植物生态学报 ›› 2024, Vol. 48 ›› Issue (6): 794-808.DOI: 10.17521/cjpe.2023.0094
收稿日期:
2023-03-31
接受日期:
2023-08-03
出版日期:
2024-06-20
发布日期:
2023-08-31
通讯作者:
*赵燕东(yandongzh@bjfu.edu.cn)
基金资助:
Received:
2023-03-31
Accepted:
2023-08-03
Online:
2024-06-20
Published:
2023-08-31
Contact:
*ZHAO Yan-Dong(yandongzh@bjfu.edu.cn)
Supported by:
摘要:
活立木茎干水分含量作为一种典型的生理水分参数, 一直是活立木生命状态最为有效的表征参数之一, 对维持整株树木水分平衡起着极其重要的作用, 受到研究者、林木抚育者的高度重视。但活立木茎干水分含量的获取方法一直受到操作烦琐、成本昂贵、实时性不强、准确率不高及有损活立木生命等因素的影响, 限制了对其深入的应用研究。该研究创新性地采用一种具有自主知识产权的茎干水分传感器, 实时、无损地获取活立木茎干水分含量, 并对茎干水分含量序列特征及其影响因素进行较为详细的研究。以常见的绿化树种五角枫(五角槭, Acer pictum subsp. mono)为研究对象, 采用基于驻波率原理的植物茎干水分传感器实现对五角枫茎干水分含量原位且无损监测, 同步监测相关气象因子, 分析生长季不同时期茎干水分含量序列特征及其与各气象因子的关系。结果显示: (1)茎干水分含量在春季(4月)和秋季中后期(9-10月)呈“昼升夜降”的趋势, 夏季至秋季中期(5-8月)呈“昼降夜升”的趋势; 阴天会抑制茎干水分含量的日极差与极大值, 雨天时, 茎干水分含量会明显上升; 干燥天气会使茎干水分含量呈下降趋势; (2)生长季萌芽期, 对茎干水分含量变化起直接作用的气象因子主要是空气温度和饱和水汽压差, 茎干水分含量与空气温度和土壤水分含量呈显著相关关系; 生长期, 影响茎干水分含量的主导因子为饱和水汽压差和土壤温度, 茎干水分含量与饱和水汽压差和空气温度呈显著相关关系; 落叶期, 对茎干水分含量变化起直接作用的因子主要为空气温度和饱和水汽压差, 且茎干水分含量与两因子的皮尔逊相关系数较高。采用逐步回归分析法构建3个时期茎干水分含量与各气象因子的回归方程模型, 不同时期进入回归模型中的气象因子均有所不同。综上所述, 该研究揭示了在不同气象因子协同作用下生长季茎干水分含量呈现出不同的序列特征及其影响因素, 可为理解植物茎干内部水分运移规律及其环境适应机制提供一定的借鉴作用。
许泽海, 赵燕东. 生长季五角枫茎干水分含量序列特征及其影响因素解译. 植物生态学报, 2024, 48(6): 794-808. DOI: 10.17521/cjpe.2023.0094
XU Ze-Hai, ZHAO Yan-Dong. Interpretation of sequence characteristics and influencing factors of stem water content for Acer pictum subsp. mono in its growing season. Chinese Journal of Plant Ecology, 2024, 48(6): 794-808. DOI: 10.17521/cjpe.2023.0094
图1 茎干水分传感器测量原理图及传感器实物图。 A, 茎干水分传感器测量原理图。B, 茎干水分传感器实物图。Va, 电压a; Vb, 电压b; Vout, 输出电压。
Fig. 1 Schematic diagram of the sensor for measuring stem water content and the picture of the sensor. A, The schematic diagram of the sensor for measuring stem water content. B, The picture of the sensor itself. Va, voltage a; Vb, voltage b; Vout, output voltage.
图2 北京林业大学苗圃各气象因子在生长季的变化特征。
Fig. 2 Variation characteristics of meteorological factors in nursery of Beijing Forestry University during the growing season.
