植物生态学报 ›› 2019, Vol. 43 ›› Issue (3): 197-207.DOI: 10.17521/cjpe.2018.0303
收稿日期:
2018-11-30
修回日期:
2019-02-22
出版日期:
2019-03-20
发布日期:
2019-04-23
通讯作者:
张守仁
基金资助:
LIU Xiao-Ming1,2,YANG Xiao-Fang1,2,WANG Xuan1,2,ZHANG Shou-Ren1,*()
Received:
2018-11-30
Revised:
2019-02-22
Online:
2019-03-20
Published:
2019-04-23
Contact:
ZHANG Shou-Ren
Supported by:
摘要:
暖温带落叶阔叶林在维护区域生态系统功能和平衡中起着重要的作用, 研究其在氮添加下的生长和生理生态响应, 有助于深入理解暖温带落叶阔叶林在全球氮沉降背景下的生长和变化规律。该研究通过在北京东灵山落叶阔叶林的模拟氮沉降控制实验, 以优势种辽东栎(Quercus wutaishanica)和伴生种五角枫(Acer pictum subsp. mono)为研究对象, 设置对照和氮添加2种处理, 每种处理4个重复, 对照样地不做处理; 氮添加样地施加尿素(CO(NH2)2), 总的氮添加量为100 kg·hm -2·a -1, 测定氮添加对其生长和光合生理生态特征的影响。结果显示: 氮添加显著提高了两个树种的净光合速率、蒸腾速率、叶绿素含量, 同时扩大了叶片光系统II反应中心电子传递体库, 增加了基于光合电子流驱动的初级受体醌(QA)被还原的周转次数。氮添加也增加了两个树种当年生枝条的长度和生物量, 同时在一定程度上提高了辽东栎种子的质量。辽东栎光合作用氮利用效率、枝条生物量对氮添加的响应程度明显超过五角枫。在未来氮沉降加剧的情景下, 东灵山暖温带落叶阔叶林优势种辽东栎的优势地位会进一步加强。
刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应. 植物生态学报, 2019, 43(3): 197-207. DOI: 10.17521/cjpe.2018.0303
LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest. Chinese Journal of Plant Ecology, 2019, 43(3): 197-207. DOI: 10.17521/cjpe.2018.0303
性状 Trait | 氮 N | 树种 Species | 氮 × 树种 N × Species |
---|---|---|---|
净光合速率 Net photosynthetic rate (Pn) | *** | *** | *** |
气孔导度 Stomatal conductance (Gs) | *** | *** | *** |
蒸腾速率 Transpiration rate (Tr) | *** | *** | *** |
水分利用效率 Water use Efficiency (WUE) | ns | ns | ns |
叶绿素含量 Chlorophyll contents (Chl) | *** | *** | ns |
光系统II最大光化学效率 Maximal PSII efficiency (PHI(Po)) | ns | ns | ns |
光系统II电子传递链电子受体库大小 PSII size of QA pool (Sm) | *** | ns | ns |
初级醌受体被还原周转次数 PSII QA reduced turn over number (N) | *** | ** | ns |
光合氮利用效率 Photosynthetic nitrogen use efficiency (PNUE) | ns | ns | ** |
当年生枝长度 Length of current year branch | *** | * | ns |
当年生枝生物量 Biomass of current year branch | * | *** | ns |
辽东栎种子质量 Quercus wutaishanica seed mass | ns | - | - |
Table 1 Effects of nitrogen (N) treatment, tree species and their interaction on some eco-physiological and growth traits of Quercus wutaishanica and Acer pictum subsp. Mono in Dongling Mountain
性状 Trait | 氮 N | 树种 Species | 氮 × 树种 N × Species |
---|---|---|---|
净光合速率 Net photosynthetic rate (Pn) | *** | *** | *** |
气孔导度 Stomatal conductance (Gs) | *** | *** | *** |
蒸腾速率 Transpiration rate (Tr) | *** | *** | *** |
水分利用效率 Water use Efficiency (WUE) | ns | ns | ns |
叶绿素含量 Chlorophyll contents (Chl) | *** | *** | ns |
光系统II最大光化学效率 Maximal PSII efficiency (PHI(Po)) | ns | ns | ns |
光系统II电子传递链电子受体库大小 PSII size of QA pool (Sm) | *** | ns | ns |
初级醌受体被还原周转次数 PSII QA reduced turn over number (N) | *** | ** | ns |
光合氮利用效率 Photosynthetic nitrogen use efficiency (PNUE) | ns | ns | ** |
当年生枝长度 Length of current year branch | *** | * | ns |
当年生枝生物量 Biomass of current year branch | * | *** | ns |
辽东栎种子质量 Quercus wutaishanica seed mass | ns | - | - |
图1 氮处理随季节变化对东灵山辽东栎(A-D)和五角枫(E-H)光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和水分利用效率(WUE)的影响(平均值±标准偏差)。***, p < 0.001; **, p < 0.01; *, p < 0.05; ns, p > 0.05。
Fig. 1 Seasonal changes of net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), and water use efficiency (WUE) of Quercus wutaishanica (A-D) and Acer pictum subsp. mono (E-H) in Dongling Mountain in response to nitrogen treatment (mean ± SD). ***, p < 0.001; **, p < 0.01; *, p < 0.05; ns, p > 0.05.
