植物生态学报 ›› 2017, Vol. 41 ›› Issue (5): 570-576.DOI: 10.17521/cjpe.2016.0245
蔡建国*, 韦孟琪, 章毅, 魏云龙
出版日期:
2017-05-10
发布日期:
2017-06-22
通讯作者:
蔡建国
作者简介:
* 通信作者Author for correspondence (E-mail:
基金资助:
Jian-Guo CAI*, Meng-Qi WEI, Yi ZHANG, Yun-Long WEI
Online:
2017-05-10
Published:
2017-06-22
Contact:
Jian-Guo CAI
About author:
KANG Jing-yao(1991-), E-mail:
摘要:
为了从光合作用机制及叶片吸收光能分配的角度解释绣球(Hydrangea macrophylla)对不同光环境的适应机制, 探讨绣球对光环境变化的生理响应和适应性, 该文以盆栽的绣球品种‘无尽夏新娘’为材料, 设置遮阴(遮光率为50%、75%)两种处理, 并以全光照为对照, 经过60天的处理, 测定其光合-光响应曲线、气体交换参数、叶绿素荧光参数。结果表明: 遮阴60天后, 绣球的暗呼吸速率、光补偿点和光饱和点均有所下降, 而表观量子效率(AQY)上升, 说明绣球能够通过这些途径提高对弱光的利用能力并降低呼吸消耗, 以维持植株正常生长, 从而表现出了极强的适应能力; 在50%的遮阴处理下, 绣球叶片的净光合速率、胞间CO2浓度、蒸腾速率和水分利用效率均与其全光照和75%遮阴处理下差异显著; 遮阴导致光系统II (PSII)最大光化学效率(Fv/Fm)增加, 3种光照处理下呈显著差异, 全光照下Fv/Fm低于50%遮阴处理, 初始荧光水平高于50%遮阴处理, 推断此条件下的绣球叶片发生了光抑制; 而随着光照的减弱, 非光化学淬灭系数在降低, 说明遮阴降低了绣球叶片PSII天线色素吸收光能以热的形式耗散的比例, 绣球叶片吸收的能量约70%用于热耗散, 约20%用于非光化学反应, 仅有4%的能量用于光化学反应, 说明绣球处于饱和光环境下时, 主要通过提高叶片吸收光能向热耗散等PSII调节性能量耗散途径的分配, 削弱反应中心过量激发能的积累。
蔡建国, 韦孟琪, 章毅, 魏云龙. 遮阴对绣球光合特性和叶绿素荧光参数的影响. 植物生态学报, 2017, 41(5): 570-576. DOI: 10.17521/cjpe.2016.0245
Jian-Guo CAI, Meng-Qi WEI, Yi ZHANG, Yun-Long WEI. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of Hydrangea macrophylla. Chinese Journal of Plant Ecology, 2017, 41(5): 570-576. DOI: 10.17521/cjpe.2016.0245
图1 不同遮阴处理下绣球叶片的光响应曲线(平均值±标准偏差)。
Fig. 1 Light response curves of net photosynthetic rate (Pn) in Hydrangea macrophylla under different light treatments (mean ± SD).
