.4 ± 0.17a | 143 ± 12.8a | 8.22 ± 0.10a | 0.058 3 ± 0.001 1a | -0.47 ± 0.04ab | |
pH 5.6 | 14.5 ± 0.51a | 160 ± 14.0a | 7.05 ± 0.90a | 0.044 7 ± 0.003 6b | -0.68 ± 0.02b | |
200807 | pH 2.5 | 13.6 ± 0.81b | 158 ± 17.3b | 6.88 ± 0.86b | 0.050 5 ± 0.005 6a | -0.63 ± 0.06a |
pH 4.0 | 26.6 ± 1.15a | 238 ± 13.8a | 7.94 ± 0.40ab | 0.038 6 ± 0.003 4a | -0.99 ± 0.12ab | |
pH 5.6 | 26.7 ± 2.48a | 248 ± 12.3a | 11.1 ± 0.71a | 0.050 6 ±0.001 7a | -1.34 ± 0.10b | |
200810 | pH 2.5 | 17.0 ± 1.31b | 174 ± 15.5b | 5.69 ± 0.42b | 0.037 0 ± 0.003 5b | -0.61 ± 0.06a |
pH 4.0 | 21.6 ± 2.38a | 190 ± 11.6ab | 7.77 ± 0.52a | 0.045 9 ± 0.000 6a | -0.99 ± 0.08ab | |
pH 5.6 | 34.8 ± 1.70a | 230 ± 15.6a | 5.85 ± 0.19b | 0.031 3 ± 0.002 0b | -1.41 ± 0.07b |
光合特征参数 Photosynthetic parameters | 叶绿素相对含量 Chlorophyll relative content | 光合速率 Pn (μmol·m-2·s-1) | 气孔导度 Gs (mol·m-2·s-1) | PSⅡ最大光化学效率 Fv /Fm | PSⅡ的潜在活性 Fv /F0 |
---|---|---|---|---|---|
叶绿素相对含量 Chlorophyll relative content | 1.000 | ||||
光合速率Pn (μmol·m-2·s-1) | 0.330 | 1.000 | |||
气孔导度Gs (mol·m-2·s-1) | 0.156 | 0.586* | 1.000 | ||
PSII最大光化学效率Fv /Fm | 0.243 | 0.323 | 0.092 | 1.000 | |
PSII的潜在活性Fv /F0 | 0.277 | 0.396 | 0.004 | 0.927** | 1.000 |
表2 不同酸雨浓度处理下苦槠幼苗光合特征参数的相关性分析
Table 2 Correlation analysis of photosynthetic parameters of Castanopsis sclerophylla seedlings under different acid rain treatments
光合特征参数 Photosynthetic parameters | 叶绿素相对含量 Chlorophyll relative content | 光合速率 Pn (μmol·m-2·s-1) | 气孔导度 Gs (mol·m-2·s-1) | PSⅡ最大光化学效率 Fv /Fm | PSⅡ的潜在活性 Fv /F0 |
---|---|---|---|---|---|
叶绿素相对含量 Chlorophyll relative content | 1.000 | ||||
光合速率Pn (μmol·m-2·s-1) | 0.330 | 1.000 | |||
气孔导度Gs (mol·m-2·s-1) | 0.156 | 0.586* | 1.000 | ||
PSII最大光化学效率Fv /Fm | 0.243 | 0.323 | 0.092 | 1.000 | |
PSII的潜在活性Fv /F0 | 0.277 | 0.396 | 0.004 | 0.927** | 1.000 |
光合特征参数 Photosynthetic parameters | 酸雨 Acid rain | 季节 Season | 酸雨×季节 Acid rain × season | |||
---|---|---|---|---|---|---|
F | Sig. | F | Sig. | F | Sig. | |
叶绿素相对含量 Chlorophyll relative content | 3.514 | 0.075 | 5.408 | 0.029 | 0.196 | 0.934 |
光合速率Pn (μmol·m-2·s-1) | 4.501 | 0.044 | 14.180 | 0.002 | 2.293 | 0.138 |
气孔导度Gs (mol·m-2·s-1) | 5.333 | 0.039 | 6.555 | 0.018 | 0.666 | 0.631 |
PSII最大光化学效率Fv /Fm | 0.574 | 0.582 | 2.574 | 0.131 | 0.031 | 0.998 |
PSII的潜在活性Fv /F0 | 0.298 | 0.749 | 2.717 | 0.120 | 0.010 | 1.000 |
表3 酸雨、季节及二因素交互作用对苦槠幼苗光合特征参数的双因素方差分析(p = 0.05)
Table 3 F-values of two-way ANOVA for the effects of acid rain, season and their interactions on response variables of Castanopsis sclerophylla (p = 0.05)
光合特征参数 Photosynthetic parameters | 酸雨 Acid rain | 季节 Season | 酸雨×季节 Acid rain × season | |||
---|---|---|---|---|---|---|
F | Sig. | F | Sig. | F | Sig. | |
叶绿素相对含量 Chlorophyll relative content | 3.514 | 0.075 | 5.408 | 0.029 | 0.196 | 0.934 |
光合速率Pn (μmol·m-2·s-1) | 4.501 | 0.044 | 14.180 | 0.002 | 2.293 | 0.138 |
气孔导度Gs (mol·m-2·s-1) | 5.333 | 0.039 | 6.555 | 0.018 | 0.666 | 0.631 |
PSII最大光化学效率Fv /Fm | 0.574 | 0.582 | 2.574 | 0.131 | 0.031 | 0.998 |
PSII的潜在活性Fv /F0 | 0.298 | 0.749 | 2.717 | 0.120 | 0.010 | 1.000 |
[1] |
Bruce H, Marcia S, Floyd H (1980). Acid rain: threshold of leaf damage in eight plant species from a southern Appalachian forest succession. Water, Air, and Soil Pollution, 14, 403-407.