图2 氮处理对辽东栎(A)和五角枫(B)叶绿素含量(Chl)的季节性影响(平均值±标准偏差)。**, p < 0.01; *, p < 0.05; ns, p > 0.05。
Fig. 2 Seasonal changes of chlorophyll content (Chl) of Quercus wutaishanica (A) and Acer pictum subsp. mono (B) in response to nitrogen treatment (mean ± SD). **, p < 0.01; *, p < 0.05; ns, p > 0.05.
图3 氮处理对辽东栎(A-C)和五角枫(D-F)叶绿素荧光性状光系统II最大光化学效率(PHI(Po))、 电子受体库大小(Sm)和初级醌受体被还原周转次数(N)的季节性影响(平均值±标准偏差)。**, p < 0.01; *, p < 0.05; ns, p > 0.05。由于仪器出现故障7月份数据缺失。
Fig. 3 Seasonal changes of maximal PSII efficiency (PHI(Po)), size of QA pool (Sm) and the QA reduced turnover number (N) of Quercus wutaishanica (A-C) and Acer pictum subsp. mono (D-F) in response to nitrogen treatment (mean ± SD). **, p < 0.01; *, p < 0.05; ns, p > 0.05. Data measured in July were missed due to instrument disorder.
图4 氮处理、树种及其交互作用对两个树种光合氮利用效率(PNUE)(A), 当年生枝条长度(B), 枝条生物量(C)的影响及氮处理对辽东栎种子单粒质量(D)的影响(平均值±标准偏差)。不同小写字母表示差异显著(p < 0.05)。
Fig. 4 Effects of nitrogen addition, tree species and their interaction on photosynthetic nitrogen efficiency (PNUE)(A), length (B) and biomass (C) of the current-year branch of the two tree species, and effect of nitrogen addition on single seed mass (D) of Quercus wutaishanica (mean ± SD). Different lowercase letters indicate significant difference (p < 0.05).
