植物生态学报 ›› 2021, Vol. 45 ›› Issue (8): 870-879.DOI: 10.17521/cjpe.2021.0146
所属专题: 光合作用
靳川1,2, 李鑫豪1,2, 蒋燕1,2, 徐铭泽1,2, 田赟1,2, 刘鹏1,2, 贾昕1,2,3, 查天山1,2,3,*()
收稿日期:
2021-04-19
修回日期:
2021-06-26
出版日期:
2021-08-20
发布日期:
2021-07-22
通讯作者:
查天山
作者简介:
* tianshanzha@bjfu.edu.cn基金资助:
JIN Chuan1,2, LI Xin-Hao1,2, JIANG Yan1,2, XU Ming-Ze1,2, TIAN Yun1,2, LIU Peng1,2, JIA Xin1,2,3, ZHA Tian- Shan1,2,3,*()
Received:
2021-04-19
Revised:
2021-06-26
Online:
2021-08-20
Published:
2021-07-22
Contact:
ZHA Tian- Shan
Supported by:
摘要:
为了探明典型荒漠灌木优势物种黑沙蒿(俗名油蒿, Artemisia ordosica)光合过程能量中分配对环境波动的相对变化及其长期调节机制, 该研究于2018年4-10月在宁夏盐池毛乌素沙地, 同时使用MONITORING-PAM多通道荧光监测仪和LI-6400XT便携式光合测量仪对黑沙蒿叶片的最小荧光产量(Fo)、最大荧光产量(Fm)、稳态荧光产量(Fs)、光下最大荧光产量(Fm′)、净光合速率(Pn)、暗呼吸速率(Rd)、蒸腾速率(E)和叶片气孔导度(gs)进行现场测定, 在实验室内计算比叶面积(SLA)、单位面积氮含量(Narea)、叶绿素含量(CChl)和叶绿素a/b (Chl a/b), 分析黑沙蒿光合过程能量分配中固碳耗能占比(ΦA)、光呼吸耗能占比(ΦPR)、调节性热耗散耗能占比(ΦNPQ)和非调节性热耗散耗能占比(ΦNO)与环境参数和叶性状参数之间的关系以及能量分配各组分之间的相对变化。结果表明, 光化学反应组分(ΦA、ΦPR)和热耗散组分(ΦNPQ、ΦNO)之间呈负相关竞争关系, 两组分内部呈正相关协同关系, E和ΦA、ΦPR正相关, 和ΦNPQ、ΦNO负相关。在低土壤含水量(SWC)和高饱和水汽压差(VPD)环境条件下, 黑沙蒿ΦA、ΦPR和SLA显著降低, ΦNPQ和ΦNO显著增加。研究认为, 在长期干旱或高蒸散条件下, 黑沙蒿通过降低SLA等途径避免水分的过度流失, 同时将部分过剩光能由光呼吸代谢途径转移到热耗散组分进行耗散。波动环境下黑沙蒿形态性状的变异和光合过程能量分配的长期调节机制, 反映了其利用形态与生理的协同可塑性对逆境的适应。
靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制. 植物生态学报, 2021, 45(8): 870-879. DOI: 10.17521/cjpe.2021.0146
JIN Chuan, LI Xin-Hao, JIANG Yan, XU Ming-Ze, TIAN Yun, LIU Peng, JIA Xin, ZHA Tian- Shan. Relative changes and regulation of photosynthetic energy partitioning components in Artemisia ordosica during growing season. Chinese Journal of Plant Ecology, 2021, 45(8): 870-879. DOI: 10.17521/cjpe.2021.0146
图2 毛乌素沙漠黑沙蒿光合能量分配和叶性状参数动态变化(平均值±标准差)。
Fig. 2 Dynamics in photosynthetic energy partitioning and leaf trait parameters of Artemisia ordosica in Mau Us desert (mean ± SD).
