植物生态学报 ›› 2021, Vol. 45 ›› Issue (4): 345-354.DOI: 10.17521/cjpe.2020.0376
所属专题: 生态遥感及应用
收稿日期:
2020-11-18
接受日期:
2021-01-11
出版日期:
2021-04-20
发布日期:
2021-04-01
通讯作者:
周蕾
作者简介:
* zhoulei@zjnu.cn基金资助:
ZHOU Wen1, CHI Yong-Gang1, ZHOU Lei1,2,*()
Received:
2020-11-18
Accepted:
2021-01-11
Online:
2021-04-20
Published:
2021-04-01
Contact:
ZHOU Lei
Supported by:
摘要:
植被物候是反映植被生长规律的重要指标, 对气候的反馈具有重要意义。日光诱导叶绿素荧光(SIF)通过复杂的能量耗散机制与光合作用相关联, 提供了从空间直接探测大范围植被物候的可能性。为了探究气候变化背景下SIF反演不同森林类型物候的适用性, 该文以北半球35个全球通量网(FLUXNET)森林站点为研究对象, 利用2007-2014年SIF值和总初级生产力(GPP)通过双逻辑生长模型和动态阈值法来估算3种典型森林类型的物候, 并采用相关性分析等方法评价SIF在估算不同森林类型物候时的差异性。主要结果为: 1) SIF对生长季开始时间(SOS)的估算精度高于生长季结束时间(EOS); 2) SIF能够更准确地估算混交林(MF)的SOS, 但是不能精确追踪落叶阔叶林(DBF)和常绿针叶林(ENF)的SOS; 3)春季季前短波辐射是驱动SOS的主要气候因素。综上, 建议在将来的研究中将SIF数据与其他遥感指数整合, 应用于不同植物类型的物候监测。
周稳, 迟永刚, 周蕾. 基于日光诱导叶绿素荧光的北半球森林物候研究. 植物生态学报, 2021, 45(4): 345-354. DOI: 10.17521/cjpe.2020.0376
ZHOU Wen, CHI Yong-Gang, ZHOU Lei. Vegetation phenology in the Northern Hemisphere based on the solar-induced chlorophyll fluorescence. Chinese Journal of Plant Ecology, 2021, 45(4): 345-354. DOI: 10.17521/cjpe.2020.0376
图1 原始日光诱导叶绿素荧光(SIF)曲线与经过质量控制后的SIF曲线对比图。
Fig. 1 Comparison between time series curves of solar-induced chlorophyll fluorescence (SIF) before and after the quality control.
图2 日光诱导叶绿素荧光(SIF)通过双逻辑生长模型拟合物候曲线示意图。生长季开始时间(SOS)即绿色圆圈对应日期, 生长季结束时间(EOS)即橙色圆圈对应日期。
Fig. 2 An example for determining the phenology based on daily solar-induced chlorophyll fluorescence (SIF) time series using double logistic growth model. Timing of the start of the growing season (SOS) and the end of the growing season (EOS) were plotted by green circle and orange circle. DOY, day of year.
图3 标准化日光诱导叶绿素荧光(SIF)值和总初级生产力(GPP)的季节动态。
Fig. 3 Seasonal trajectories of normalized solar-induced chlorophyll fluorescence (SIF) value and gross primary production (GPP). DBF, deciduous broadleaf forest; ENF, evergreen needleleaf forest; MF, mixed forests. DOY, day of year.
图4 日光诱导叶绿素荧光(SIF)值和总初级生产力(GPP)的相关性。
Fig. 4 Correlations between solar-induced chlorophyll fluorescence (SIF) value and gross primary production (GPP). DBF, deciduous broadleaf forest; ENF, evergreen needleleaf forest; MF, mixed forests.
图5 基于日光诱导叶绿素荧光(SIF)值和总初级生产力(GPP)估算的生长季开始时间(SOS)和生长季结束时间(EOS)的关系。DOY, 日序; N,所有站点的总年份。
Fig. 5 Scatterplots describing the relationship between timing of the start of growing season (SOS) and timing of the end of growing season (EOS) derived from solar-induced chlorophyll fluorescence (SIF) value and gross primary production (GPP). DOY, day of year; N, the years of all sites. DBF, deciduous broadleaf forest; ENF, evergreen needleleaf forest; MF, mixed forests.