[1] | Aber J, Mcdowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M ( 1998). Nitrogen saturation in temperate forest ecosystems hypotheses revisited. Bioscience, 48, 921-934. |
[2] | Andersson F, Fagerström T, Nilsson SI ( 1980). Forest ecosystem responses to acid deposition hydrogen ion budget and nitrogen/tree growth model approaches. In: Hutchinson TC, Havas M eds. Effects of Acid Precipitation on Terrestrial Ecosystems. Springer,Boston. 319-334. |
[3] | Bauer GA, Berntson GM, Bazzaz FA ( 2010). Regenerating temperate forests under elevated CO2 and nitrogen deposition: Comparing biochemical and stomatal limitation of photosynthesis. New Phytologist, 152, 249-266. |
[4] | Bedison JE, Mcneil BE ( 2009). Is the growth of temperate forest trees enhanced along an ambient nitrogen deposition gradient? Ecology, 90, 1736-1742. |
[5] | Chen DK, Shi JC, Wang YH, Chen XQ ( 1984). Forest site classification and forest productivity classification and evaluation of secondary forest in Maoer Mountains. Journal of Northeast Forestry University, 12(1), 1-18. |
[ 陈大珂, 石家琛, 王义弘, 陈喜全 ( 1984). 森林立地分类与森林生产力——帽儿山次生林立地分类和评价. 东北林业大学学报, 12(1), 1-18.] | |
[6] | Chen LZ ( 1997). The importance of Donglin Mountain region of warm temperate deciduous broad-leaved forest. In: Chen LZ ed. The Study on Structure and Function of Forest in Warm Temperate Zone. Science Press, Beijing. 1-9. |
[ 陈灵芝 ( 1997). 东灵山地区在暖温带落叶阔叶林区域的地位. 见: 陈灵芝编. 暖温带森林生态系统结构与功能的研究. 科学出版社, 北京. 1-9.] | |
[7] | Fang H, Mo JM ( 2006). Effects of nitrogen deposition on forest litter decomposition. Acta Ecologica Sinica, 26, 3127-3136. |
[ 方华, 莫江明 ( 2006). 氮沉降对森林凋落物分解的影响. 生态学报, 26, 3127-3136.] | |
[8] | Fang YT, Mo JM, Gundersen P, Zhou GY, Li DJ ( 2004). Nitrogen transformations in forest soils and its responses to atmospheric nitrogen deposition: A review. Acta Ecologica Sinica, 24, 1523-1531. |
[ 方运霆, 莫江明, Per Gundersen, 周国逸, 李德军 ( 2004). 森林土壤氮素转换及其对氮沉降的响应. 生态学报, 24, 1523-1531.] | |
[9] | Fang YT, Mo JM, Zhou GY, Xue JH ( 2005). Responses of diameter at breast height increment to N addition in forests of Dinghushan Biosphere Reserve. Journal of Tropical and Subtropical Botany, 13, 198-204. |
[ 方运霆, 莫江明, 周国逸, 薛璟花 ( 2005). 鼎湖山主要森林类型植物胸径生长对氮沉降增加的初期响应. 热带亚热带植物学报, 13, 198-204.] | |
[10] | Feng Y, Ma KM, Zhang YX, Qi J, Zhang JY ( 2007). Species abundance distribution of Quercus liaotungensis forest along altitudinal gradient in Dongling Mountain, Beijing. Acta Ecologica Sinica, 27, 4743-4750. |
[ 冯云, 马克明, 张育新, 祁建, 张洁瑜 ( 2007). 北京东灵山辽东栎(Quercus liaotungensis)林沿海拔梯度的物种多度分布. 生态学报, 27, 4743-4750.] | |
[11] | Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ ( 2003). The nitrogen cascade. Bioscience, 53, 341-356. |
[12] | Galloway JN, Cowling EB, Seitzinger SP, Socolow RH ( 2002). Reactive nitrogen: Too much of a good thing? Ambio, 31, 60-63. |
[13] | Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA ( 2004). Nitrogen cycles: Past, present, and future. Biogeochemistry, 70, 153-226. |
[14] | Galloway JN, Townsend AR, Jan Willem E, Mateete B, Zucong C, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA ( 2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889-892. |