ΦA | ΦPR | ΦNPQ | ΦNO | PAR | Ta | VPD | SWC | Fv/Fm | E | gs | Narea | SLA | CChl | Chl a/b | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ΦA | 1.000 0 | ||||||||||||||
ΦPR | 0.995 0** | 1.000 0 | |||||||||||||
ΦNPQ | -0.921 6** | -0.916 6** | 1.000 0 | ||||||||||||
ΦNO | -0.960 8** | -0.966 7** | 0.785 9** | 1.000 0 | |||||||||||
PAR | -0.194 7 | -0.214 2 | 0.170 1 | 0.214 8 | 1.000 0 | ||||||||||
Ta | -0.231 2 | -0.224 3 | 0.199 6 | 0.225 0 | 0.540 2** | 1.000 0 | |||||||||
VPD | -0.114 8 | -0.053 7 | 0.110 6 | 0.043 6 | 0.706 3* | 0.341 5 | 1.000 0 | ||||||||
SWC | 0.361 7 | 0.426 4 | -0.347 9 | -0.407 8 | -0.506 8 | -0.097 9 | -0.526 0 | 1.000 0 | |||||||
Fv/Fm | 0.058 9 | 0.099 8 | -0.006 6 | -0.131 3 | -0.038 3 | 0.030 1 | -0.252 6 | 0.251 5 | 1.000 0 | ||||||
E | 0.619 5** | 0.634 5** | -0.521 1* | -0.647 0** | 0.185 0 | 0.339 0 | 0.184 4 | 0.176 1 | -0.339 2 | 1.000 0 | |||||
gs | 0.225 7 | 0.271 4 | -0.225 4 | -0.254 6 | -0.205 3 | -0.419 4 | -0.206 4 | 0.221 9 | 0.414 5* | 0.130 5 | 1.000 0 | ||||
Narea | 0.105 1 | 0.014 8 | -0.109 4 | 0.001 5 | 0.132 2 | -0.271 7 | 0.583 3* | -0.646 3* | -0.294 9 | -0.144 6 | -0.035 5 | 1.000 0 | |||
SLA | -0.192 1 | -0.127 2 | 0.057 8 | 0.195 9 | -0.306 8 | -0.055 1 | -0.586 3* | 0.569 2* | 0.438 9 | -0.101 8 | 0.389 7 | -0.530 6 | 1.000 0 | ||
CChl | -0.266 9 | -0.242 1 | 0.254 8 | 0.226 0 | 0.612 1* | 0.423 2 | 0.345 0 | -0.133 7 | 0.445 8 | 0.164 9 | 0.290 9 | -0.120 4 | -0.041 4 | 1.000 0 | |
Chl a/b | -0.030 8 | -0.066 9 | 0.168 9 | -0.024 8 | 0.171 5 | -0.106 6 | 0.197 2 | -0.144 8 | -0.112 6 | 0.034 8 | 0.065 3 | 0.444 5 | -0.004 7 | 0.251 4 | 1.000 0 |
表1 黑沙蒿光合能量分配组分、环境参数和叶性状参数之间的相关性
Table 1 Relationship between photosynthetic energy partitioning, environmental and leaf trait parameters of Artemisia ordosica
ΦA | ΦPR | ΦNPQ | ΦNO | PAR | Ta | VPD | SWC | Fv/Fm | E | gs | Narea | SLA | CChl | Chl a/b | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ΦA | 1.000 0 | ||||||||||||||
ΦPR | 0.995 0** | 1.000 0 | |||||||||||||
ΦNPQ | -0.921 6** | -0.916 6** | 1.000 0 | ||||||||||||
ΦNO | -0.960 8** | -0.966 7** | 0.785 9** | 1.000 0 | |||||||||||
PAR | -0.194 7 | -0.214 2 | 0.170 1 | 0.214 8 | 1.000 0 | ||||||||||
Ta | -0.231 2 | -0.224 3 | 0.199 6 | 0.225 0 | 0.540 2** | 1.000 0 | |||||||||
VPD | -0.114 8 | -0.053 7 | 0.110 6 | 0.043 6 | 0.706 3* | 0.341 5 | 1.000 0 | ||||||||
SWC | 0.361 7 | 0.426 4 | -0.347 9 | -0.407 8 | -0.506 8 | -0.097 9 | -0.526 0 | 1.000 0 | |||||||