月份 Month | 峰值时刻 Peak time | 峰值 Peak value (mV) | 谷值时刻 Valley time | 谷值 Valley value (mV) | 日极差 Extreme difference range (mV) | 平均气温 Mean air temperature (℃) | 最高气温 Maximum air temperature (℃) | 日出时刻 Sunrise time |
---|---|---|---|---|---|---|---|---|
4月 April | 13:00 | 483 | - | - | 19 | 18.4 | 26.5 | 05:31 |
5月 May | 07:50 | 538 | 18:50 | 493 | 45 | 20.7 | 31.4 | 05:02 |
6月 June | 06:30 | 621 | 15:30 | 577 | 62 | 29.2 | 35.6 | 04:44 |
7月 July | 07:10 | 758 | 16:10 | 673 | 49 | 31.8 | 37.3 | 05:15 |
8月 August | 08:50 | 735 | 16:40 | 714 | 26 | 28.1 | 32.8 | 05:28 |
9月 September | 10:00 | 603 | - | - | 24 | 21.9 | 31.6 | 06:04 |
10月 October | 12:20 | 730 | - | - | 33 | 13.1 | 21.5 | 06:26 |
表1 不同月份五角枫茎干水分含量指标日动态变化规律
Table 1 Daily dynamics of stem water content index of Acer pictum subsp. mono in different months
月份 Month | 峰值时刻 Peak time | 峰值 Peak value (mV) | 谷值时刻 Valley time | 谷值 Valley value (mV) | 日极差 Extreme difference range (mV) | 平均气温 Mean air temperature (℃) | 最高气温 Maximum air temperature (℃) | 日出时刻 Sunrise time |
---|---|---|---|---|---|---|---|---|
4月 April | 13:00 | 483 | - | - | 19 | 18.4 | 26.5 | 05:31 |
5月 May | 07:50 | 538 | 18:50 | 493 | 45 | 20.7 | 31.4 | 05:02 |
6月 June | 06:30 | 621 | 15:30 | 577 | 62 | 29.2 | 35.6 | 04:44 |
7月 July | 07:10 | 758 | 16:10 | 673 | 49 | 31.8 | 37.3 | 05:15 |
8月 August | 08:50 | 735 | 16:40 | 714 | 26 | 28.1 | 32.8 | 05:28 |
9月 September | 10:00 | 603 | - | - | 24 | 21.9 | 31.6 | 06:04 |
10月 October | 12:20 | 730 | - | - | 33 | 13.1 | 21.5 | 06:26 |
图5 不同天气条件下五角枫茎干水分含量序列特征。 A, 晴天及阴天时茎干水分含量指标与光合有效辐射的变化特征。B, 雨天时茎干水分含量指标与降水量的变化特征。C, 干燥天茎干水分含量指标与土壤水含量的变化特征。
Fig. 5 Sequence characteristics of stem water content index of Acer pictum subsp. mono under different weather conditions. A, Variation characteristics of stem water content index and photosynthetic active radiation under sunny and cloudy days. B, Variation characteristics of stem water content index and rainfall under rainy days. C, Variation characteristics of stem water content index and soil moisture under dry weather.
因子 Factor | 简单相关系数 Simple correlation coefficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|
Ts | T | RH | VPD | PAR | SM | 合计 Total | |||
Ts | 0.404** | -0.139 | - | -0.084 8 | 0.004 4 | -0.061 4 | 0.021 1 | -0.050 0 | -0.170 7 |
T | 0.669** | 1.534 | 0.936 0 | - | -0.293 0 | 1.287 0 | 0.785 4 | 0.681 1 | 3.396 5 |
RH | 0.407** | 0.092 | -0.002 9 | -0.017 6 | - | -0.061 3 | -0.043 1 | 0.014 0 | 0.110 9 |
VPD | 0.247** | -1.041 | -0.460 1 | -0.873 4 | 0.693 4 | - | -0.674 6 | -0.216 5 | -1.531 2 |
PAR | 0.192** | 0.027 | -0.004 1 | 0.013 8 | -0.012 6 | 0.017 5 | - | 0.002 6 | 0.017 2 |
SM | 0.580** | 0.115 | 0.041 4 | 0.051 1 | 0.017 5 | 0.023 9 | 0.010 9 | - | 0.144 8 |
表2 气象因子对五角枫萌芽期茎干水分含量指标的通径分析结果
Table 2 Path analysis results of meteorological factors on stem water content index of Acer pictum subsp. mono in germination stage