[15] | Garcia MO, Ovasapyan T, Greas M, Treseder KK ( 2008). Mycorrhizal dynamics under elevated CO2 and nitrogen fertilization in a warm temperate forest. Plant and Soil, 303, 301-310. |
[16] | Gu BJ, Ge Y, Ren Y, Xu B, Chong F, Luo WD, Jiang H, Gu BH, Chang J ( 2012). Atmospheric reactive nitrogen in China: Sources, recent trends, and damage costs. Environmental Science & Technology, 46, 9420-9427. |
[17] | Güsewell S ( 2010). High nitrogen: Phosphorus ratios reduce nutrient retention and second-year growth of wetland sedges. New Phytologist, 166, 537-550. |
[18] | Hikosaka K, Shigeno A ( 2009). The role of Rubisco and cell walls in the interspecific variation in photosynthetic capacity. Oecologia, 160, 443-451. |
[19] | Högberg P, Fan H, Quist M, Binkley D, Tamm CO ( 2010). Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology, 12, 489-499. |
[20] | Holland EA, Dentener FJ, Braswell BH, Sulzman JM ( 1999). Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry, 46, 7-43. |
[21] | Jia S, Wang Z, Li X, Zhang X, Mclaughlin NB ( 2011). Effect of nitrogen fertilizer, root branch order and temperature on respiration and tissue N concentration of fine roots in Larix gmelinii and Fraxinus mandshurica. Tree Physiology, 31, 718-726. |
[22] | Johnson GN, Scholes JD, Horton P, Young AJ ( 1993). Relationships between carotenoid composition and growth habit in British plant species. Plant, Cell & Environment, 16, 681-686. |
[23] | Kurts P, Andrewj B, Donaldr Z, Alanf T ( 2008). Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests. Global Change Biology, 14, 142-153. |
[24] | Lebauer DS, Treseder KK ( 2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379. |
[25] | Li JX, Li F ( 2012). Characterization of chemical compounds of rainfall samples collected in a sand-storm process in Beijing. China Environmental Science, 32, 2149-2154. |
[ 李金香, 李峰 ( 2012). 北京市一次沙尘过程中降水化学组分的监测分析. 中国环境科学, 32, 2149-2154.] | |
[26] | Li PM, Gao HY, Strasser RJ ( 2005). Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Journal of Plant Physiology and Molecular Biology, 31, 559-566. |
[ 李鹏民, 高辉远 Reto J. Strasser , ( 2005). 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 31, 559-566.] | |
[27] | Li QJ, Yin LM, Wang LH, Liu Y ( 2010). Effects of simulated nitrogen deposition under different soil moistures on fruiting of Xanthoceras sorbifolia. Liaoning Forestry Science and Technology, ( 3), 1-3. |
[ 李庆军, 阴黎明, 王力华, 刘阳 ( 2010). 不同土壤水分条件下模拟氮沉降对文冠果结实的影响. 辽宁林业科技, ( 3), 1-3.] | |
[28] | Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS ( 2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462. |
[29] | Liu XZ, Wang GA, Li JZ, Wang Q ( 2009). Nitrogen isotope composition of modern plants in Dongling Mountain area of Beijing and its response to altitude gradient. Science in China Series D-Earth Sciences, 10, 1347-1359. |
[ 刘贤赵, 王国安, 李嘉竹, 王庆 ( 2009). 北京东灵山地区现代植物氮同位素组成及其对海拔梯度的响应. 中国科学D辑:地球科学, 10, 1347-1359.] | |
[30] | Liu YC, Yu GR, Wang QF, Zhang YJ , ( 2012). Huge carbon sequestration potential in global forests. Journal of Resources and Ecology, 3(3), 193-201. |
[31] | Lu XK, Mao QG, Gilliam FS, Luo Y, Mo JM ( 2014). Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology, 20, 3790-3801. |