Fv/Fm | 0.058 9 | 0.099 8 | -0.006 6 | -0.131 3 | -0.038 3 | 0.030 1 | -0.252 6 | 0.251 5 | 1.000 0 | ||||||
E | 0.619 5** | 0.634 5** | -0.521 1* | -0.647 0** | 0.185 0 | 0.339 0 | 0.184 4 | 0.176 1 | -0.339 2 | 1.000 0 | |||||
gs | 0.225 7 | 0.271 4 | -0.225 4 | -0.254 6 | -0.205 3 | -0.419 4 | -0.206 4 | 0.221 9 | 0.414 5* | 0.130 5 | 1.000 0 | ||||
Narea | 0.105 1 | 0.014 8 | -0.109 4 | 0.001 5 | 0.132 2 | -0.271 7 | 0.583 3* | -0.646 3* | -0.294 9 | -0.144 6 | -0.035 5 | 1.000 0 | |||
SLA | -0.192 1 | -0.127 2 | 0.057 8 | 0.195 9 | -0.306 8 | -0.055 1 | -0.586 3* | 0.569 2* | 0.438 9 | -0.101 8 | 0.389 7 | -0.530 6 | 1.000 0 | ||
CChl | -0.266 9 | -0.242 1 | 0.254 8 | 0.226 0 | 0.612 1* | 0.423 2 | 0.345 0 | -0.133 7 | 0.445 8 | 0.164 9 | 0.290 9 | -0.120 4 | -0.041 4 | 1.000 0 | |
Chl a/b | -0.030 8 | -0.066 9 | 0.168 9 | -0.024 8 | 0.171 5 | -0.106 6 | 0.197 2 | -0.144 8 | -0.112 6 | 0.034 8 | 0.065 3 | 0.444 5 | -0.004 7 | 0.251 4 | 1.000 0 |
E | gs | Narea | SLA | CChl | Chl a/b | Y | SSE | R2 | p | AIC | |
---|---|---|---|---|---|---|---|---|---|---|---|
ΦA | 0.000 8 (0.001 2) | 0.018 9 (0.051 5) | 0.069 1 (0.033 8) | 0.001 9 (0.000 7) | 0.0347 (0.056 1) | 0.004 2 (0.010 1) | 0.075 3 (0.168 3) | 0.000 3 | 0.57 | 0.29 | -50.72 |
ΦPR | 0.001 5 (0.336 7) | 0.050 5 (0.103 0) | 0.001 1 (0.067 6) | 0.000 3 (0.001 3) | 0.069 3 (0.112 2) | 0.008 5 (0.020 8) | 0.150 7 (0.336 7) | 0.001 3 | 0.58 | 0.26 | -42.29 |
ΦNPQ | -0.000 9 (0.001 8) | -0.014 9 (0.078 8) | -0.049 3 (0.051 7) | -0.001 1 (0.001 0) | -0.007 4 (0.085 9) | -0.007 3 (0.015 9) | 0.572 9 (0.257 6) | 0.000 8 | 0.59 | 0.25 | -45.54 |
ΦNO | -0.001 4 (0.002 1) | -0.084 4 (0.093 7) | -0.041 2 (0.061 5) | -0.000 5 (0.001 2) | -0.111 5 (0.102 1) | -0.020 1 (0.018 9) | 0.200 9 (0.306 3) | 0.001 1 | 0.69 | 0.11 | -43.44 |
表2 黑沙蒿光合能量分配组分与叶性状参数的模型拟合参数
Table 2 Fitting parameters of the relationship between photosynthetic energy partitioning components of Artemisia ordosica and leaf trait parameters
E | gs | Narea | SLA | CChl | Chl a/b | Y | SSE | R2 | p | AIC | |
---|---|---|---|---|---|---|---|---|---|---|---|
ΦA | 0.000 8 (0.001 2) | 0.018 9 (0.051 5) | 0.069 1 (0.033 8) | 0.001 9 (0.000 7) | 0.0347 (0.056 1) | 0.004 2 (0.010 1) | 0.075 3 (0.168 3) | 0.000 3 | 0.57 | 0.29 | -50.72 |
ΦPR | 0.001 5 (0.336 7) | 0.050 5 (0.103 0) | 0.001 1 (0.067 6) | 0.000 3 (0.001 3) | 0.069 3 (0.112 2) | 0.008 5 (0.020 8) | 0.150 7 (0.336 7) | 0.001 3 | 0.58 | 0.26 | -42.29 |
ΦNPQ | -0.000 9 (0.001 8) | -0.014 9 (0.078 8) | -0.049 3 (0.051 7) | -0.001 1 (0.001 0) | -0.007 4 (0.085 9) | -0.007 3 (0.015 9) | 0.572 9 (0.257 6) | 0.000 8 | 0.59 | 0.25 | -45.54 |