图6 基于日光诱导叶绿素荧光(SIF)值和总初级生产力(GPP)估算的生长季开始时间(SOS)和生长季结束时间(EOS)的分布图。DOY, 日序。
Fig. 6 Distributions of timing of the start of the growing season (SOS) and timing of the end of the growing season (EOS) derived from solar-induced chlorophyll fluorescence (SIF) value and gross primary production (GPP). DBF, deciduous broadleaf forest; ENF, evergreen needleleaf forest; MF, mixed forests. DOY, day of year.
图7 春季季前环境因子(短波辐射、气温、降水)与生长季开始时间(SOS)的相关系数(r)。**,p < 0.05。纵坐标为FLUXNET中的森林站点名称。
Fig. 7 Correlation coefficient (r) of environmental factors (shortwave radiation, air temperature, precipitation) in preseason and timing of the start of the growing season (SOS). **, p< 0.05. DBF, deciduous broadleaf forest; ENF, evergreen needleleaf forest; MF, mixed forests. The Y-axis represents the forest site name in FLUXNET.
[1] |
Bertani G, Wagner FH, Anderson LO, Aragão LJRS (2017). Chlorophyll fluorescence data reveals climate-related photosynthesis seasonality in Amazonian forests. Remote Sensing, 9, 1275. DOI: 10.3390/rs9121275.
DOI URL |
[2] |
Chang Q, Xiao X, Jiao W, Wu X, Doughty R, Wang J, Du L, Zou Z, Qin Y (2019). Assessing consistency of spring phenology of snow-covered forests as estimated by vegetation indices, gross primary production, and solar-induced chlorophyll fluorescence. Agricultural and Forest Meteorology, 275, 305-316.
DOI |
[3] |
Cui T, Sun R, Qiao C (2017). Analyzing the relationship between solar-induced chlorophyll fluorescence and gross primary production using remotely sensed data and model simulation. International Journal of Earth & Environmental Sciences, 2, 129. DOI: 10.15344/2456-351X/2017/129.
DOI |
[4] | Dai WJ, Jin HY, Zhang YH, Zhou ZQ, Liu T ( 2020). Advances in plant phenology. Acta Ecologica Sinica, 40, 6705-6719. |
[ 代武君, 金慧颖, 张玉红, 周志强, 刘彤 ( 2020). 植物物候学研究进展. 生态学报, 40, 6705-6719.] | |
[5] | Fang JY ( 2000). Forest biomass carbon pool of middle and high latitudes in the North Hemisphere is probably much smaller than present estimates. Acta phytoecologica Sinica, 24, 635-638. |
[ 方精云 ( 2000). 北半球中高纬度的森林碳库可能远小于目前的估算. 植物生态学报, 24, 635-638.] | |
[6] |
Frankenberg C, Fisher JB, Worden J, Badgley G, Saatchi SS, Lee JE, Toon GC, Butz A, Jung M, Kuze A (2011). New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophysical Research Letters, 38, L17706. DOI: 10.1029/2011GL048738.
DOI |
[7] |
Guan K, Berry JA, Zhang Y, Joiner J, Guanter L, Badgley G, Lobell DB (2016). Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence. Global Change Biology, 22, 716-726.
DOI URL |
[8] | Guan QH, Ding MJ, Zhang HM ( 2019). Spatiotemporal variation of spring phenology in alpine grassland and response to climate changes on the Qinghai-Tibet, China. Mountain Research, 37, 639-648. |
[ 管琪卉, 丁明军, 张华敏 ( 2019). 青藏地区高寒草地春季物候时空变化及其对气候变化的响应. 山地学报, 37, 639-648.] | |
[9] | Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete AR, Zarco-Tejada P, Lee JE, Moran MS, Ponce-Campos G, Beer C, Camps-Valls G, Buchmann N, et al. (2014). Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 111, E1327-E1333. |
[10] |
He L, Chen JM, Liu J, Mo G, Joiner J (2017). Angular normalization of GOME-2 Sun-induced chlorophyll fluorescence observation as a better proxy of vegetation productivity. Geophysical Research Letters, 44, 5691-5699.
DOI URL |
[11] | Huang JG, Ma Q, Rossi S, Biondi F, Deslauriers A, Fonti P, Liang E, Mäkinen H, Oberhuber W, Rathgeber CBK, Tognetti R, Treml V, Yang B, Zhang JL, Antonucci S, et al. (2020). Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences of the United States of America, 117, 20645-20652. |
[12] |
Inoue S, Dang QL, Man R, Tedla B (2020). Photoperiod, [CO2] and soil moisture interactively affect phenology in trembling aspen: implications to climate change-induced migration. Environmental and Experimental Botany, 180, 104269. DOI: 10.1016/j.envexpbot.2020.104269.