[32] | Lu XK, Mo JM, Gilliam FS, Yu G, Wei Z, Fang YT, Huang J ( 2011). Effects of experimental nitrogen additions on plant diversity in tropical forests of contrasting disturbance regimes in southern China. Environmental Pollution, 159, 2228-2235. |
[33] | Lu XK, Mo JM, Gilliam FS, Zhou GY, Fang YT ( 2010). Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest. Global Change Biology, 16, 2688-2700. |
[34] | Luo XS, Liu P, Tang AH, Liu JY, Zong XY, Zhang Q, Kou CL, Zhang LJ, Fowler D, Fangmeier A, Christie P, Zhang FS, Liu XJ ( 2013). An evaluation of atmospheric Nr pollution and deposition in North China after the Beijing Olympics. Atmospheric Environment, 74, 209-216. |
[35] | Ma SY, Verheyen K, Props R, Wasof S, Vanhellemont M, Boeckx P, Boon N, de Frenne1 P ( 2018). Plant and soil microbe responses to light, warming and nitrogen addition in a temperate forest. Functional Ecology, 32, 1293-1303. |
[36] | Mariana V, Campanello PI, Bucci SJ, Guillermo G ( 2013). Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species. Tree physiology, 33, 1308-1318. |
[37] | Matsubara S, Krause GH, Aranda J, Virgo A, Beisel KG, Jahns P, Winter K ( 2009). Sun-shade patterns of leaf carotenoid composition in 86 species of neotropical forest plants. Functional Plant Biology, 36, 20-36. |
[38] | Mo JM, Brown S, Peng S, Kong G ( 2003). Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China. Forest Ecology and Management, 175, 573-583. |
[39] | Mo JM, Fang YT, Lin ED, Li YE ( 2006). Soil N2O emission and its response to simulated N deposition in the main forests of Dinghushan in subtropical China. Journal of Plant Ecology (Chinese version), 30, 901-910. |
[ 莫江明, 方运霆, 林而达, 李玉娥 ( 2006). 鼎湖山主要森林土壤N2O排放及其对模拟N沉降的响应. 植物生态学报, 30, 901-910.] | |
[40] | Mo JM, Xue JH, Fang YT ( 2004). Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China. Acta Ecologica Sinica, 24, 1413-1420. |
[ 莫江明, 薛璟花, 方运霆 ( 2004). 鼎湖山主要森林植物凋落物分解及其对N沉降的响应. 生态学报, 24, 1413-1420.] | |
[41] | Nave LE, Gough CM, Maurer KD, Bohrer G, Hardiman BS, Moine L ( 2015). Disturbance and the resilience of coupled carbon and nitrogen cycling in a north temperate forest. Journal of Geophysical Research Biogeosciences, 116, 332-335. |
[42] | Palmroth S, Bach LH, Nordin A, Palmqvist K ( 2014). Nitrogen-addition effects on leaf traits and photosynthetic carbon gain of boreal forest understory shrubs. Oecologia, 175, 457-470. |
[43] | Pan YP, Wang YS, Tan GQ, Wu D ( 2012). Spatial distribution and seasonal variations of atmospheric sulfur deposition over northern China. Atmospheric Chemistry and Physics Discussions, 12, 23645-23677. |
[44] | Peng LQ, Jing ZX, Wang Q ( 2014). Effects of simulated nitrogen deposition on the eco-physiological characteristics of Sinocalycanthus chinensis seedlings. Chinese Journal of Ecology, 33, 989-995. |
[ 彭礼琼, 金则新, 王强 ( 2014). 模拟氮沉降对夏蜡梅幼苗生理生态特性的影响. 生态学杂志, 33, 989-995.] | |
[45] | Pérez-Soba M, Stulen I, Eerden LJMVD ( 2010). Effect of atmospheric ammonia on the nitrogen metabolism of Scots pine (Pinus sylvestris) needles. Physiologia Plantarum, 90, 629-636. |
[46] | Quan Q, Zhang Z, He NP, Su HX, Wen XF, Sun XM ( 2015). Short-term effect of nitrogen addition on soil respiration of three temperate forests in Dongling Mountain. Chinese Journal of Ecology, 34, 797-804 |