参数 Parameter | 全光 Full light | 遮光率50% Shading rate 50% | 遮光率75% Shading rate 75% |
---|---|---|---|
表观量子效率 AQY (mmol CO2·mol-1 photos) | 0.03 | 0.04 | 0.03 |
最大净光合速率 Pnmax (μmolCO2·m-2·s-1) | 3.50 | 3.85 | 3.83 |
暗呼吸速率 Rd (μmolCO2·m-2·s-1) | 0.53 | 0.36 | 0.41 |
光补偿点 LCP (μmol·m-2·s-1) | 15.75 | 6.71 | 8.00 |
光饱和点 LSP (μmol·m-2·s-1s-1) | 307.42 | 278.14 | 281.57 |
相关系数 r | 0.919 | 0.908 | 0.948 |
表1 不同遮光对绣球光响应特性的影响
Table 1 Effects of light treatments on photosynthesis-light response parameters of Hydrangea macrophylla
参数 Parameter | 全光 Full light | 遮光率50% Shading rate 50% | 遮光率75% Shading rate 75% |
---|---|---|---|
表观量子效率 AQY (mmol CO2·mol-1 photos) | 0.03 | 0.04 | 0.03 |
最大净光合速率 Pnmax (μmolCO2·m-2·s-1) | 3.50 | 3.85 | 3.83 |
暗呼吸速率 Rd (μmolCO2·m-2·s-1) | 0.53 | 0.36 | 0.41 |
光补偿点 LCP (μmol·m-2·s-1) | 15.75 | 6.71 | 8.00 |
光饱和点 LSP (μmol·m-2·s-1s-1) | 307.42 | 278.14 | 281.57 |
相关系数 r | 0.919 | 0.908 | 0.948 |
处理 Treatment | 参数 Parameter | ||||
---|---|---|---|---|---|
Pn (μmol CO2·m-2·s-1) | Ci ( μmol·mol-1) | Gs (mol·m-2·s-1) | Tr (mmol·m-2·s-1) | WUE (mmol CO2·mol-1H2O) | |
全光 Full light | 1.64 ± 0.34a | 326.55 ± 21.45a | 0.04 ± 0.004b | 0.92 ± 0.11a | 1.82 ± 0.53a |
遮光率50% Shading rate 50% | 2.14 ± 0.38b | 300.46 ± 17.85b | 0.04 ± 0.009b | 1.40 ± 0.22b | 1.54 ± 0.27b |
遮光率75% Shading rate 75% | 1.73 ± 0.28a | 293.99 ± 18.33b | 0.02 ± .009a | 0.86 ± 0.26a | 2.11 ± 0.47a |
表2 不同遮光率处理对叶片气体交换参数影响(平均值±标准偏差)
Table 2 Effects of light treatments on the gas exchange parameters of Hydrangea macrophylla (mean ± SD)
处理 Treatment | 参数 Parameter | ||||
---|---|---|---|---|---|
Pn (μmol CO2·m-2·s-1) | Ci ( μmol·mol-1) | Gs (mol·m-2·s-1) | Tr (mmol·m-2·s-1) | WUE (mmol CO2·mol-1H2O) | |
全光 Full light | 1.64 ± 0.34a | 326.55 ± 21.45a | 0.04 ± 0.004b | 0.92 ± 0.11a | 1.82 ± 0.53a |
遮光率50% Shading rate 50% | 2.14 ± 0.38b | 300.46 ± 17.85b | 0.04 ± 0.009b | 1.40 ± 0.22b | 1.54 ± 0.27b |
遮光率75% Shading rate 75% | 1.73 ± 0.28a | 293.99 ± 18.33b | 0.02 ± .009a | 0.86 ± 0.26a | 2.11 ± 0.47a |
参数 Parameter | 处理 Treatment | ||
---|---|---|---|
全光 Full light | 遮光率50% Shading rate 50% | 遮光率75% Shading rate 75% | |
PSⅡ原初光能转化效率 Fv/Fm | 0.63 ± 0.03b | 0.67 ± 0.01c | 0.60 ± 0.04a |
PSⅡ潜在活性 Fv/Fo | 1.72 ± 0.21b | 2.00 ± 0.08c | 1.51 ± 0.20a |
初始荧光 Fo | 786.59 ± 13.23b | 770.21 ± 21.12a | 836.86 ± 28.73b |
PSII实际光量子产量 F°v/F°m | 0.25 ± 0.01a | 0.26 ± .04a | 0.28 ± 0.06a |
非光化学淬灭系数 NPQ | 2.39 ± 0.16c | 1.95 ± 0.09b | 1.41 ± 0.34a |
光化学淬灭系数 qP | 0.17 ± 0.04a | 0.18 ± 0.02a | 0.15 ± 0.03a |
电子传递速率 ETR | 19.43 ± 3.88a | 20.31 ± 5.53a | 18.57 ± 4.50a |
表3 不同遮阴处理对叶绿素荧光参数比较(平均值±标准偏差)
Table 3 Effects of light treatments on chlorophyll a fluorescence parameters of Hydrangea macrophylla (mean ± SD)
参数 Parameter | 处理 Treatment | ||
---|---|---|---|
全光 Full light | 遮光率50% Shading rate 50% | 遮光率75% Shading rate 75% | |
PSⅡ原初光能转化效率 Fv/Fm | 0.63 ± 0.03b | 0.67 ± 0.01c | 0.60 ± 0.04a |
PSⅡ潜在活性 Fv/Fo | 1.72 ± 0.21b | 2.00 ± 0.08c | 1.51 ± 0.20a |
初始荧光 Fo | 786.59 ± 13.23b | 770.21 ± 21.12a | 836.86 ± 28.73b |
PSII实际光量子产量 F°v/F°m | 0.25 ± 0.01a | 0.26 ± .04a | 0.28 ± 0.06a |