DOI URL |
[13] |
Jeong SJ, Ho CH, Gim HJ, Brown ME (2011). Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Global Change Biology, 17, 2385-2399.
DOI URL |
[14] |
Jeong SJ, Schimel D, Frankenberg C, Drewry DT, Fisher JB, Verma M, Berry JA, Lee JE, Joiner J (2017). Application of satellite solar-induced chlorophyll fluorescence to understanding large-scale variations in vegetation phenology and function over northern high latitude forests. Remote Sensing of Environment, 190, 178-187.
DOI URL |
[15] |
Jin H, Jönsson AM, Olsson C, Lindström J, Jönsson P, Eklundh L (2019). New satellite-based estimates show significant trends in spring phenology and complex sensitivities to temperature and precipitation at northern European latitudes. International Journal of Biometeorology, 63, 763-775.
DOI URL |
[16] |
Joiner J, Guanter L, Lindstrot R, Voigt M, Vasilkov AP, Middleton EM, Huemmrich KF, Yoshida Y, Frankenberg C (2013). Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmospheric Measurement Techniques, 6, 2803-2823.
DOI URL |
[17] |
Köhler P, Guanter L, Joiner J (2015). A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmospheric Measurement Techniques, 8, 2589-2608.
DOI URL |
[18] |
Lee JE, Berry JA, van der Tol C, Yang X, Guanter L, Damm A, Baker I, Frankenberg C (2015). Simulations of chlorophyll fluorescence incorporated into the Community Land Model version 4. Global Change Biology, 21, 3469-3477.
DOI URL |
[19] |
Li X, Xiao J, He B, Altaf Arain M, Beringer J, Desai AR, Emmel C, Hollinger DY, Krasnova A, Mammarella I, Noe SM, Ortiz PS, Rey-Sanchez AC, Rocha AV, Varlagin A (2018). Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: first global analysis based on OCO-2 and flux tower observations. Global Change Biology, 24, 3990-4008.
DOI URL |
[20] |
Liu LL, Zhang XY (2020). Effects of temperature variability and extremes on spring phenology across the contiguous United States from 1982 to 2016. Scientific Reports, 10, 17952. DOI: 10.1038/s41598-020-74804-4.
DOI URL |
[21] |
Liu Q, Fu YH, Zhu Z, Liu Y, Liu Z, Huang M, Janssens IA, Piao S (2016a). Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Global Change Biology, 22, 3702-3711.
DOI URL |
[22] |
Liu RG, Shang R, Liu Y, Lu XL (2017). Global evaluation of gap-filling approaches for seasonal NDVI with considering vegetation growth trajectory, protection of key point, noise resistance and curve stability. Remote Sensing of Environment, 189, 164-179.
DOI URL |
[23] | Liu XT, Zhou L, Shi H, Wang SQ, Chi YG ( 2018). Phenological characteristics of temperate coniferous and broad-leaved mixed forests based on multiple remote sensing vegetation indices, chlorophyll fluorescence and CO2 flux data . Acta Ecologica Sinica, 38, 3482-3494. |
[ 刘啸添, 周蕾, 石浩, 王绍强, 迟永刚 ( 2018). 基于多种遥感植被指数、叶绿素荧光与CO2通量数据的温带针阔混交林物候特征对比分析. 生态学报, 38, 3482-3494.] | |
[24] |
Liu Y, Wu C, Peng D, Xu S, Gonsamo A, Jassal RS, Altaf Arain M, Lu L, Fang B, Chen JM (2016b). Improved modeling of land surface phenology using MODIS land surface reflectance and temperature at evergreen needleleaf forests of central North America. Remote Sensing of Environment, 176, 152-162.
DOI URL |
[25] |
Lu XC, Cheng X, Li XL, Chen JQ, Sun MM, Ji M, He H, Wang SY, Li S, Tang JW (2018a). Seasonal patterns of canopy photosynthesis captured by remotely sensed sun-induced fluorescence and vegetation indexes in mid-to-high latitude forests: a cross-platform comparison. Science of the Total Environment, 644, 439-451.