ΦNO | -0.001 4 (0.002 1) | -0.084 4 (0.093 7) | -0.041 2 (0.061 5) | -0.000 5 (0.001 2) | -0.111 5 (0.102 1) | -0.020 1 (0.018 9) | 0.200 9 (0.306 3) | 0.001 1 | 0.69 | 0.11 | -43.44 |
图3 不同土壤和空气水分条件下黑沙蒿的光合过程能量分配和比叶面积(平均值±标准差)。SWC, 土壤含水量; VPD, 饱和水汽压差。不同小写字母表示差异显著(p < 0.05)。
Fig. 3 Photosynthetic energy partitioning and specific leaf area of Artemisia ordosica under different soil and air moisture conditions (mean ± SD). SWC, soil water content; VPD, vapor pressure deficit. Different lowercase letters indicate significant differences (p < 0.05).
[1] | Burnham KP, Anderson DR, Huyvaert KP (2011). AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology, 65, 23-35. |
[2] | Chaves MM, Osório J, Pereira JS (2004). Water use efficiency and photosynthesis//Bacon MA. Water Use Efficiency in Plant Biology. Blackwell Publishing, Oxford, UK. |
[3] | Chen YN, Chen YP, Zhu CG, Li WH (2019). The concept and mode of ecosystem sustainable management in arid desert areas in northwest China. Acta Ecologica Sinica, 39, 7410-7417. |
[ 陈亚宁, 陈亚鹏, 朱成刚, 李卫红 (2019). 西北干旱荒漠区生态系统可持续管理理念与模式. 生态学报, 39, 7410-7417.] | |
[4] | Chong PF, Li Y, Su SP (2010). Diurnal change in chlorophyll fluorescence parameters of desert plant Reaumuria soongorica and its relationship with environmental factors. Journal of Desert Research, 30, 539-545. |
[ 种培芳, 李毅, 苏世平 (2010). 荒漠植物红砂叶绿素荧光参数日变化及其与环境因子的关系. 中国沙漠, 30, 539-545.] | |
[5] | Galmés J, Medrano H, Flexas J (2007). Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist, 175, 81-93. |
[6] | He YH, Bai YE, Wang HY, Lin T, Tian YL (2015). Effect of light stress on chlorophyll fluorescence and photorespiration of Ammopiptanthus mongolicus. Acta Agriculturae Boreali-Occidentalis Sinica, 24, 124-130. |
[ 何炎红, 白玉娥, 王海燕, 林涛, 田有亮 (2015). 光胁迫对沙冬青叶绿素荧光特征和光呼吸的影响. 西北农业学报, 24, 124-130.] | |
[7] | Hou XW, Li YJ, Zhong Q, Peng XX (2019). Recent progress of photorespiration pathway and its regulation. Plant Physiology Journal, 55, 255-264. |
[ 侯学文, 李英杰, 钟琪, 彭新湘 (2019). 光呼吸代谢途径及其调控的研究进展. 植物生理学报, 55, 255-264.] | |
[8] | Huang JP, Yu HP, Dai AG, Wei Y, Kang LT (2017). Drylands face potential threat under 2 °C global warming target. Nature Climate Change, 7, 417-422. |
[9] | Jia X, Zha TS, Gong JN, Wang B, Zhang YQ, Wu B, Qin SG, Peltola H (2016). Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. Agricultural and Forest Meteorology, 228, 120-129. |