非光化学淬灭系数 NPQ | 2.39 ± 0.16c | 1.95 ± 0.09b | 1.41 ± 0.34a |
光化学淬灭系数 qP | 0.17 ± 0.04a | 0.18 ± 0.02a | 0.15 ± 0.03a |
电子传递速率 ETR | 19.43 ± 3.88a | 20.31 ± 5.53a | 18.57 ± 4.50a |
处理 Treatment | 能量分配 Energy distribution | ||
---|---|---|---|
天线热耗散 Fraction of photons dissipated in the antenna (%) | 光化学反应耗散 Fraction of photons utilized in PSII photochemistry (%) | 非光化学反应耗散 Fraction of absorbed photons by PSII neither used in photochemistry nor dissipated in the PSII (%) | |
全光 Full light | 74.55 ± 5.32 | 4.44 ± 0.89 | 21.01 ± 1.12 |
遮阴50% Shading 50% | 74.22 ± 4.50 | 4.65 ± 1.27 | 21.12 ± 3.34 |
遮阴75% Shading 75% | 74.55 ± 5.32 | 4.24 ± 1.02 | 23.64 ± 6.13 |
表4 叶片吸收光能的分配
Table 4 The distribution of light energy absorbed in Hydrangea macrophylla under different light intensities
处理 Treatment | 能量分配 Energy distribution | ||
---|---|---|---|
天线热耗散 Fraction of photons dissipated in the antenna (%) | 光化学反应耗散 Fraction of photons utilized in PSII photochemistry (%) | 非光化学反应耗散 Fraction of absorbed photons by PSII neither used in photochemistry nor dissipated in the PSII (%) | |
全光 Full light | 74.55 ± 5.32 | 4.44 ± 0.89 | 21.01 ± 1.12 |
遮阴50% Shading 50% | 74.22 ± 4.50 | 4.65 ± 1.27 | 21.12 ± 3.34 |
遮阴75% Shading 75% | 74.55 ± 5.32 | 4.24 ± 1.02 | 23.64 ± 6.13 |
[1] | Asada K (1999). The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons.Plant Biology, 50, 601-639. |
[2] | Boardman NK (1977). Comparative photosynthesis of sun and shade plants.Plant Physiology, 28, 355-377. |
[3] | Cai SQ, Xu DQ (2002). Light intensity-dependent reversible down-regulation and irreversible damage of PSII in soybean leaves.Plant Science, 163, 847-853. |
[4] | Cui XW, Gao J, Zhang ZJ, Yue XH, Ma YJ (2011). Chlorophyll fluorescent characteristics of five dwarf bamboos.Acta Agriculturae Universitatis Jiangxiensis, 33, 726-730. (in Chinese with English abstract)[崔晓伟, 高健, 张志坚, 岳祥华, 马艳军 (2011). 5种地被竹叶绿素荧光特性研究. 江西农业大学学报, 33, 726-730.] |
[5] | Depuydt S, Trenkamp S, Fernie AR, Elftieh S, Renou JP, Vuylsteke M, Holsters M, Vereecke D (2009). An integrated genomics approach to define niche establishment byRhodococcus fascians. Plant Physiology, 149, 1366-1386. |
[6] | Ehlert B, Hinchaok DK (2008). Chlomphyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses inArabidaopsis leaves. Plant Methods, 4, 1-7. |
[7] | He YH, Guo LS, Tian YL (2006). Chlorophyll fluorescence quenching characteristics of seven coniferous and broadleaved species in different light intensities.Scientia Silvae Sinicae, 42(2), 27-31. (in Chinese with English abstract)[何炎红, 郭连生, 田有亮 (2006). 7种针阔叶树种不同光照强度下叶绿素荧光猝灭特征. 林业科学, 42(2), 27-31.] |
[8] | Hong SS, Xu DQ (1999). Reversible inactivation of PSII reaction centers and the dissociation of LHCII from PSII complex in soybean leaves.Plant Science, 1147, 111-118. |
[9] | Hu WH, Zhang SS, Xiao YA, Yan XH (2015). Physiological responses and photo-protective mechanisms of twoRhododendron plants to natural sunlight after long term shading. Chinese Journal of Plant Ecology, 39, 1093-1100. (in Chinese with English abstract)[胡文海, 张斯斯, 肖宜安, 闫小红 (2015). 两种杜鹃花属植物对长期遮阴后全光照环境的生理响应及其光保护机制. 植物生态学报, 39, 1093-1100.] |
