植物生态学报 ›› 2010, Vol. 34 ›› Issue (6): 619-627.DOI: 10.3773/j.issn.1005-264x.2010.06.001
所属专题: 植物功能性状
• 研究论文 • 下一篇
收稿日期:
2009-10-09
接受日期:
2009-12-04
出版日期:
2010-10-09
发布日期:
2010-06-01
通讯作者:
史作民
作者简介:
* E-mail: shizm@forestry.ac.cn
FENG Qiu-Hong1, SHI Zuo-Min1,*(), DONG Li-Li1,2, LIU Shi-Rong1
Received:
2009-10-09
Accepted:
2009-12-04
Online:
2010-10-09
Published:
2010-06-01
Contact:
SHI Zuo-Min
摘要:
在南北样带温带区选择11个栎属(Quercus)树种的核心分布区, 对各分布区内栎属建群树种的功能性状进行了测定, 并对功能性状间的关系及其对气象因子的响应进行了分析, 以期为气候变化背景下植物-环境关系的深入研究奠定基础。结果表明: 虽然比叶重(LMA)和叶片干物质含量(LDMC)在反映栎属树种生活策略上有着异曲同工的作用, 但是相比之下, LMA的作用略胜一筹; 基于面积的叶片养分含量间的关系较基于质量的更为显著; 除叶片单位面积磷含量(Parea)和单位面积钾含量(Karea)间关系外, 无论是基于面积还是质量的叶片氮(N)、磷(P)含量间的正相关, 均较两者与钾(K)含量间的正相关显著, 这可能与K元素并不直接参与任何稳定结构物质的合成有关。温度和日照时数是影响功能性状间关系的主要气象因子, 与基于质量的养分含量相比, 基于面积的养分含量更易于受温度和日照时数的影响; 降水仅仅影响叶片Parea与其他性状间的关系。
冯秋红, 史作民, 董莉莉, 刘世荣. 南北样带温带区栎属树种功能性状间的关系及其对气象因子的响应. 植物生态学报, 2010, 34(6): 619-627. DOI: 10.3773/j.issn.1005-264x.2010.06.001
FENG Qiu-Hong, SHI Zuo-Min, DONG Li-Li, LIU Shi-Rong. Relationships among functional traits of Quercus species and their response to meteorological factors in the temperate zone of the North-South Transect of Eastern China. Chinese Journal of Plant Ecology, 2010, 34(6): 619-627. DOI: 10.3773/j.issn.1005-264x.2010.06.001
地点 Sites | 所属省份 Province | 树种 Species | 纬度 Latitude | 经度 Longitude | 海拔 Altitude (m) | 年平均气温 Mean annual temperature (℃) | 年平均降水量 Mean annual rainfall (mm) | 年日照时数 Mean annual sunlight (h) |
---|---|---|---|---|---|---|---|---|
帽儿山 Mao’ershan | 黑龙江 Heilongjiang | 蒙古栎 Quercus mongolica | 45°25′ N | 127°38′ E | 380 | 2.89 | 656.57 | 2 478 |
长白山 Changbaishan | 吉林 Jilin | 蒙古栎 Q. mongolica | 42°34′ N | 128°05′ E | 545 | 2.69 | 668.64 | 2 365 |
清源 Qingyuan | 辽宁 Liaoning | 蒙古栎 Q. mongolica | 41°51′ N | 124°56′ E | 606 | 5.78 | 772.25 | 2 398 |
老秃顶子 Laotudingzi | 辽宁 Liaoning | 蒙古栎 Q. mongolica、 辽东栎 Q. liaotungensis | 41°20′ N | 124°55′ E | 636 | 6.30 | 944.00 | 2 410 |
桓仁 Huanren | 辽宁 Liaoning | 蒙古栎 Q. mongolica、 辽东栎 Q. liaotungensis | 41°18′N | 125°26′ E | 350 | 6.88 | 807.38 | 2 409 |
草河口 Caohekou | 辽宁 Liaoning | 蒙古栎 Q. mongolica、 辽东栎 Q. Liaotungensis | 40°51′ N | 123°52′ E | 530 | 7.87 | 773.64 | 2 303 |
雾灵山 Wulingshan | 河北 Hebei | 蒙古栎 Q. mongolica | 40°26′ N | 117°28′ E | 1 300 | 8.98 | 763.30 | 2 760 |
仙人洞 Xianrendong | 辽宁 Liaoning | 蒙古栎 Q. mongolica、槲栎 Q. aliena、槲树 Q. dentata、栓皮栎 Q. variabilis、麻栎 Q. acutissima | 39°59′ N | 122°57′ E | 220 | 9.06 | 736.52 | 2 453 |