因子 Factor | 简单相关系数 Simple correlation coefficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|
Ts | T | RH | VPD | PAR | SM | 合计 Total | |||
Ts | 0.404** | -0.139 | - | -0.084 8 | 0.004 4 | -0.061 4 | 0.021 1 | -0.050 0 | -0.170 7 |
T | 0.669** | 1.534 | 0.936 0 | - | -0.293 0 | 1.287 0 | 0.785 4 | 0.681 1 | 3.396 5 |
RH | 0.407** | 0.092 | -0.002 9 | -0.017 6 | - | -0.061 3 | -0.043 1 | 0.014 0 | 0.110 9 |
VPD | 0.247** | -1.041 | -0.460 1 | -0.873 4 | 0.693 4 | - | -0.674 6 | -0.216 5 | -1.531 2 |
PAR | 0.192** | 0.027 | -0.004 1 | 0.013 8 | -0.012 6 | 0.017 5 | - | 0.002 6 | 0.017 2 |
SM | 0.580** | 0.115 | 0.041 4 | 0.051 1 | 0.017 5 | 0.023 9 | 0.010 9 | - | 0.144 8 |
因子 Factor | 简单相关系数 Simple correlation coefficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Ts | T | RH | VPD | PAR | SM | WS | 合计 Total | |||
Ts | -0.713** | -0.702 | - | -0.470 3 | 0.327 8 | -0.398 7 | 0.072 3 | 0.558 8 | -0.153 7 | -0.136 1 |
T | -0.855** | 0.561 | 0.375 9 | - | -0.509 9 | 0.548 6 | 0.305 7 | -0.283 9 | 0.280 5 | 0.716 9 |
RH | 0.788** | -0.037 | 0.017 3 | 0.033 6 | - | 0.034 7 | 0.021 5 | -0.008 9 | 0.021 4 | 0.119 6 |
VPD | -0.857** | -1.108 | -0.629 3 | -1.083 6 | 1.038 2 | - | -0.648 2 | 0.415 5 | -0.582 8 | -1.490 2 |
PAR | -0.304** | -0.068 | 0.007 0 | -0.037 1 | 0.039 4 | -0.039 8 | - | 0.002 5 | -0.023 4 | -0.051 4 |
SM | 0.412** | -0.273 | 0.217 3 | 0.138 1 | -0.066 0 | 0.102 4 | 0.010 1 | - | 0.009 8 | 0.411 7 |
WS | -0.441** | 0.007 | 0.001 5 | 0.003 5 | -0.000 4 | 0.003 7 | 0.002 4 | -0.000 2 | - | 0.010 5 |
表3 气象因子对五角枫生长期茎干水分含量指标的通径分析结果
Table 3 Path analysis results of meteorological factors on stem water content index of Acer pictum subsp. mono in growth stage
因子 Factor | 简单相关系数 Simple correlation coefficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Ts | T | RH | VPD | PAR | SM | WS | 合计 Total | |||
Ts | -0.713** | -0.702 | - | -0.470 3 | 0.327 8 | -0.398 7 | 0.072 3 | 0.558 8 | -0.153 7 | -0.136 1 |
T | -0.855** | 0.561 | 0.375 9 | - | -0.509 9 | 0.548 6 | 0.305 7 | -0.283 9 | 0.280 5 | 0.716 9 |
RH | 0.788** | -0.037 | 0.017 3 | 0.033 6 | - | 0.034 7 | 0.021 5 | -0.008 9 | 0.021 4 | 0.119 6 |
VPD | -0.857** | -1.108 | -0.629 3 | -1.083 6 | 1.038 2 | - | -0.648 2 | 0.415 5 | -0.582 8 | -1.490 2 |
PAR | -0.304** | -0.068 | 0.007 0 | -0.037 1 | 0.039 4 | -0.039 8 | - | 0.002 5 | -0.023 4 | -0.051 4 |
SM | 0.412** | -0.273 | 0.217 3 | 0.138 1 | -0.066 0 | 0.102 4 | 0.010 1 | - | 0.009 8 | 0.411 7 |
WS | -0.441** | 0.007 | 0.001 5 | 0.003 5 | -0.000 4 | 0.003 7 | 0.002 4 | -0.000 2 | - | 0.010 5 |
因子 Factor | 简单相关系数 Simple correlation coefficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Ts | T | RH | VPD | PAR | SM | WS | 合计 Total | |||
Ts | 0.459** | -0.153 | - | -0.073 7 | 0.052 8 | -0.534 0 | 0.012 7 | 0.062 4 | 0.019 4 | -0.460 4 |
T | 0.786** | 1.880 | 0.906 1 | - | -1.584 8 | 1.737 1 | 1.293 4 | 0.342 2 | 1.310 4 | 4.004 4 |
RH | -0.436** | 0.571 | -1.969 9 | -0.481 4 | - | -0.513 9 | -0.351 2 | -0.084 5 | -0.400 3 | -3.801 2 |