DOI URL |
[2] |
Fan HB, Yi HW (2000). Effects of simulated acid rain on germination, foliar damage, chlorophyll contents and seedling growth of five hardwood species growing in China. Forest Ecology and Management, 126, 321-329.
DOI URL |
[3] | Farquhar GD, Sharkey TD (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 133, 314-345. |
[4] | Feng ZW (冯宗炜) (1993). Impact of Acid Rain on Ecosystems (酸雨对生态系统的影响). China Science and Technology Press, Beijing. 10-20. (in Chinese) |
[5] | Feng ZW (冯宗炜) (2000). Impacts and control strategies of acid deposition on terrestrial ecosystems in China. Engineering Science (中国工程科学), 9(2), 5-12. (in Chinese) |
[6] |
Foster JR (1990). Influence of pH and plant nutrient status on ion fluxes between tomato plants and simulated acid mists. New Phytologist, 116, 475-485.
DOI URL |
[7] | Jiang FW (蒋馥蔚), Jiang H (江洪), Li W (李巍), Yu SQ (余树全), Lu MJ (鲁美娟), Li J (李佳), Jin Q (金清), Wang YH (王艳红), Cao Q (曹全) (2008). Effects of acid rain stress on physiological characters of Lindera megaphylla Hemsl. seedlings in summer and autumn. Ecology and Environment (生态环境), 17, 2374-2380. |
[8] |
Jing QY, Su FY, Li FH (2002). Effects of simulated acid precipitation on photosynthesis, chlorophyll fluorescence, and antioxidative enzymes in Cucumis sativus L. Photosynthetica, 40, 331-335.
DOI URL |
[9] | Ke SS (柯世省), Jin ZX (金则新) (2008). Effects of water stress and temperature on gas exchange and chlorophyll fluorescence of Sinocaly canthus chinensis leaves. Chinese Journal of Applied Ecology (应用生态学报), 19, 43-49. (in Chinese with English abstract) |
[10] | Li WC (李万超), Jiang H (江洪), Zeng B (曾波), Yu SQ (余树全), Jin J (金静), Zhang Y (张英) (2008). Effects of simulated acid rain on photosynthesis in Schima superb and Quercus glauca. Journal of Southwest University (西南大学学报), 30(7), 98-103. (in Chinese with English abstract) |
[11] | Li ZG (李志国), Weng ML (翁忙玲), Jiang W (姜武), Jiang WB (姜卫兵) (2007). Effect of simulated acid rain on some physiological indices of Parakmeria lotungens seedlings. Chinese Journal of Ecology (生态学杂志) 26, 31-34. (in Chinese with English abstract) |
[12] | Li ZJ (李志军), Luo QH (罗青红), Wu WM (伍维模), Han L (韩路) (2009). The effects of drought stress on photosynthetic and chlorophyll fluorescence characteristics of Populus euphratica and P. pruinosa. Arid Zone Research (干旱区研究), 26, 45-52. (in Chinese with English abstract) |
[13] | Liao GS (廖广社), Xu JX (许建新), Xu H (许涵), Zhuang XY (庄雪影) (2005). Effects of simulated acid rain on the growth of Cassia surattensis seedling. Guangdong Landscape Architrcture (广东园林), 31(5), 37-41. (in Chinese with English abstract) |
[14] | Liu H (刘昊), Yu SQ (余树全), Jiang H (江洪), Fang JB (方江保) (2009). Chlorophyll fluorescence of Carya cathayensis with simulated acid rain. Journal of Zhejiang Forestry College (浙江林学院学报), 26, 32-37. (in Chinese with English abstract) |
[15] | Liu JF (刘建福) (2007). Stress effects of simulated acid rain on Myrica rubra. Chinese Agricultural Science Bulletin (中国农学通讯), 23(10), 110-113. (in Chinese with English abstract) |
[16] | Liu YQ (刘悦秋), Sun XY (孙向阳), Wang Y (王勇), Liu Y (刘英) (2007). Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Urtica dioica. Acta Ecologica Sinica (生态学报), 27, 3457-3464. (in Chinese with English abstract) |
[17] | Lu MJ (鲁美娟), Jiang H (江洪), Yu SQ (余树全), Jiang FW (蒋馥蔚), Li J (李佳), Cao Q (曹全) (2009). Effects of simulated acid rain on photosynthetic physiology of Carya cathayensis and Myrica rubra. Chinese Journal of Ecology (生态学杂志), 28, 1476-1481. (in Chinese with English abstract) |
[18] |
Maxwell K, Johnson GN (2000). Chlorophyll fluorescence: a practical guide. Journal of Experimental Botany, 51, 659-668.