济源 Jiyuan | 河南 Henan | 辽东栎 Q. liaotungensis、栓皮栎 Q. variabilis、槲栎 Q. aliena、锐齿槲栎 Q. aliena var. acuteserrata | 35°15′ N | 112°07′ E | 1 303 | 13.89 | 621.80 | 2 245 |
栾川 Luanchuan | 河南 Henan | 栓皮栎 Q. variabilis、槲树 Q. dentata、锐齿槲栎 Q. aliena var. acuteserrata、短柄枹栎 Q. serrata var. brevipertiolata | 33°45′ N | 111°39′ E | 1 352 | 12.12 | 825.32 | 2 139 |
宝天曼 Baotianman | 河南 Henan | 栓皮栎 Q. variabilis、锐齿槲栎 Q. aliena var. acuteserrata、短柄枹栎 Q. serrata var. brevipertiolata | 33°30′ N | 111°56′ E | 1 495 | 15.04 | 839.92 | 1 937 |
表1 研究地点地理及气象信息
Table 1 Geographical and meteorological information of research sites
地点 Sites | 所属省份 Province | 树种 Species | 纬度 Latitude | 经度 Longitude | 海拔 Altitude (m) | 年平均气温 Mean annual temperature (℃) | 年平均降水量 Mean annual rainfall (mm) | 年日照时数 Mean annual sunlight (h) |
---|---|---|---|---|---|---|---|---|
帽儿山 Mao’ershan | 黑龙江 Heilongjiang | 蒙古栎 Quercus mongolica | 45°25′ N | 127°38′ E | 380 | 2.89 | 656.57 | 2 478 |
长白山 Changbaishan | 吉林 Jilin | 蒙古栎 Q. mongolica | 42°34′ N | 128°05′ E | 545 | 2.69 | 668.64 | 2 365 |
清源 Qingyuan | 辽宁 Liaoning | 蒙古栎 Q. mongolica | 41°51′ N | 124°56′ E | 606 | 5.78 | 772.25 | 2 398 |
老秃顶子 Laotudingzi | 辽宁 Liaoning | 蒙古栎 Q. mongolica、 辽东栎 Q. liaotungensis | 41°20′ N | 124°55′ E | 636 | 6.30 | 944.00 | 2 410 |
桓仁 Huanren | 辽宁 Liaoning | 蒙古栎 Q. mongolica、 辽东栎 Q. liaotungensis | 41°18′N | 125°26′ E | 350 | 6.88 | 807.38 | 2 409 |
草河口 Caohekou | 辽宁 Liaoning | 蒙古栎 Q. mongolica、 辽东栎 Q. Liaotungensis | 40°51′ N | 123°52′ E | 530 | 7.87 | 773.64 | 2 303 |
雾灵山 Wulingshan | 河北 Hebei | 蒙古栎 Q. mongolica | 40°26′ N | 117°28′ E | 1 300 | 8.98 | 763.30 | 2 760 |
仙人洞 Xianrendong | 辽宁 Liaoning | 蒙古栎 Q. mongolica、槲栎 Q. aliena、槲树 Q. dentata、栓皮栎 Q. variabilis、麻栎 Q. acutissima | 39°59′ N | 122°57′ E | 220 | 9.06 | 736.52 | 2 453 |
济源 Jiyuan | 河南 Henan | 辽东栎 Q. liaotungensis、栓皮栎 Q. variabilis、槲栎 Q. aliena、锐齿槲栎 Q. aliena var. acuteserrata | 35°15′ N | 112°07′ E | 1 303 | 13.89 | 621.80 | 2 245 |
栾川 Luanchuan | 河南 Henan | 栓皮栎 Q. variabilis、槲树 Q. dentata、锐齿槲栎 Q. aliena var. acuteserrata、短柄枹栎 Q. serrata var. brevipertiolata | 33°45′ N | 111°39′ E | 1 352 | 12.12 | 825.32 | 2 139 |
宝天曼 Baotianman | 河南 Henan | 栓皮栎 Q. variabilis、锐齿槲栎 Q. aliena var. acuteserrata、短柄枹栎 Q. serrata var. brevipertiolata | 33°30′ N | 111°56′ E | 1 495 | 15.04 | 839.92 | 1 937 |