VPD | 0.580** | -0.675 | -0.235 6 | -0.623 7 | 0.607 5 | - | -0.473 2 | -0.107 3 | -0.513 6 | -1.345 9 |
PAR | 0.501** | -0.077 | 0.006 4 | -0.053 0 | 0.047 4 | -0.054 0 | - | -0.002 2 | -0.055 2 | -0.056 8 |
SM | 0.377** | 0.282 | 0.115 1 | 0.051 3 | -0.041 7 | 0.044 8 | 0.008 2 | - | 0.020 3 | 0.198 0 |
WS | 0.467** | 0.124 | 0.015 7 | 0.086 4 | -0.086 9 | 0.094 3 | 0.088 9 | 0.008 9 | - | 0.207 3 |
表4 气象因子对五角枫落叶期茎干水分含量指标的通径分析结果
Table 4 Path analysis results of meteorological factors on stem water content index of Acer pictum subsp. mono in defoliation stage
因子 Factor | 简单相关系数 Simple correlation coefficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Ts | T | RH | VPD | PAR | SM | WS | 合计 Total | |||
Ts | 0.459** | -0.153 | - | -0.073 7 | 0.052 8 | -0.534 0 | 0.012 7 | 0.062 4 | 0.019 4 | -0.460 4 |
T | 0.786** | 1.880 | 0.906 1 | - | -1.584 8 | 1.737 1 | 1.293 4 | 0.342 2 | 1.310 4 | 4.004 4 |
RH | -0.436** | 0.571 | -1.969 9 | -0.481 4 | - | -0.513 9 | -0.351 2 | -0.084 5 | -0.400 3 | -3.801 2 |
VPD | 0.580** | -0.675 | -0.235 6 | -0.623 7 | 0.607 5 | - | -0.473 2 | -0.107 3 | -0.513 6 | -1.345 9 |
PAR | 0.501** | -0.077 | 0.006 4 | -0.053 0 | 0.047 4 | -0.054 0 | - | -0.002 2 | -0.055 2 | -0.056 8 |
SM | 0.377** | 0.282 | 0.115 1 | 0.051 3 | -0.041 7 | 0.044 8 | 0.008 2 | - | 0.020 3 | 0.198 0 |
WS | 0.467** | 0.124 | 0.015 7 | 0.086 4 | -0.086 9 | 0.094 3 | 0.088 9 | 0.008 9 | - | 0.207 3 |
时期 Stage | 逐步多元回归方程 Regression equations | 决定系数 Coefficient of determination (R2) |
---|---|---|
萌芽期 Germination stage | Y = 420.494 + 4.308T - 20.156VPD + 0.317WS - 0.572Ts + 0.359SM | 0.823 |
生长期 Growth stage | Y = 825.7 - 13.953VPD - 5.446Ts - 1.749SM | 0.840 |
落叶期 Defoliation stage | Y = 629.7 + 3.306T + 0.467RH + 0.827SM | 0.851 |
表5 基于逐步回归分析法的五角枫茎干水分含量指标与气象因子模型
Table 5 Models of stem water content index of Acer pictum subsp. mono and meteorological factors based on stepwise regression method algorithm
时期 Stage | 逐步多元回归方程 Regression equations | 决定系数 Coefficient of determination (R2) |
---|---|---|
萌芽期 Germination stage | Y = 420.494 + 4.308T - 20.156VPD + 0.317WS - 0.572Ts + 0.359SM | 0.823 |
生长期 Growth stage | Y = 825.7 - 13.953VPD - 5.446Ts - 1.749SM | 0.840 |
落叶期 Defoliation stage | Y = 629.7 + 3.306T + 0.467RH + 0.827SM | 0.851 |
[1] |
Beedlow PA, Waschmann RS, Lee EH, Tingey DT (2017). Seasonal patterns of bole water content in old growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Agricultural and Forest Meteorology, 242, 109-119.
DOI PMID |
[2] |
Bodo AV, Arain MA (2022). Effects of variable retention harvesting on canopy transpiration in a red pine plantation forest. Ecological Processes, 11, 28. DOI: 10.1186/s13717-022-00366-0.
PMID |
[3] |
Cabon A, Peters RL, Fonti P, Martínez-Vilalta J, De Cáceres M (2020). Temperature and water potential co-limit stem cambial activity along a steep elevational gradient. New Phytologist, 226, 1325-1340.