[10] | Huang QX, Zhao S, Liu CM, Li YL (2015). Effects of shading treatments on chlorophyll fluorescence characteristics ofSabina vulgaris seedlings grown in iron tailings media. Scientia Silvae Sinicae, 51(6), 18-25. (in Chinese with English abstract)[黄秋娴, 赵顺, 刘春梅, 李玉灵 (2015). 遮荫处理对铁尾矿基质臭柏实生苗快速叶绿素荧光特性的影响. 林业科学, 51(6), 18-25.] |
[11] | Huang SM, Wei ZF, Lu LD, Pan JT (1995). Flora Republicae Popularis Sinicae. Science Press, Beijing. 226-227. (in Chinese with English abstract)[黄淑美, 卫兆芬, 陆玲娣, 潘锦堂 (1995). 中国植物志. 科学出版社, 北京. 226-227.] |
[12] | Ji LL, Lu BS, Zhou RJ, Bai ZY, Liang HY (2007). Effects of shading on photosynthetic parameters of leaf in David maple (Acer davidii Franch). Acta Horticulturae Sinica, 34(1), 173-178. (in Chinese with English abstract)[缴丽莉, 路丙社, 周如久, 白志英, 梁海永 (2007). 遮光对青榨槭光合速率及叶绿素荧光参数的影响. 园艺学报, 34(1), 173-178.] |
[13] | Kagawa T, Sakai T, Suetsugu N, Oikawa K, Lshiguro S (2001). Arabidopsis NPL1: A phototropin homolog controlling the chloroplast high-light avoidance response.Science, 291, 2138-2141. |
[14] | Kasahara M, Kagawa T, Oikawa, Suetsugu N, Miyao M (2002). Chloroplast avoidance movement reduces photodamage in plant. Nature, 420, 829-832. |
[15] | Li JP, Dong R (2011). Diurnal change of photosynthetic characteristics of threeHosta cultivars. Journal of Northeast Forestry University, 39(10), 56-58. (in Chinese with English abstract)[李金鹏, 董然 (2011). 3种彩叶玉簪光合日变化. 东北林业大学学报, 39(10), 56-58.] |
[16] | Li ZZ, Liu DH, Zhao SW, Jiang CD, Shi L (2014). Mechanisms of photoinhibition induced by high light in Hosta grown outdoors. Chinese Journal of Plant Ecology, 38, 720-728. (in Chinese with English abstract)[李志真, 刘东焕, 赵世伟, 姜闯道, 石雷 (2014). 环境强光诱导玉簪叶片光抑制的机制. 植物生态学报, 38, 720-728.] |
[17] | Liu JF, Yang WJ, Jing ZP, Guo QS, Jing JQ, Xue L (2011). Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters in leaves of the endangered plantThuja sutchuenensis. Acta Ecologica Sinica, 31, 5999-6004. (in Chinese with English abstract)[刘建锋, 杨文娟, 江泽平, 郭泉水, 金江群, 薛亮 (2011). 遮荫对濒危植物崖柏光合作用和叶绿素荧光参数的影响. 生态学报, 31, 5999-6004.] |
[18] | Murchie EH, Horton P (1998). Contrasting patterns of photo-synthetic acclimation to the light environment are dependent on the differential expression of the responses to altered irradiance and spectral quality.Plant, Cell & Environment, 21, 139-148. |
[19] | Nedbal L, Soukupova J, Kaftan D, Whitmarsh J, Trtilek M (2000). Kinetic imaging lf chlorophyll fluorescence using modulated light.Photosynthesis Research, 66, 3-12. |
[20] | Poorther H, Perez-Soba M (2000). The growth response of plants to elevated CO2 under non-optimal environmental conditions.Oecologia, 27, 595-607. |
[21] | Richardson AD, Berlyn GP (2002). Spectral reflectance and photosynthetic properties of Betula papyrifera (Betulaceae) leaves along an elevational gradient on Mt. Mansfield. American Journal of Botany, 9, 88-94. |
[22] | Wang K, Zhu JJ, Yu LZ, Sun YR, Chen GH (2009). Effects of shading on the photosynthetic characteristics and light use efficiency ofPhellodendron amurense seedlings. Chinese Journal of Plant Ecology, 33, 1003-1012. (in Chinese with English abstract)[王凯, 朱教君, 于立忠, 孙一荣, 陈光华 (2009). 遮阴对黄波罗幼苗的光合特性及光能利用效率的影响. 植物生态学报, 33, 1003-1012.] |