[ 全权, 张震, 何念鹏, 苏宏新, 温学发, 孙晓敏 ( 2015). 短期氮添加对东灵山三种森林土壤呼吸的影响. 生态学杂志, 34, 797-804.] | |
[47] | Shen JL, Tang AH, Liu XJ, Fangmeier A, Goulding KTW, Zhang FS ( 2009). High concentrations and dry deposition of reactive nitrogen species at two sites in the North China Plain. Environmental Pollution, 157, 3106-3113. |
[48] | Shen YG, Ye JY ( 1991). Relationship between dynamics of Thylakoid Membrane and energy transduction. Plant Physiology Journal, 17, 109-112. |
[49] | Strasser RJ, Srivastava A , Govindjee ( 1995). Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria photochem photobiol. Photochemistry and Photobiology, 61, 32-42. |
[50] | Strasser RJ, Tsimilli-Michael M, Srivastava A ( 2004). Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee eds. Chlorophyll a Fluorescence Advances in Photosynthesis and Respiration. Springer, Dordrecht. 321-326. |
[51] | Sun SZ ( 1997). The characteristics of the geology, geomorphology, and soils in Dongling Mountain region. In: Chen LZ ed. The Study on Structure and Function of Forest in Warm Temperate Zone. Science Press,Beijing. 10-27. |
[ 孙世洲 ( 1997). 东灵山地区的地质、地貌和土壤. 见: 陈灵芝编. 温带森林生态系统结构与功能的研究. 科学出版社, 北京. 10-27.] | |
[52] | Sun XL, Xu YF, Ma LY, Zhou H ( 2010). A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment. Chinese Journal of Plant Ecology, 34, 989-999. |
[ 孙小玲, 许岳飞, 马鲁沂, 周禾 ( 2010). 植株叶片的光合色素构成对遮阴的响应. 植物生态学报, 34, 989-999.] | |
[53] | Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D ( 1997). Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7, 737-750. |
[54] | Wang DZ, Nie LS, Li JY ( 2006). Transfer characteristics of nutrient elements through hydrological process of Pinus tabulaeformis stand in Beijing Xishan area. Acta Ecologica Sinica, 26, 2101-2107. |
[ 王登芝, 聂立水, 李吉跃 ( 2006). 北京西山地区油松林水文过程中营养元素迁移特征. 生态学报, 26, 2101-2107.] | |
[55] | Wang M, Shi S, Lin F, Hao ZQ, Jiang P, Dai GH ( 2012). Effects of soil water and nitrogen on growth and photosynthetic response of Manchurian ash (Fraxinus mandshurica) seedlings in northeastern China. PLOS ONE, 7, e30754. DOI: 10.1371/journal.pone.0030754. |
[56] | Wang XA, Wang ZG, Xiao YP ( 2004). Studies on the reproductive strategy of Larix chinensis I fecundity and seed weight. Journal of Lanzhou University (Natural Sciences), 40, 72-75. |
[ 王孝安, 王志高, 肖娅萍 ( 2004). 太白红杉种群生殖对策研究I生育力和种子重量. 兰州大学学报(自然科学版), 40, 72-75.] | |
[57] | Xiang F, Li W, Liu HY, Zhou LY, Jiang CJ ( 2018). Characteristics of photosynthetic and chlorophyll fluorescence of tea varieties under different nitrogen application levels. Acta Botanica Boreali-Occidentalia Sinica, 36, 1138-1145. |
[ 向芬, 李维, 刘红艳, 周凌云, 江昌俊 ( 2018). 氮素水平对不同品种茶树光合及叶绿素荧光特性的影响. 西北植物学报, 36, 1138-1145.] | |
[58] | Xu W, Luo XS, Pan YP, Zhang L, Tang AH, Shen JL, Zhang Y, Li KH, Wu QH, Yang DW, Zhang YY, Xue J, Li WQ, Li QQ, Tang L, Lu SH, Liang T, Tong YA, Liu P, Zhang Q, Xiong ZQ, Shi XJ, Wu LH, Shi WQ, Tian K, Zhong XH, Shi K, Tang QY, Zhang LJ, Huang JL, He CE, Kuang FH, Zhu B, Liu H, Jin X, Xin YJ, Shi XK, Du EZ, Dore AJ, Tang S, Collett JL, Goulding K, Sun YX, Ren J, Zhang FS, Liu XJ ( 2015). Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmospheric Chemistry and Physics, 15, 12345-12360. |
