植物生态学报 ›› 2018, Vol. 42 ›› Issue (4): 453-465.DOI: 10.17521/cjpe.2017.0214
出版日期:
2018-04-20
发布日期:
2018-06-01
基金资助:
Chao-Yang FENG,He-Song WANG*(),Jian-xin SUN
Online:
2018-04-20
Published:
2018-06-01
摘要:
水分利用效率(WUE)既是衡量植被生长适应性的重要指标, 也是连接生态系统水碳循环的纽带。认识不同类型植被WUE的时间变化特征及驱动机制有助于增进对生态系统水碳循环过程的理解。已有研究表明, 在不同时间尺度下, WUE呈现不同的时间变化特征, 但现有研究多是集中在单一的时间尺度下开展的, 对不同植被类型在不同时间尺度下的动态变化及影响因子分析开展得较少。该研究选用中国北方地区9个定位观测台站的通量与气象数据, 分析了WUE的日内变化和季节变化特征, 并在0.5 h、1 d、8 d以及月尺度下, 分别分析了气温(Ta)、相对湿度(RH)、饱和水汽压差(VPD)以及光合有效辐射(PAR)等非生物因子对WUE的影响。同时, 该研究也分析了植被叶面积指数(LAI)和降水(P)对WUE的影响。研究发现: (1) WUE的日变化呈现不对称的“U”型特征, 日出时的WUE普遍高于日落时。荒漠地区WUE的季节变化呈“U”型, 而其他站点呈现单峰型。不同站点WUE的季节变化可以分为总初级生产力(GPP)主导型和蒸发散(ET)主导型, 并随着时间尺度的扩大, GPP或ET的主导作用逐渐增强。(2)在较短的时间尺度(0.5 h、1 d)上, Ta、RH、VPD和PAR是影响WUE变化的主要因子, 但随着时间尺度的扩大, Ta和RH成为影响WUE变化的主要因子, 并且与WUE的相关关系受GPP或ET对WUE主导作用的影响, 随着时间尺度增大, Ta和RH与WUE的线性关系更加显著。(3) WUE大体上随LAI的增加而增加, 但当LAI超过一定值时, 在长白山、海北和张掖站, WUE对LAI的敏感性降低。降水与WUE的关系在研究区域内并不显著。(4)不同植被类型的WUE由大到小依次为森林、农田、草地、湿地和荒漠。
冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子. 植物生态学报, 2018, 42(4): 453-465. DOI: 10.17521/cjpe.2017.0214
Chao-Yang FENG, He-Song WANG, Jian-xin SUN. Temporal changes of vegetation water use efficiency and its influencing factors in Northern China. Chinese Journal of Plant Ecology, 2018, 42(4): 453-465. DOI: 10.17521/cjpe.2017.0214
站点 Site | 纬度 Latitude (° N) | 经度 Longitude (°E ) | 数据时期 Data period | 年降水量 Mean annual precipitation (mm) | 年平均气温 Mean annual Temperature (℃) | 海拔 Altitude (m) | 仪器高度 Height of Instrument (m) | 植被类型 Vegetation type |
---|---|---|---|---|---|---|---|---|
长白山 Changbaishan | 42.40 | 128.09 | 2003-2005 | 695 | 3.6 | 738 | 40.0 | 针阔混交林 Evergreen broad-leaved forest |
密云 Miyun | 40.63 | 117.32 | 2008-2009 | 615 | 10.9 | 350 | 26.6 | 玉米、果树 Maize, fruit tree |
内蒙古 Nei Mongol | 43.54 | 116.67 | 2004-2005 | 350 | -0.4 | 1 252 | 4.0 | 温带草原 Temperate steppe |
大兴 Daxing | 39.62 | 116.43 | 2009-2010 | 590 | 11.6 | 20 | 3.0 | 玉米/小麦 Maize/wheat |
海北 Haibei | 37.67 | 101.33 | 2003-2005 | 560 | -1.6 | 3 358 | 2.2 | 灌丛 Shrubland |
大满 Daman | 38.86 | 100.37 | 2013-2014 | 122 | 7.3 | 1 556 | 4.5 | 玉米 Maize |
花寨子 Huazhaizi | 38.77 | 100.32 | 2013-2014 | 130 | 7.3 | 1 731 | 2.9 | 荒漠 Desert |