图1 比叶重(LMA)、叶片干物质含量(LDMC)与叶片养分含量的关系。SMA, 标准化主轴法的斜率。 A, 比叶重与单位面积氮含量的关系。B, 比叶重与单位面积磷含量的关系。C, 比叶重与单位面积钾含量的关系。D, 比叶重与单位质量钾含量的关系。E, 叶片干物质含量与单位面积氮含量的关系。F, 叶片干物质含量与单位面积磷含量的关系。G, 叶片干物质含量与单位面积钾含量的关系。H, 叶片干物质含量与单位质量钾含量的关系。
Fig. 1 Relationships between leaf mass per area (LMA), leaf dry matters content (LDMC) and leaf nutrient contents. Karea, potassium content per leaf area; Kmass, potassium content per leaf mass; Narea, nitrogen content per leaf area; Parea, phosphorus content per leaf area; SMA, slope for standardised major axis. A, Relationship between LMA and Narea. B, Relationship between LMA and Parea. C, Relationship between LMA and Karea. D, Relationship between LMA and Kmass. E, Relationship between LDMC and Narea. F, Relationship between LDMC and Parea. G, Relationship between LDMC and Karea. H, Relationship between LDMC and Kmass.
图3 叶片养分含量间的关系。Karea、Kmass、Narea、Parea和SMA同图1。 A, 叶片单位面积氮含量与单位面积磷含量的关系。B, 叶片单位面积氮含量与单位面积钾含量的关系。C, 叶片单位面积磷含量与单位面积钾含量的关系。D, 叶片单位质量氮含量与单位质量磷含量的关系。E, 叶片单位质量氮含量与单位质量钾含量的关系。F, 叶片单位质量磷含量与单位质量钾含量的关系。
Fig. 3 Relationships among leaf nutrient contents. Nmass, nitrogen content per leaf mass; Pmass, phosphorus content per leaf mass; Karea, Kmass, Narea, Parea and SMA see Fig. 1. A, Relationship between Narea and Parea. B, Relationship between Narea and Karea. C, Relationship between Parea and Karea. D, Relationship between Nmass and Pmass. E, Relationship between Nmass and Kmass. F, Relationship between Pmass and Kmass.
系数 Coefficient | Log Pna | Log Pnm | |
---|---|---|---|
Log LMA | r p | 0.529 0.143 | -0.001 0.998 |
Log LDMC | r p | 0.207 0.593 | -0.176 0.651 |
Log Pna | r p | 1.000 0.000 | 0.847** 0.004 |
Log Pnm | r p | 0.847** 0.004 | 1.000 0.000 |
Log Nmass | r p | 0.034 0.930 | -0.329 0.387 |
Log Narea | r p | 0.283 0.460 | -0.214 0.581 |
Log Kmass | r p | 0.081 0.963 | 0.281 0.464 |
Log Karea | r p | 0.504 0.166 | 0.269 0.484 |
Log Pmass | r p | 0.638 0.064 | 0.432 0.245 |
Log Parea | r p | 0.686* 0.041 | 0.309 0.419 |
表2 叶片功能性状间的关系
Table 2 Relationships among leaf functional traits
系数 Coefficient | Log Pna | Log Pnm | |
---|---|---|---|
Log LMA | r p | 0.529 0.143 | -0.001 0.998 |
Log LDMC | r p | 0.207 0.593 | -0.176 0.651 |
Log Pna | r p | 1.000 0.000 | 0.847** 0.004 |
Log Pnm | r p | 0.847** 0.004 | 1.000 0.000 |
Log Nmass | r p | 0.034 0.930 | -0.329 0.387 |
Log Narea | r p | 0.283 0.460 | -0.214 0.581 |