DOI URL |
[26] |
Lu XL, Liu ZQ, Zhou YY, Liu YL, An SQ, Tang JW (2018b). Comparison of phenology estimated from reflectance-based indices and solar-induced chlorophyll fluorescence (SIF) observations in a temperate forest using GPP-based phenology as the standard. Remote Sensing, 10, 932. DOI: 10.3390/rs10060932.
DOI URL |
[27] |
Peaucelle M, Janssens IA, Stocker BD, Ferrando AD, Fu YH, Molowny-Horas R, Ciais P, Peñuelas J (2019). Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nature Communications, 10, 5388. DOI: 10.1038/s41467-019-13365-1.
DOI PMID |
[28] |
Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J, Liu L, Lian X, Shen M, Zhu X (2019). Plant phenology and global climate change: current progresses and challenges. Global Change Biology, 25, 1922-1940.
DOI URL |
[29] |
Piao SL, Friedlingstein P, Ciais P, Viovy N, Demarty J (2007). Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Global Biogeochemical Cycles, 21, GB3018. DOI: 10.1029/2006GB002888.
DOI |
[30] |
Shen MG, Jiang N, Peng DL, Rao YH, Huang Y, Fu YH, Yang W, Zhu XL, Cao RY, Chen XH, Chen J, Miao CY, Wu CY, Wang T, Liang EY, Tang YH (2020). Can changes in autumn phenology facilitate earlier green-up date of northern vegetation? Agricultural and Forest Meteorology, 291, 108077. DOI: 10.1016/j.agrformet.2020.108077.
DOI URL |
[31] |
Shen MG, Tang YH, Chen J, Yang X, Wang C, Cui XY, Yang YP, Han LJ, Li L, Du JH, Zhang GX, Cong N (2014). Earlier-season vegetation has greater temperature sensitivity of spring phenology in Northern Hemisphere. PLOS ONE, 9, e88178. DOI: 10.1371/journal.pone.0088178.
DOI URL |
[32] |
Shen XJ, Liu BH, Xue ZS, Jiang M, Lu XG, Zhang Q (2019). Spatiotemporal variation in vegetation spring phenology and its response to climate change in freshwater marshes of Northeast China. Science of the Total Environment, 666, 1169-1177.
DOI URL |
[33] |
Singh RK, Svystun T, AlDahmash B, Jönsson AM, Bhalerao RP (2017). Photoperiod- and temperature- mediated control of phenology in trees—A molecular perspective. New Phytologist, 213, 511-524.
DOI URL |
[34] |
Sun Y, Frankenberg C, Wood JD, Schimel DS, Jung M, Guanter L, Drewry DT, Verma M, Porcar-Castell A, Griffis TJ, Gu L, Magney TS, Köhler P, Evans B, Yuen K (2017). OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science,358, eaam5747. DOI: 10.1126/science.aam5747.
DOI |
[35] |
Tan B, Morisette JT, Wolfe RE, Gao F, Ederer GA, Nightingale J, Pedelty JA (2011). An enhanced TIMESAT algorithm for estimating vegetation phenology metrics from MODIS data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4, 361-371.
DOI URL |
[36] |
Wang F, Chen BZ, Lin XF, Zhang HF (2020). Solar-induced chlorophyll fluorescence as an indicator for determining the end date of the vegetation growing season. Ecological Indicators, 109, 105755. DOI: 10.1016/j.ecolind.2019. 105755.
DOI URL |
[37] |
Wang X, Xiao J, Li X, Cheng G, Ma M, Zhu G, Altaf Arain M, Andrew Black T, Jassal RS (2019a). No trends in spring and autumn phenology during the global warming Hiatus. Nature Communications, 10, 2389. DOI: 10.1038/s41467-019-10235-8.
DOI |
[38] | Wang XY, Wang T, Liu D, Zhang TT, Xu JF, Cui GS, Lv GT, Huang HB (2019b). Multisatellite analyses of spatiotemporal variability in photosynthetic activity over the Tibetan Plateau. Journal of Geophysical Research, 124, 3778-3797. |
[39] |
Wilson TB, Meyers TP (2007). Determining vegetation indices from solar and photosynthetically active radiation fluxes. Agricultural and Forest Meteorology, 144, 160-179.
DOI URL |
[40] |
Wu C, Peng D, Soudani K, Siebicke L, Gough CM, Altaf Arain M, Bohrer G, Lafleur PM, Peichl M, Gonsamo A, Xu S, Fang B, Ge Q (2017). Land surface phenology derived from normalized difference vegetation index (NDVI) at global FLUXNET sites. Agricultural and Forest Meteorology, 233, 171-182.