[59] | Yang WQ, Liu SH, Miao M, Gao XD, Chen XY ( 2016). Spatial and temporal variation of dissolved inorganic nitrogen deposition along an urban to rural transect in Beijing. Acta Scientiae Circumstantiae, 36, 1530-1538. |
[ 杨文琴, 刘思慧, 苗淼, 高晓栋, 陈锡云 ( 2016). 北京市内到郊区氮沉降时空变化特征. 环境科学学报, 36, 1530-1538.] | |
[60] | Yin X, Zhang LJ, Liu XJ, Xu W, Ni YX, Liu XY ( 2017). Nitrogen deposition in suburban croplands of Hebei Plain. Scientia Agricultura Sinica, 50, 698-710. |
[ 尹兴, 张丽娟, 刘学军, 许稳, 倪玉雪, 刘新宇 ( 2017). 河北平原城市近郊农田大气氮沉降特征. 中国农业科学, 50, 698-710.] | |
[61] | Zhang JH, Tang ZY, Shen HH, Fang JY ( 2017). Responses of growth and litterfall production to nitrogen addition treatments from common shrublands in Mt. Dongling, Beijing, China. Chinese Journal of Plant Ecology, 41, 71-80. |
[ 张建华, 唐志尧, 沈海花, 方精云 ( 2017). 北京东灵山地区常见灌丛生长及凋落物生产对氮添加的响应. 植物生态学报, 41, 71-80.] | |
[62] | Zhang SR, Gao RF, Wang LJ ( 2004). Response of oxygen evolution activity of photosystem II, photosynthetic pigments and chloroplast ultrastructure of hybrid poplar clones to light stress. Acta Phytoecologica Sinica, 28, 143-149. |
[ 张守仁, 高荣孚, 王连军 ( 2004). 杂种杨无性系的光系统Ⅱ放氧活性、光合色素及叶绿体超微结构对光胁迫的响应. 植物生态学报, 28, 143-149.] | |
[63] | Zhang Y, Song L, Liu XJ, Li WQ, Lü SH, Zheng LX, Bai ZC, Cai GY, Zhang FS ( 2012). Atmospheric organic nitrogen deposition in China. Atmospheric Environment, 46, 195-204. |
[64] | Zheng X, Jiang LB, Deng BL, Liu Q, Liu XS, Zheng LY, Guo XM, Liu YQ, Zhang L ( 2018). Effects of enhanced UV-B radiation and nitrogen deposition on chlorophyll fluorescence parameters of invasive plant Triadica sebifera. Acta Agriculturae Zhejiangensis, 30, 248-254. |
[ 郑翔, 江亮波, 邓邦良, 刘倩, 刘喜帅, 郑利亚, 郭晓敏, 刘苑秋, 张令 ( 2018). UV-B辐射增强和氮沉降对不同种源地乌桕叶绿素荧光参数的影响. 浙江农业学报, 30, 248-254.] | |
[65] | Zheng XH, Fu CB, Xu XK, Yan XD, Huang Y, Han SH, Hu F, Chen GX ( 2002). The Asian nitrogen cycle case study. Ambio, 31, 79-87. |
[66] | Zhu FF, Yoh M, Gilliam FS, Lu XK, Mo JM ( 2013). Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: Insights from fine root responses to nutrient additions. PLOS ONE, 8, e82661. DOI: 10.1371/journal.pone.0082661. |
[1] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[2] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[3] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[4] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[5] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[6] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[7] | 魏龙鑫, 耿燕, 崔可达, 乔雪涛, 岳庆敏, 范春雨, 张春雨, 赵秀海. 阔叶红松林不同林层和生长阶段树木生长对采伐强度的响应[J]. 植物生态学报, 2022, 46(6): 642-655. |
[8] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[9] | 黄冬柳, 项伟, 李忠国, 朱师丹. 南亚热带10种造林树种的水力结构和水力安全[J]. 植物生态学报, 2022, 46(5): 602-612. |
[10] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[11] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[12] | 李思源, 张照鑫, 饶良懿. 桑苗非结构性碳水化合物和生长激素对水淹胁迫的响应[J]. 植物生态学报, 2022, 46(3): 311-320. |
[13] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[14] | 谢欢, 张秋芳, 曾泉鑫, 周嘉聪, 马亚培, 吴玥, 刘苑苑, 林惠瑛, 尹云锋, 陈岳民. 氮添加对杉木苗期磷转化和分解类真菌的影响[J]. 植物生态学报, 2022, 46(2): 220-231. |
[15] | 祁鲁玉 陈浩楠 库丽洪·赛热别力 籍天宇 孟高德 秦慧颖 王宁 宋逸欣 刘春雨 杜宁 郭卫华. 基于植物功能性状的暖温带5种灌木幼苗生长策略分析[J]. 植物生态学报, 2022, 46(11): 1388-1399. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19