Log Kmass | r p | 0.081 0.963 | 0.281 0.464 |
Log Karea | r p | 0.504 0.166 | 0.269 0.484 |
Log Pmass | r p | 0.638 0.064 | 0.432 0.245 |
Log Parea | r p | 0.686* 0.041 | 0.309 0.419 |
功能性状对 Trait-pair | 系数 Coefficient | 年平均气温 Mean annual temperature | 年平均降水量 Mean annual rainfall | 年平均日照时数 Mean annual sunlight | |||||
---|---|---|---|---|---|---|---|---|---|
5-10 (℃) | 10-20 (℃) | 600-750 (mm) | 750-900 (mm) | 1 800-2 200 (h) | 2 200-2 500 (h) | ||||
LMA-LDMC | SMA | 0.38 | 0.43 | 0.53 | 0.37 | 0.43 | 0.38 | ||
R2 | 0.60 | 0.47 | 0.09 | 0.61 | 0.47 | 0.60 | |||
n | 12 | 11 | 8 | 15 | 11 | 12 | |||
LMA-Narea | SMA | 1.83 | 1.06 | 0.90 | 1.98 | 1.06 | 1.83 | ||
R2 | 0.34 | 0.56 | 0.40 | 0.19 | 0.56 | 0.34 | |||
n | 12 | 11 | 8 | 15 | 11 | 12 | |||
LMA-Parea | SMA | 1.37 | 1.95 | 2.03 | 1.80 | 1.95 | 1.37 | ||
R2 | 0.50 | 0.81 | 0.48 | 0.55 | 0.81 | 0.50 | |||
n | 12 | 11 | 8 | 15 | 11 | 12 | |||
LMA-Karea | SMA | 0.92 | 0.81 | 1.14 | 0.97 | 0.81 | 0.92 | ||
R2 | 0.26 | 0.73 | 0.15 | 0.52 | 0.73 | 0.26 | |||
n | 12 | 11 | 8 | 15 | 11 | 12 | |||
LMA-Kmass | SMA | -1.67 | -0.84 | -1.18 | -0.71 | -0.84 | -1.67 | ||
R2 | 0.302 | 0.331 | 0.20 | 0.14 | 0.331 | 0.302 | |||
n | 12 | 11 | 8 | 15 | 11 | 12 | |||
Narea-Parea | SMA | 0.75 | 1.85 | 2.25 | 0.91 | 1.85 | 0.75 | ||
R2 | 0.62 | 0.64 | 0.58 | 0.40 | 0.64 | 0.62 | |||
n | 12 | 11 | 8 | 15 | 11 | 12 | |||
Narea-Karea | SMA | 0.50 | 0.76 | 1.26 | 0.49 | 0.76 | 0.50 | ||
R2 | 0.36 | 0.58 | 0.09 | 0.47 | 0.58 | 0.36 | |||
n | 12 | 11 | 8 | 15 | 11 | 12 | |||
Parea-Karea | SMA | 0.67 | 0.41 | 0.56 | 0.54 | 0.41 | 0.67 | ||
R2 | 0.52 | 0.80 | 0.30 | 0.78 | 0.80 | 0.52 | |||
n | 12 | 11 | 8 | 15 | 11 | 12 | |||
Nmass-Pmass | SMA | 0.66 | 1.57 | 1.71 | 0.71 | 1.57 | 0.66 | ||
R2 | 0.40 | 0.02 | 0.08 | 0.22 | 0.02 | 0.40 | |||
n | 12 | 12 | 9 | 15 | 12 | 12 | |||
Nmass-Kmass | SMA | 0.65 | 0.83 | 1.57 | 0.41 | 0.83 | 0.65 | ||
R2 | 0.11 | 0.08 | 0.02 | 0.35 | 0.08 | 0.11 | |||
n | 12 | 12 | 9 | 15 | 12 | 12 | |||
Pmass-Kmass | SMA | 0.99 | 0.53 | 0.92 | 0.58 | 0.53 | 0.99 | ||
R2 | 0.31 | 0.02 | 0.123 | 0.344 | 0.02 | 0.31 | |||
n | 12 | 12 | 9 | 15 | 12 | 12 |
表3 功能性状间的关系对气象因子的响应
Table 3 Response of the relationships among functional traits to meteorological factors
功能性状对 Trait-pair | 系数 Coefficient | 年平均气温 Mean annual temperature | 年平均降水量 Mean annual rainfall | 年平均日照时数 Mean annual sunlight | |||||