DOI URL |
[41] | Xie YY, Wang XJ, Silander JA (2015). Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts. Proceedings of the National Academy of Sciences of the United States of America, 112, 13585-13590. |
[42] |
Xu X, Riley WJ, Koven CD, Jia G (2019a). Heterogeneous spring phenology shifts affected by climate: supportive evidence from two remotely sensed vegetation indices. Environmental Research Communications, 1, 091004. DOI: 10.1088/2515-7620/ab3d79.
DOI URL |
[43] |
Xu XJ, Du HQ, Fan WL, Hu JG, Mao FJ, Dong HJ (2019b). Long-term trend in vegetation gross primary production, phenology and their relationships inferred from the FLUXNET data. Journal of Environmental Management, 246, 605-616.
DOI URL |
[44] |
Yang H, Yang X, Zhang Y, Heskel MA, Lu X, Munger JW, Sun S, Tang J (2017). Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest. Global Change Biology, 23, 2874-2886.
DOI URL |
[45] |
Yang X, Guo R, Knops JMH, Mei L, Kang F, Zhang T, Guo J (2020a). Shifts in plant phenology induced by environmental changes are small relative to annual phenological variation. Agricultural and Forest Meteorology, 294, 108144. DOI: 10.1016/j.agrformet.2020.108144.
DOI URL |
[46] |
Yang X, Tang J, Mustard JF, Lee JE, Rossini M, Joiner J, Munger JW, Kornfeld A, Richardson AD (2015). Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophysical Research Letters, 42, 2977-2987.
DOI URL |
[47] |
Yang Y, Wu ZF, Guo L, He HS, Ling YH, Wang L, Zong SW, Na RS, Du HB, Li MH (2020b). Effects of winter chilling vs. spring forcing on the spring phenology of trees in a cold region and a warmer reference region. Science of the Total Environment, 725, 138323. DOI: 10.1016/j.scitotenv.2020.138323.
DOI URL |
[48] |
Yuan HH, Wu CY, Gu CY, Wang XY (2020). Evidence for satellite observed changes in the relative influence of climate indicators on autumn phenology over the Northern Hemisphere. Global and Planetary Change, 187, 103131. DOI: 10.1016/j.gloplacha.2020.103131.
DOI URL |
[49] |
Zhang Y, Guanter L, Berry J, van der Tol C, Yang X, Tang J, Zhang F (2016). Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications. Remote Sensing of Environment, 187, 145-155.
DOI URL |
[50] | Zhang ZY, Wang SH, Qiu B, Song L, Zhang YG ( 2019). Retrieval of Sun-induced chlorophyll fluorescence and advancements in carbon cycle application. Journal of Remote Sensing, 23, 37-52. |
[ 章钊颖, 王松寒, 邱博, 宋练, 张永光 ( 2019). 日光诱导叶绿素荧光遥感反演及碳循环应用进展. 遥感学报, 23, 37-52.] | |
[51] |
Zhang ZY, Zhang YG, Porcar-Castell A, Joiner J, Guanter L, Yang X, Migliavacca M, Ju WM, Sun ZG, Chen SP, Martini D, Zhang Q, Li ZH, Cleverly J, Wang HZ, Goulas Y (2020). Reduction of structural impacts and distinction of photosynthetic pathways in a global estimation of GPP from space-borne solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 240, 111722. DOI: 10.1016/j.rse.2020.111722.
DOI URL |
[52] |
Zhong S, Shi H, Xue C, Wang L, Xi Y, Li J, Quail PH, Deng XW, Guo H (2012). A molecular framework of light-controlled phytohormone action in Arabidopsis. Current Biology, 22, 1530-1535.
DOI URL |
[53] | Zhou L, Chi YG, Liu XT, Dai XQ, Yang FT ( 2020). Land surface phenology tracked by remotely sensed Sun-induced chlorophyll fluorescence in subtropical evergreen coniferous forests. Acta Ecologica Sinica, 40, 4114-4125. |
[ 周蕾, 迟永刚, 刘啸添, 戴晓琴, 杨风亭 ( 2020). 日光诱导叶绿素荧光对亚热带常绿针叶林物候的追踪. 生态学报, 40, 4114-4125.] |
[1] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[2] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[5] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[6] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[7] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[8] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[9] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[10] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[11] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[12] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[13] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[14] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[15] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19