DOI URL PMID |
[19] | Shan YF (单运峰) (1994). Acid Rain, Air Pollution and Plants (酸雨、大气污染与植物). China Environmental Science Press, Beijing, . (in Chinese) |
[20] | Wen GS (温国胜), Wang LH (王林和), Zhang GS (张国盛) (2004). Gas exchange and chlorophyll fluorescence characteristics of Sabina vulgaris under drought stress. Journal of Zhejiang Forestry College (浙江林学院学报), 21, 361-365. (in Chinese with English abstract) |
[21] | Xie YF (谢寅峰), Yang WH (杨万红), Lu MR (陆美蓉), Cai XL (蔡贤雷), Zhou J (周坚) (2008). Effects of silicon on photosynthetic characteristics of Indocalamus barbatusunder simulated acid rain stress. Chinese Journal of Applied Ecology (应用生态学报), 19, 1179-1184. (in Chinese with English abstract) |
[22] | Yang BH (杨本宏) (2000). The harmfulnesses of acid rain and its prevention and control strategies in China. Journal of Hefei Union University (合肥联合大学学报), 10(2), 102-106. (in Chinese with English abstract) |
[23] | Yi YH (衣英华), Fan DY (樊大勇), Xie ZQ (谢宗强), Chen FQ (陈芳清) (2006). Effects of waterlogging on the gas exchange, chlorophyll fluorescence and water potential of Quercus variabilia and Pterocarya stenoptera. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30, 960-968. (in Chinese with English abstract) |
[1] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[2] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[3] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[4] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[5] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[6] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[7] | 周稳, 迟永刚, 周蕾. 基于日光诱导叶绿素荧光的北半球森林物候研究[J]. 植物生态学报, 2021, 45(4): 345-354. |
[8] | 丁键浠, 周蕾, 王永琳, 庄杰, 陈集景, 周稳, 赵宁, 宋珺, 迟永刚. 叶绿素荧光主动与被动联合观测应用前景[J]. 植物生态学报, 2021, 45(2): 105-118. |
[9] | 郭庆华, 胡天宇, 马勤, 徐可心, 杨秋丽, 孙千惠, 李玉美, 苏艳军. 新一代遥感技术助力生态系统生态学研究[J]. 植物生态学报, 2020, 44(4): 418-435. |
[10] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
[11] | 蔡建国, 韦孟琪, 章毅, 魏云龙. 遮阴对绣球光合特性和叶绿素荧光参数的影响[J]. 植物生态学报, 2017, 41(5): 570-576. |
[12] | 樊大勇, 付增娟, 谢宗强, 李荣贵, 张淑敏. 调制式荧光影像新技术: 叶片内部最大光化学量子效率及其异质性的活体测定[J]. 植物生态学报, 2016, 40(9): 942-951. |
[13] | 刘畅, 孙鹏森, 刘世荣. 植物反射光谱对水分生理变化响应的研究进展[J]. 植物生态学报, 2016, 40(1): 80-91. |
[14] | 安东升, 曹娟, 黄小华, 周娟, 窦美安. 基于Lake模型的叶绿素荧光参数在甘蔗苗期抗旱性研究中的应用[J]. 植物生态学报, 2015, 39(4): 398-406. |
[15] | 郭慧媛, 马元丹, 王丹, 左照江, 高岩, 张汝民, 王玉魁. 模拟酸雨对毛竹叶片抗氧化酶活性及释放绿叶挥发物的影响[J]. 植物生态学报, 2014, 38(8): 896-903. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19