[10] | Jiang CD, Gao HY, Zou Q, Jiang GM, Li LH (2005). The co-operation of leaf orientation, photorespiration and thermal dissipation alleviate photoinhibition in young leaves of soybean plants. Acta Ecologica Sinica, 25, 319-325. |
[ 姜闯道, 高辉远, 邹琦, 蒋高明, 李凌浩 (2005). 叶角、光呼吸和热耗散协同作用减轻大豆幼叶光抑制. 生态学报, 25, 319-325.] | |
[11] | Jin C, Jiang Y, Li XH, Xu MZ, Gao SJ, Wei NN, Jia X, Tian Y, Zha TS (2021). Multi-time scale property of environmental responses to photosystem II of Artemisia ordosica in Mu Us desert. Transactions of the Chinese Society of Agricultural Engineering, 37, 152-160. |
[ 靳川, 蒋燕, 李鑫豪, 徐铭泽, 高圣杰, 魏宁宁, 贾昕, 田赟, 查天山 (2021). 毛乌素沙地油蒿光系统II多时间尺度的环境响应特征. 农业工程学报, 37, 152-160.] | |
[12] | Jin C, Zha TS, Jia X, Tian Y, Zhou WJ, Yang SB, Guo ZF (2020). Dynamics of chlorophyll fluorescence parameters under drought condition for three desert shrub species. Journal of Beijing Forestry University, 42(8), 72-80. |
[ 靳川, 查天山, 贾昕, 田赟, 周文君, 杨双宝, 郭子繁 (2020). 干旱环境3种荒漠灌木叶绿素荧光参数动态. 北京林业大学学报, 42(8), 72-80.] | |
[13] | Kang BW, Liu JJ, Sun JH, Li YF (2010). Study on root distribution of Artemisa ordosica in Mu Us Sandy land. Research of Soil and Water Conservation, 17, 119-123. |
[ 康博文, 刘建军, 孙建华, 李岩峰 (2010). 陕北毛乌素沙漠黑沙蒿根系分布特征研究. 水土保持研究, 17, 119-123.] | |
[14] | Kramer DM, Johnson G, Kiirats O, Edwards GE (2004). New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 79, 209-218. |
[15] | Li XH, Yan HJ, Wei TZ, Zhou WJ, Jia X, Zha TS (2019). Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season. Chinese Journal of Plant Ecology, 43, 889-898. |
[ 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山 (2019). 油蒿资源利用效率在生长季的相对变化及对环境因子的响应. 植物生态学报, 43, 889-898.] | |
[16] | Lin NF, Tang J (2001). Study on the environmental evolution and the causes of desertification in arid and semiarid regions in China. Scientia Geographica Sinica, 21, 24-29. |
[ 林年丰, 汤洁 (2001). 中国干旱半干旱区的环境演变与荒漠化的成因. 地理科学, 21, 24-29.] | |
[17] | Luo DD, Wang CK, Jin Y (2019). Stomatal regulation of plants in response to drought stress. Chinese Journal of Applied Ecology, 30, 4333-4343. |
[ 罗丹丹, 王传宽, 金鹰 (2019). 植物应对干旱胁迫的气孔调节. 应用生态学报, 30, 4333-4343.] | |
[18] | Murchie EH, Lawson T (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany, 64, 3983-3998. |
[19] | Müller P, Li XP, Niyogi KK (2001). Non-photochemical quenching. A response to excess light energy. Plant physiology, 125, 1558-1566. |
[20] | Ruan CJ, Li DQ (2001). Stomatal conductance and influence factors of seabuckthorn in Loess Hilly Region. Acta Botanica Boreali-occidentalia Sinica, 21, 30-36. |
[ 阮成江, 李代琼 (2001). 黄土丘陵区沙棘气孔导度及其影响因子. 西北植物学报, 21, 30-36.] | |