---|---|---|---|---|---|---|---|---|---|
5-10 (℃) | 10-20 (℃) | 600-750 (mm) | 750-900 (mm) | 1 800-2 200 (h) | 2 200-2 500 (h) | ||||
LMA-LDMC | SMA | 0.38 | 0.43 | 0.53 | 0.37 | 0.43 | 0.38 | ||
R2 | 0.60 | 0.47 | 0.09 | 0.61 | 0.47 | 0.60 | |||
n | 12 | 11 | 8 | 15 | 11 | 12 | |||
LMA-Narea | SMA | 1.83 | 1.06 | 0.90 | 1.98 | 1.06 | 1.83 | ||
R2 | 0.34 | 0.56 | 0.40 | 0.19 | 0.56 | 0.34 | |||
n | 12 | 11 | 8 | 15 | 11 | 12 | |||
LMA-Parea | SMA | 1.37 | 1.95 | 2.03 | 1.80 | 1.95 | 1.37 | ||
R2 | 0.50 | 0.81 | 0.48 | 0.55 | 0.81 | 0.50 | |||
n | 12 | 11 | 8 | 15 | 11 | 12 | |||
LMA-Karea | SMA | 0.92 | 0.81 | 1.14 | 0.97 | 0.81 | 0.92 | ||
R2 | 0.26 | 0.73 | 0.15 | 0.52 | 0.73 | 0.26 | |||
n | 12 | 11 | 8 | 15 | 11 | 12 | |||
LMA-Kmass | SMA | -1.67 | -0.84 | -1.18 | -0.71 | -0.84 | -1.67 | ||
R2 | 0.302 | 0.331 | 0.20 | 0.14 | 0.331 | 0.302 | |||
n | 12 | 11 | 8 | 15 | 11 | 12 | |||
Narea-Parea | SMA | 0.75 | 1.85 | 2.25 | 0.91 | 1.85 | 0.75 | ||
R2 | 0.62 | 0.64 | 0.58 | 0.40 | 0.64 | 0.62 | |||
n | 12 | 11 | 8 | 15 | 11 | 12 | |||
Narea-Karea | SMA | 0.50 | 0.76 | 1.26 | 0.49 | 0.76 | 0.50 | ||
R2 | 0.36 | 0.58 | 0.09 | 0.47 | 0.58 | 0.36 | |||
n | 12 | 11 | 8 | 15 | 11 | 12 | |||
Parea-Karea | SMA | 0.67 | 0.41 | 0.56 | 0.54 | 0.41 | 0.67 | ||
R2 | 0.52 | 0.80 | 0.30 | 0.78 | 0.80 | 0.52 | |||
n | 12 | 11 | 8 | 15 | 11 | 12 | |||
Nmass-Pmass | SMA | 0.66 | 1.57 | 1.71 | 0.71 | 1.57 | 0.66 | ||
R2 | 0.40 | 0.02 | 0.08 | 0.22 | 0.02 | 0.40 | |||
n | 12 | 12 | 9 | 15 | 12 | 12 | |||
Nmass-Kmass | SMA | 0.65 | 0.83 | 1.57 | 0.41 | 0.83 | 0.65 | ||
R2 | 0.11 | 0.08 | 0.02 | 0.35 | 0.08 | 0.11 | |||
n | 12 | 12 | 9 | 15 | 12 | 12 | |||
Pmass-Kmass | SMA | 0.99 | 0.53 | 0.92 | 0.58 | 0.53 | 0.99 | ||
R2 | 0.31 | 0.02 | 0.123 | 0.344 | 0.02 | 0.31 | |||
n | 12 | 12 | 9 | 15 | 12 | 12 |
[1] |
Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Bunchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Pooter H (2003). A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[2] | Falster DS, Warton DI, Wright IJ (2006). SMATR: Standardised Major Axis Tests & Routines. Version 2.0, Copyright 2006. http://www.bio.mq.edu.au/ecology/SMATR/index.html. Cited 12 Oct. 2008. |
[3] |
Fargione J, Tilman D (2006). Plant species traits and capacity for resource reduction predict yield and abundance under competition in nitrogen-limited grassland. Functional Ecology, 20, 533-540.