张掖 Zhangye | 38.98 | 100.30 | 2013-2014 | 130 | 6.0 | 1 460 | 5.2 | 湿地 Wetland |
巴吉滩 Bajitan | 38.92 | 100.30 | 2013-2014 | 130 | 7.3 | 1 562 | 4.6 | 荒漠 Desert |
表1 各站点基础地理与植被信息
Table 1 Information on geography and vegetation of the study sites
站点 Site | 纬度 Latitude (° N) | 经度 Longitude (°E ) | 数据时期 Data period | 年降水量 Mean annual precipitation (mm) | 年平均气温 Mean annual Temperature (℃) | 海拔 Altitude (m) | 仪器高度 Height of Instrument (m) | 植被类型 Vegetation type |
---|---|---|---|---|---|---|---|---|
长白山 Changbaishan | 42.40 | 128.09 | 2003-2005 | 695 | 3.6 | 738 | 40.0 | 针阔混交林 Evergreen broad-leaved forest |
密云 Miyun | 40.63 | 117.32 | 2008-2009 | 615 | 10.9 | 350 | 26.6 | 玉米、果树 Maize, fruit tree |
内蒙古 Nei Mongol | 43.54 | 116.67 | 2004-2005 | 350 | -0.4 | 1 252 | 4.0 | 温带草原 Temperate steppe |
大兴 Daxing | 39.62 | 116.43 | 2009-2010 | 590 | 11.6 | 20 | 3.0 | 玉米/小麦 Maize/wheat |
海北 Haibei | 37.67 | 101.33 | 2003-2005 | 560 | -1.6 | 3 358 | 2.2 | 灌丛 Shrubland |
大满 Daman | 38.86 | 100.37 | 2013-2014 | 122 | 7.3 | 1 556 | 4.5 | 玉米 Maize |
花寨子 Huazhaizi | 38.77 | 100.32 | 2013-2014 | 130 | 7.3 | 1 731 | 2.9 | 荒漠 Desert |
张掖 Zhangye | 38.98 | 100.30 | 2013-2014 | 130 | 6.0 | 1 460 | 5.2 | 湿地 Wetland |
巴吉滩 Bajitan | 38.92 | 100.30 | 2013-2014 | 130 | 7.3 | 1 562 | 4.6 | 荒漠 Desert |
图2 本研究台站水分利用效率(WUE)的日变化, 虚线标注了WUE达到最小值的时间。
Fig. 2 Diurnal changes of water use efficiency (WUE) for the study sites. The dash line indicates the time of WUE reached the minimum.
图3 本研究台站水分利用效率(WUE)的季节变化。海北和长白山是3年的数据, 其他站点是2年的数据。
Fig. 3 Seasonal changes of water use efficiency (WUE) for the study sites. Data of three years from Haibei and Changbaishan, and two years form others.
图4 本研究台站不同因子与水分利用效率(WUE)的相关性(p < 0.05)。GPP (g C·m-2), 总初级生产力; ET (kg H2O·m-2), 蒸发散; PAR (W·m-2), 光合有效辐射; RH (%), 相对湿度; Ta (℃), 温度; VPD (kPa), 大气水汽压亏缺。
Fig. 4 Pearson’s correlations of different factors with water use efficiency (WUE). GPP (g C·m-2), gross primary production; ET (kg H2O·m-2), evapotranspiration; PAR (W·m-2), photosynthetically active radiation; RH (%), relative humidity; Ta (°C), temperature; VPD (kPa), vapor pressure deficit.