[23] | Wu CW, Ke TS, Chang YJ, Chang YS (2013). Chlorophyll fluorescence and leaf-air temperature difference as potential shade-tolerance indexes of ornamental plants.Journal of Computational & Theoretical Nanoscience, 19, 3063-3066. |
[24] | Xu DQ (2003). Several problems in the research of plant light stress.Plant Physiology Communications, 39, 493-495. (in Chinese with English abstract)[许大全 (2003). 植物光胁迫研究中的几个问题. 植物生理学通讯, 39, 493-495.] |
[25] | Xu DQ (2013). The Science of Photosynthesis.. Science Press, Beijing. 94-95. (in Chinese)[许大全 (2013). 光合作用学. 科学出版社, 北京. 94-95.] |
[26] | Xu DQ, Sheng YK (1999). Light stress: Photoinhibition of photosynthesis in plants under natural conditions . In: Pessarakli M ed. Handbook of Plant and Crop Stress. Marcel Dekker, New York .315-336. |
[27] | Yang XH, Zou Q, Wang W (2001). Photoinhibition in shaded cotton leaves after exposing to high light and the time course of its restoration. Acta Botanica Sinica, 43, 1255-1259. (in Chinese with English abstract)[杨兴洪, 邹琦, 王玮 (2001). 遮荫棉花转入强光后光合作用的光抑制及其恢复. 植物学报, 43, 1255-1259.] |
[28] | Yin LQ, Hu Y, Tang GJ, Huang WC, Li SZ, Wang XQ (2010). In vitro culture and rapid propagation ofHydrangea serrata ‘Preziosa’. Acta Agriculturae Shanghai, 26(1), 38-41. (in Chinese with English abstract)[殷丽青, 胡永, 汤桂钧, 黄卫昌, 李世忠, 王新其 (2010). 优良八仙花品种(Hydrangea serrata ‘Preziosa’)的离体培养与快速繁殖. 上海农业学报, 26(1), 38-41.] |
[29] | Zhang CY, Fang YM, Ji HL, Ma XT (2011). Effects of shading on photosynthesis characteristics ofPhotinia × frasery and Aucuba japonica var. variegate. Chinese Journal of Applied Ecology, 22, 1743-1749. (in Chinese with English abstract)[张聪颖, 方炎明, 姬红利, 马戌涛 (2011). 遮荫处理对红叶石楠和洒金桃叶珊瑚光合特性的影响. 应用生态学报, 22, 1743-1749.] |
[30] | Zhang SR (1999). A discussion on chlorophyll fluorescence kinetics parameters and their significance.Chinese Bulletin of Botany, 16, 444-448. (in Chinese with English abstract)[张守仁 (1999). 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 16, 444-448.] |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[3] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[4] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[5] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[6] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[7] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[8] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[9] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[10] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[11] | 周稳, 迟永刚, 周蕾. 基于日光诱导叶绿素荧光的北半球森林物候研究[J]. 植物生态学报, 2021, 45(4): 345-354. |
[12] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[13] | 丁键浠, 周蕾, 王永琳, 庄杰, 陈集景, 周稳, 赵宁, 宋珺, 迟永刚. 叶绿素荧光主动与被动联合观测应用前景[J]. 植物生态学报, 2021, 45(2): 105-118. |
[14] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
[15] | 郭庆华, 胡天宇, 马勤, 徐可心, 杨秋丽, 孙千惠, 李玉美, 苏艳军. 新一代遥感技术助力生态系统生态学研究[J]. 植物生态学报, 2020, 44(4): 418-435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19