DOI URL |
[4] |
Franco AC, Bustamante M, Caldas LS, Goldstein G, Meinzer FC, Kozovits AR, Rundel P, Coradin VTR (2005). Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. Trees, 19, 326-335.
DOI URL |
[5] |
He JS, Wang ZH, Wang XP (2006). A test of the generality of leaf trait relationship on the Tibetan Plateau. New Phytologist, 170, 835-848.
DOI URL |
[6] |
Niinemets U (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453-469.
DOI URL |
[7] |
Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999). Generality of leaf traits relationships: a test across six biomes. Ecology, 80, 1955-1969.
DOI URL |
[8] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI URL PMID |
[9] | Santiago LS, Wright IJ (2007). Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology, 21, 19-27. |
[10] |
Saura-Mas S, Shipley B, Lioret F (2009). Relationship between post-fire regeneration and leaf economics spectrum in Mediterranean woody species. Functional Ecology, 23, 103-110.
DOI URL |
[11] | van der Werf A, Geerts RHEM, Jacobs FHH, Korevaar H, Oomes MJM, de Visser W (1998). The importance of relative growth rate and associated traits for competition between species during vegetation succession. In: Lambers H, Poorter H, van Vuuren MMI eds. Inherent Variation in Plant Growth Physiological Mechanisms and Ecological Consequences. Backhuys Publishers, Leiden, The Netherlands. 489-502. |
[12] | Wang SS (王沙生), Gao RF (高荣孚), Wu GM (吴贯明) (1991). Plant Physiology (植物生理学). Chinese Forestry Publishing House, Beijing. 211-232. (in Chinese) |
[13] |
Wilson PJ, Thompson K, Hodgson JG (1999). Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 143, 155-162.
DOI URL |
[14] |
Withington JM, Reich PB, Oleksyn J, Eissenstat DM (2006). Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381-397.
DOI URL |
[15] |
Wright IJ, Groom PK, Lamont BB, Poot P, Prior LD, Reich PB, Schulze ED, Veneklaas EJ, Westoby M (2004a). Leaf traits relationships in Australian plant species. Functional Plant Biology, 31, 551-558.
DOI URL PMID |
[16] |
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Olekssyn J, Osada N, Pooter H, Villar R, Warton DI, Westoby M (2005a). Assessing the generality of global leaf trait relationships. New Phytologist, 166, 485-496.
DOI URL |
[17] |
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets U, Oleksyn J, Osada N, Pooter H, Warton DI, Westoby M (2005b). Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14, 411-421.
DOI URL |
[18] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JNCC, Diemer M, Flexas J, Garnier E, Groom PK, Gullas J, Hikosaka K, Lamout BB, Lee W, Lusk C, Midgley JJ, Navas ML, Niinements U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankow V, Roument C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004b). The worldwide leaf economics spectrum. Nature, 428, 821-827.
URL PMID |
[19] | Wu WH (武维华) (2005). Plant Physiology (植物生理学). Science Press, Beijing. 117-175. (in Chinese) |
[20] | Xiang MH (向明惠), Yu SW (余叔文) (1991). Advances in stomatal physiology by using guard cell protoplasts as experimental system. Plant Physiology Communications (植物生理学通讯), 27(1), 1-6. (in Chinese) |
[21] | Xu DQ (许大全) (1984). Stomatal movement and photosynthesis. Plant Physiology Communications (植物生理学通讯), (6), 6-12. (in Chinese) |
[1] | 许泽海 赵燕东. 生长季五角枫茎干水分含量序列特征及其影响因素解译[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[4] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[5] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[6] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[7] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[8] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[9] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[10] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[11] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[12] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[13] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[14] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[15] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19