DOI PMID |
[4] | Campbell GS, Norman JM (1998). Radiation fluxes in natural environments//Campbell GS, Norman JM. An Introduction to Environmental Biophysics. Springer, New York. 167-184. |
[5] | Carrasco-Benavides M, Gonzalez Viejo C, Tongson E, Baffico- Hernández A, Ávila-Sánchez C, Mora M, Fuentes S (2022). Water status estimation of cherry trees using infrared thermal imagery coupled with supervised machine learning modeling. Computers and Electronics in Agriculture, 200, 107256. DOI: 10.1016/j.compag.2022.107256. |
[6] | Charrier G, Améglio T (2011). The timing of leaf fall affects cold acclimation by interactions with air temperature through water and carbohydrate contents. Environmental and Experimental Botany, 72, 351-357. |
[7] | Chen Y, Bongers F, Tomlinson K, Fan Z, Lin H, Zhang S, Zhang J (2016). Time lags between crown and basal sap flows in tropical lianas and co-occurring trees. Tree Physiology, 36, 736-747. |
[8] | Cheng X, Yan X, Grantz DA, Xiang Y, de Oliveira RF, Huang L, Wang Z, Du T, Cheng Q (2021). In-situ and non-invasive measurement of stem water content of trees using an innovative interdigitated-electrodes dielectric sensor less susceptible to stem diameter variation. Agricultural and Forest Meteorology, 307, 108473. DOI: 10.1016/j.agrformet.2021.108473. |
[9] | Deng Z, Guan H, Hutson J, Forster MA, Wang Y, Simmons CT (2017). A vegetation-focused soil-plant-atmospheric continuum model to study hydrodynamic soil-plant water relations. Water Resources Research, 53, 4965-4983. |
[10] | Gao C, Zhao YE, Zhao YD (2019). A novel sensor for noninvasive detection of in situ stem water content based on standing wave ratio. Journal of Sensors, 2019, 1-10. |
[11] | Hao G, Wheeler JK, Holbrook NM, Goldstein G (2013). Investigating xylem embolism formation, refilling and water storage in tree trunks using frequency domain reflectometry. Journal of Experimental Botany, 64, 2321-2332. |
[12] | He H, Turner NC, Aogu KL, Dyck M, Feng H, Si B, Wang J, Lv J (2021). Time and frequency domain reflectometry for the measurement of tree stem water content: a review, evaluation, and future perspectives. Agricultural and Forest Meteorology, 306, 108442. DOI: 10.1016/j.agrformet.2021.108442. |
[13] | Ji QW, Zheng CY, Zhang L, Zeng FX (2020). Stem radial growth dynamics of Pinus sylvestris var. mongolica and their relationship with meteorological factor in Saihanba, Hebei, China. Chinese Journal of Plant Ecology, 44, 257-265. |
[季倩雯, 郑成洋, 张磊, 曾发旭 (2020). 河北塞罕坝樟子松径向生长动态变化及其与气象因子的关系. 植物生态学报, 44, 257-265.]
DOI |
|
[14] |
Jupa R, Plavcová L, Gloser V, Jansen S (2016). Linking xylem water storage with anatomical parameters in five temperate tree species. Tree Physiology, 36, 756-769.
DOI PMID |
[15] |
Kilpeläinen J, Domisch T, Lehto T, Piirainen S, Silvennoinen R, Repo T (2022). Separating the effects of air and soil temperature on silver birch. Part I. Does soil temperature or resource competition determine the timing of root growth? Tree Physiology, 42, 2480-2501.