[21] | Ruban AV (2016). Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology, 170, 1903-1916. |
[22] | Savitch LV, Ivanov AG, Gudynaite-Savitch L, Huner NPA, Simmonds J (2009). Effects of low temperature stress on excitation energy partitioning and photoprotection in Zea mays. Functional Plant Biology, 36, 37-49. |
[23] | Shi ZM, Tang JC, Cheng RM, Luo D, Liu SR (2015). A review of nitrogen allocation in leaves and factors in its effects. Acta Ecologica Sinica, 35, 5909-5919. |
[ 史作民, 唐敬超, 程瑞梅, 罗达, 刘世荣 (2015). 植物叶片氮分配及其影响因子研究进展. 生态学报, 35, 5909-5919.] | |
[24] | Sun AA, Zhi YB, Jiang PP, Lü K, Zhang DJ, Li HL, Zhang HL, Wang YF, Hua YP, Hong G, Gao JB (2019). Characteristics of and differences in photosynthesis in four desert plants in western Ordos. Acta Ecologica Sinica, 39, 4944-4952. |
[ 孙安安, 智颖飙, 姜平平, 吕凯, 张德健, 李红丽, 张荷亮, 王云飞, 华宇鹏, 红鸽, 高健斌 (2019). 西鄂尔多斯4种荒漠植物光合作用特征与差异性. 生态学报, 39, 4944-4952.] | |
[25] | Sun Y, Wang D, Tong Z, Yang Q, Chang LL, Wang LM, He LP, Wang XC (2015). Proteomic analysis of banana seedling leaf response to low temperature. Chinese Agricultural Science Bulletin, 31, 216-228. |
[ 孙勇, 王丹, 仝征, 杨倩, 常丽丽, 王力敏, 何丽平, 王旭初 (2015). 香蕉幼苗叶片响应低温胁迫的比较蛋白质组学研究. 中国农学通报, 31, 216-228.] | |
[26] | Sun Y, Xu WJ, Fan AL (2006). Effects of salicylic acid on chlorophyll fluorescence and xanthophyll cycle in cucumber leaves under high temperature and strong light. Chinese Journal of Applied Ecology, 17, 3399-3402. |
[ 孙艳, 徐伟君, 范爱丽 (2006). 高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响. 应用生态学报, 17, 3399-3402.] | |
[27] | Wang Y, Lü GH, Gao LJ, Ren ML, Su Q, Sun LJ (2013). Stomatal conductance characteristics of desert species Poacynum pictum(Schrenk.) Baill of and the impact factors. Journal of Arid Land Resources and Environment, 27, 158-163. |
[ 王芸, 吕光辉, 高丽娟, 任曼丽, 苏前, 孙丽君 (2013). 荒漠植物白麻气孔导度特征及其影响因子研究. 干旱区资源与环境, 27, 158-163.] | |
[28] | Wang YL, Liu J, Li WB, Li F (2015). Study on characteristics in photosynthesis, transpiration and water use efficiency of Tamarix hispida willd. in the lower reaches of the Tarim river. Xinjiang Agricultural Sciences, 52, 292-299. |
[ 王燕凌, 刘君, 李文兵, 李芳 (2015). 塔里木河下游刚毛柽柳光合作用、蒸腾作用及水分利用效率特性研究. 新疆农业科学, 52, 292-299.] | |
[29] | Wu YJ, Ren C, Tian Y, Zha TS, Liu P, Bai YJ, Ma JY, Lai ZR, Bourque CPA (2018). Photosynthetic gas-exchange and PSII photochemical acclimation to drought in a native and non-native xerophytic species (Artemisia ordosica and Salix psammophila). Ecological Indicators, 94, 130-138. |