DOI PMID |
[16] | Li B, Zheng SY, Wei XG, Wang TL, Sun J, Ge D (2019). Study on sap flow characteristics of grape and its environment influencing factors in cold regions of northeastern China. Transactions of the Chinese Society of Agricultural Engineering, 35, 185-193. |
[李波, 郑思宇, 魏新光, 王铁良, 孙君, 葛东 (2019). 东北寒区日光温室葡萄液流特征及其主要环境影响因子研究. 农业工程学报, 35, 185-193.] | |
[17] | Li GD, Fu HM, Jia LM (2014). Studies on the characteristics of xylem sap flow and water capacitance of Ginkgo biloba. Journal of Northwest Forestry University, 29, 54-58. |
[李广德, 付海曼, 贾黎明 (2014). 银杏树干边材液流及水容特性研究. 西北林学院学报, 29, 54-58.] | |
[18] | Li JM, Ren RD, Fan BH, Ma LL, Wang GP (2020). Effects of irrigation amount on the rhizospheric environment and stem flow of melon cultivated with full organic nutrition in greenhouse. Transactions of the Chinese Society of Agricultural Engineering, 36, 217-224. |
[李建明, 任瑞丹, 范兵华, 马乐乐, 王归鹏 (2020). 灌溉量对温室全有机营养液栽培甜瓜根际环境和茎流的影响. 农业工程学报, 36, 217-224.] | |
[19] | Li LJ, Zhao ZY, Yue YB, Nie KY, Wang H, Yuan L (2021). Sap flow characteristics of pitaya (Hylocereus polyrhizus) and its response to environmental factors. Transactions of the Chinese Society of Agricultural Engineering, 37, 242-250. |
[李莉婕, 赵泽英, 岳延滨, 聂克艳, 王虎, 袁玲 (2021). 火龙果周年液流特征及其对环境因子的响应. 农业工程学报, 37, 242-250.] | |
[20] | Liang H, Zhang M, Wang HL, Gao C, Zhao YD (2020). Variation characteristics of stem water content in Lagerstroemia indica and its response to environmental factors. Journal of Sensors, 2020, 1-10. |
[21] | Liu WP, Song W, Gao C, Zhao YD (2021). Construction of evaluation model of poplar growth status based on stem moisture of standing trees. Scientia Silvae Sinicae, 57(5), 43-52. |
[刘卫平, 宋维, 高超, 赵燕东 (2021). 基于活立木茎干含水量的杨树生长状态评估模型构建. 林业科学, 57(5), 43-52.] | |
[22] | Luo DD, Wang CK, Jin Y (2017). Plant water-regulation strategies: isohydric versus anisohydric behavior. Chinese Journal of Plant Ecology, 41, 1020-1032. |
[罗丹丹, 王传宽, 金鹰 (2017). 植物水分调节对策: 等水与非等水行为. 植物生态学报, 41, 1020-1032.]
DOI |
|
[23] | Luo Z, Deng Z, Singha K, Zhang X, Liu N, Zhou Y, He X, Guan H (2020). Temporal and spatial variation in water content within living tree stems determined by electrical resistivity tomography. Agricultural and Forest Meteorology, 291, 108058. DOI: 10.1016/j.agrformet.2020.108058. |
[24] | Maes WH, Achten WMJ, Reubens B, Raes D, Samson R, Muys B (2009). Plant-water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress. Journal of Arid Environments, 73, 877-884. |
[25] | Malavasi UC, Davis AS, de Matos Malavasi M (2016). Estimating water in living woody stems—A review. Cerne, 22, 415-422. |
[26] |
Martinez-Vilalta J, Anderegg WRL, Sapes G, Sala AN (2019). Greater focus on water pools may improve our ability to understand and anticipate drought-induced mortality in plants. New Phytologist, 223, 22-32.
DOI PMID |
[27] | Matheny AM, Bohrer G, Garrity SR, Morin TH, Howard CJ, Vogel CS (2015). Observations of stem water storage in trees of opposing hydraulic strategies. Ecosphere, 6, 1-13. |
[28] | Miao YY (2011). Application of Impedance Spectroscopy in the Study on Leaf Water. Master degree dissertation, Beijing Forestry University, Beijing. 16-21. |
[苗银月 (2011). 阻抗谱法研究植物叶片水分关系. 硕士学位论文, 北京林业大学, 北京. 16-21.] | |
[29] | Nadler A, Raveh E, Yermiyahu U, Green SR (2003). Evaluation of TDR use to monitor water content in stem of lemon trees and soil and their response to water stress. Soil Science Society of America Journal, 67, 437-448. |
[30] |
Nakada R, Okada N, Nakai T, Kuroda K, Nagai S (2019). Water potential gradient between sapwood and heartwood as a driving force in water accumulation in wetwood in conifers. Wood Science and Technology, 53, 407-424.
DOI |
[31] | Olorunwa OJ, Adhikari B, Brazel S, Shi AN, Popescu SC, Popescu GV, Barickman TC (2022). Growth and photosynthetic responses of cowpea genotypes under waterlogging at the reproductive stage. Plants, 11, 2315. DOI: 10.3390/plants11172315. |
[32] | Sheridan RA, Nackley LL (2022). Applying plant hydraulic physiology methods to investigate desiccation during prolonged cold storage of horticultural trees. Frontiers in Plant Science, 13, 818769. DOI: 10.3389/fpls.2022.818769. |
[33] | Si JH, Feng Q, Zhang XY, Chang ZQ, Su YH, Xi HY (2007). Sap flow of Populus euphratica in a desert riparian forest in an extreme arid region during the growing season. Journal of Integrative Plant Biology, 49, 425-436. |
[34] | Sim YS, Yim SH, Choo YS (2021). Photosynthetic and physiological characteristics of the evergreen Ligustrum japonicum and the deciduous Cornus officinalis. Journal of Plant Biology, 64, 73-85. |
[35] |
Steppe K, De Pauw DJW, Lemeur R, Vanrolleghem PA (2006). A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth. Tree Physiology, 26, 257-273.
PMID |
[36] |
Steppe K, Sterck F, Deslauriers A (2015). Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends in Plant Science, 20, 335-343.
DOI PMID |
[37] | Su Y, Wang XY, Sun YQ, Wu HL (2022). Sap flow velocity in Fraxinus pennsylvanica in response to water stress and microclimatic variables. Frontiers in Plant Science, 13, 884526. DOI: 10.3389/fpls.2022.884526. |
[38] | Tian H (2020). Study on Water Information Sensing Mechanism and Freeze-Thaw Detection Method of Standing Tree Stem. PhD dissertation, Beijing Forestry University, Beijing. 28-33. |
[田昊 (2020). 活立木茎干水分信息传感机理及冻融检测方法研究. 博士学位论文, 北京林业大学, 北京. 28-33.] | |
[39] | Tian H, Zhao YD, Gao C, Xie T, Zheng T, Yu CC (2022). Assessing the vitality status of plants: using the correlation between stem water content and external environmental stress. Forests, 13, 1198. DOI: 10.3390/f13081198. |
[40] | Zhang PP (2020). Responses of Tree Non-structural Carbohydrates to Drought and the Regulation Mechanisms. PhD dissertation, East China Normal University, Shanghai. 17-26. |
[张佩佩 (2020). 树木非结构性碳水化合物对干旱的响应及其调控机制. 博士学位论文, 华东师范大学, 上海. 17-26.] | |
[41] | Zhao WQ, Xi BY, Liu JQ, Liu Y, Zou SY, Song WY, Chen LX (2021). Transpiration process and environmental response of poplar plantation under different irrigation conditions. Chinese Journal of Plant Ecology, 45, 370-382. |
[赵文芹, 席本野, 刘金强, 刘洋, 邹松言, 宋午椰, 陈立欣 (2021). 不同灌溉条件下杨树人工林蒸腾过程及环境响应. 植物生态学报, 45, 370-382.] | |
[42] | Zhao Y, Tian H, Han QL, Gu JH, Zhao YD (2021). Real-time monitoring of water and ice content in plant stem based on latent heat changes. Agricultural and Forest Meteorology, 307, 108475. DOI: 10.1016/j.agrformet.2021.108475. |
[43] | Zhao YD, Gao C, Zhang X, Xu Q (2016). Non-destructive measurement of plant stem water content based on standing wave ratio. Transactions of the Chinese Society for Agricultural Machinery, 47, 310-316. |