[30] | Wu YJ, Zha TS, Jia X, Qin SG, Li Y, Wang B (2015). Temporal variation and controlling factors of photochemical efficiency and non-photo-chemical quenching in Artemisia ordosica. Chinese Journal of Ecology, 34, 319-325. |
[ 吴雅娟, 查天山, 贾昕, 秦树高, 李媛, 王奔 (2015). 油蒿(Artemisia ordosica)光化学量子效率和非光化学淬灭的动态及其影响因子. 生态学杂志, 34, 319-325.] | |
[31] | Yang HX, Zhang J, Wu B, Wang Y, Li XS, Xu B (2004). Adaptation of Artemisia ordosica to temperate arid sandy land and its roles in habitat shift. Journal of Beijing Normal University (Natural Science), 40, 684-690. |
[ 杨洪晓, 张金屯, 吴波, 王妍, 李晓松, 许彬 (2004). 油蒿(Artemisia ordosica)对半干旱区沙地生境的适应及其生态作用. 北京师范大学学报(自然科学版), 40, 684-690.] | |
[32] | Zha TS, Wu YJ, Jia X, Zhang MY, Bai YJ, Liu P, Ma JY, Bourque CPA, Peltola H (2017). Diurnal response of effective quantum yield of PSII photochemistry to irradiance as an indicator of photosynthetic acclimation to stressed environments revealed in a xerophytic species. Ecological Indicators, 74, 191-197. |
[33] | Zhang C, Zhan DX, Zhang PP, Zhang YL, Luo HH, Zhang WF (2014). Responses of photorespiration and thermal dissipation in PSII to soil water in cotton bracts. Chinese Journal of Plant Ecology, 38, 387-395. |
[ 张超, 占东霞, 张鹏鹏, 张亚黎, 罗宏海, 张旺锋 (2014). 棉花苞叶光呼吸和PSII热耗散对土壤水分的响应. 植物生态学报, 38, 387-395.] | |
[34] | Zhao FH, Yu GR (2008). A review on the coupled carbon and water cycles in the terrestrial ecosystems. Progress in Geography, 27, 32-38. |
[ 赵风华, 于贵瑞 (2008). 陆地生态系统碳-水耦合机制初探. 地理科学进展, 27, 32-38.] |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[3] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[4] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[5] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[6] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[7] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[8] | 丁键浠, 周蕾, 王永琳, 庄杰, 陈集景, 周稳, 赵宁, 宋珺, 迟永刚. 叶绿素荧光主动与被动联合观测应用前景[J]. 植物生态学报, 2021, 45(2): 105-118. |
[9] | 黄松宇, 贾昕, 郑甲佳, 杨睿智, 牟钰, 袁和第. 中国典型陆地生态系统波文比特征及影响因素[J]. 植物生态学报, 2021, 45(2): 119-130. |
[10] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
[11] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[12] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
[13] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[14] | 张娜, 朱阳春, 李志强, 卢信, 范如芹, 刘丽珠, 童非, 陈静, 穆春生, 张振华. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响[J]. 植物生态学报, 2018, 42(2): 229-239. |
[15] | 李群, 赵成章, 赵连春, 王建良, 张伟涛, 姚文秀. 秦王川盐沼湿地芦苇比叶面积与叶片热耗散的关联性分析[J]. 植物生态学报, 2017, 41(9): 985-994. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19