[赵燕东, 高超, 张新, 徐强 (2016). 基于驻波率原理的植物茎体水分无损检测方法研究. 农业机械学报, 47, 310-316.] | |
[44] | Zhao YD, Gu JH, Zhao Y, Liu WP, Mi X (2022). Development of a stem water storage detection sensor using the dielectric properties of living standing trees. Transactions of the Chinese Society of Agricultural Engineering, 38, 38-46. |
[赵燕东, 顾家华, 赵玥, 刘卫平, 米雪 (2022). 基于活立木介电特性的茎干蓄水量检测传感器研制. 农业工程学报, 38, 38-46.] | |
[45] | Zhao YD, Liu YQ, Tian H, Zhao Y (2021). Freeze-thaw detection method of living standing wood based on stem moisture envelope analysis. Transactions of the Chinese Society for Agricultural Machinery, 52, 263-270. |
[赵燕东, 刘宇琦, 田昊, 赵玥 (2021). 基于茎干水分包络分析的活立木冻融检测方法. 农业机械学报, 52, 263-270.] | |
[46] | Zhao YD, Zheng Y, Zhou HY, Lin JH, Zhang X, Yu FM (2020). Research of intelligent irrigation control strategy based on stem water content of crabapple. Transactions of the Chinese Society for Agricultural Machinery, 51, 323-331. |
[赵燕东, 郑焱, 周海洋, 林剑辉, 张鑫, 于福满 (2020). 基于海棠茎干含水率的智能灌溉控制策略研究. 农业机械学报, 51, 323-331.] | |
[47] | Zhou H, Sun Y, Shan G, Grantz DA, Cheng Q, Schulze Lammers P, Damerow L, Wen B, Xue X, Chen B (2018). In situ measurement of stem water content and diurnal storage of an apricot tree with a high frequency inner fringing dielectric sensor. Agricultural and Forest Meteorology, 250-251, 35-46. |
[48] | Zhu YF, Fan JZ, Xu Q, Xiang Y, Huang L, Wang ZY, Yan XF, Du TS, Cheng Q (2022). A new portable electrical impedance tomography system for measuring two-dimensional stem water content distribution. Agricultural and Forest Meteorology, 325, 109161. DOI: 10.1016/j.agrformet.2022.109161. |
[1] | 季倩雯, 郑成洋, 张磊, 曾发旭. 河北塞罕坝樟子松径向生长动态变化及其与气象因子的关系[J]. 植物生态学报, 2020, 44(3): 257-265. |
[2] | 冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018, 42(4): 453-465. |
[3] | 孙宝玉, 韩广轩, 陈亮, 初小静, 邢庆会, 吴立新, 朱书玉. 模拟增温对黄河三角洲滨海湿地非生长季土壤呼吸的影响[J]. 植物生态学报, 2016, 40(11): 1111-1123. |
[4] | 米兆荣, 陈立同, 张振华, 贺金生. 基于年降水、生长季降水和生长季蒸散的高寒草地水分利用效率[J]. 植物生态学报, 2015, 39(7): 649-660. |
[5] | 刘娟, 邓徐, 吕利新. 西藏八宿川西云杉树线过渡区树木生长与气候关系的一致性[J]. 植物生态学报, 2015, 39(5): 442-452. |
[6] | 樊大勇, 熊高明, 张爱英, 刘曦, 谢宗强, 李兆佳. 三峡库区水位调度对消落带生态修复中物种筛选实践的影响[J]. 植物生态学报, 2015, 39(4): 416-432. |
[7] | 王云霓,熊伟,王彦辉,于澎涛,曹恭祥,徐丽宏,左海军,贺亮亮. 宁夏六盘山3种针叶林降水利用效率的年际变化及其对气象因子的响应[J]. 植物生态学报, 2013, 37(10): 901-911. |
[8] | 董满宇, 江源, 杨浩春, 王明昌, 张文涛, 郭媛媛. 芦芽山林线白杄生长季径向生长动态[J]. 植物生态学报, 2012, 36(9): 956-964. |
[9] | 冯秋红, 史作民, 董莉莉, 刘世荣. 南北样带温带区栎属树种功能性状间的关系及其对气象因子的响应[J]. 植物生态学报, 2010, 34(6): 619-627. |
[10] | 郭福涛, 胡海清, 金森, 马志海, 张扬. 基于负二项和零膨胀负二项回归模型的大兴安岭地区雷击火与气象因素的关系[J]. 植物生态学报, 2010, 34(5): 571-577. |
[11] | 吴芳, 陈云明, 于占辉. 黄土高原半干旱区刺槐生长盛期树干液流动态[J]. 植物生态学报, 2010, 34(4): 469-476. |
[12] | 王宏, 李晓兵, 余弘婧. 基于NOAA/AVHRR NDVI监测中国北方典型草原的生长季及变化[J]. 植物生态学报, 2006, 30(3): 365-374. |
[13] | 杨继松, 刘景双, 王金达, 于君宝, 孙志高, 李新华. 三江平原生长季沼泽湿地CH4、N2O排放及其影响因素[J]. 植物生态学报, 2006, 30(3): 432-440. |
[14] | 徐富贤, 郑家奎, 朱永川, 王贵雄. 灌浆期气象因子对杂交中籼稻米碾米品质和外观品质的影响[J]. 植物生态学报, 2003, 27(1): 73-77. |
[15] | 鲁开宏. 鲁北滨海盐生草甸獐茅群落生长季动态[J]. 植物生态学报, 1987, 11(3): 193-202. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19