台站名 Site | 0.5 h | R2 | 1 d | R2 | 8 d | R2 | 逐月 Monthly | R2 | |
---|---|---|---|---|---|---|---|---|---|
长白山 Changbaishan | Ta (0.97), RH (-0.54), VPD (-0.91), PAR (-0.17) | 0.49 | Ta (0.83), VPD (-0.27) | 0.68 | Ta (0.82) | 0.67 | |||
内蒙古 Nei Mongol | Ta (0.29), RH (0.14), PAR (-0.19) | 0.14 | RH (0.45) | 0.20 | (无显著因子) (No significant factor) | ||||
海北 Haibei | Ta (0.90), VPD (-0.42), PAR (-0.27) | 0.71 | Ta (1.05), VPD (-0.36), PAR (-0.12) | 0.93 | Ta (0.89), PAR (-0.33) | 0.94 | |||
大兴 Daxing | Ta (0.51), VPD (-0.57), PAR (-0.34) | 0.36 | Ta (0.80), RH (-0.27), VPD (-0.80), PAR (-0.37) | 0.46 | RH (0.61) | 0.40 | PAR (-0.85) | 0.73 | |
密云 Miyun | Ta (0.18), RH (0.26), VPD (-0.13), PAR (-0.18) | 0.20 | Ta (0.71), VPD (-0.57), PAR (-0.33) | 0.49 | RH (0.51), Ta (0.57) | 0.69 | RH (0.80) | 0.65 | |
张掖 Zhangye | Ta (0.30), RH (0.50), PAR (-0.39) | 0.45 | Ta (0.32), RH (0.70), PAR (-0.14) | 0.61 | Ta (0.36), RH (0.58), PAR (-0.44) | 0.69 | (无显著因子) (No significant factor) | ||
大满 Daman | Ta (0.68), RH (0.37), VPD (-0.52), PAR (-0.21) | 0.57 | Ta (0.54), RH (0.53), PAR (-0.31) | 0.63 | Ta (0.94), VPD (-0.46) | 0.70 | Ta (0.84) | 0.71 | |
巴吉滩 Bajitan | Ta (-0.36), RH (-0.48), PAR (-0.24) | 0.20 | Ta (-0.33), RH (-0.58), PAR (-0.12) | 0.30 | RH (-0.77), VPD (-0.46) | 0.70 | RH (-0.87) | 0.70 | |
花寨子 Huazhaizi | RH (-0.27), PAR (-0.27) | 0.12 | RH (-0.65), PAR (-0.50) | 0.31 | RH (-0.66) | 0.40 | (无显著因子) (No significant factor) |
表2 不同时间尺度下逐步回归方程中各气象因子标准回归系数及总体决定系数(R2) (p < 0.05)
Table 2 Standardized regression coefficients of meteorological factors and coefficient of determination (R2) in stepwise regression equations in different time scales (p < 0.05)
台站名 Site | 0.5 h | R2 | 1 d | R2 | 8 d | R2 | 逐月 Monthly | R2 | |
---|---|---|---|---|---|---|---|---|---|
长白山 Changbaishan | Ta (0.97), RH (-0.54), VPD (-0.91), PAR (-0.17) | 0.49 | Ta (0.83), VPD (-0.27) | 0.68 | Ta (0.82) | 0.67 | |||
内蒙古 Nei Mongol | Ta (0.29), RH (0.14), PAR (-0.19) | 0.14 | RH (0.45) | 0.20 | (无显著因子) (No significant factor) | ||||
海北 Haibei | Ta (0.90), VPD (-0.42), PAR (-0.27) | 0.71 | Ta (1.05), VPD (-0.36), PAR (-0.12) | 0.93 | Ta (0.89), PAR (-0.33) | 0.94 | |||
大兴 Daxing | Ta (0.51), VPD (-0.57), PAR (-0.34) | 0.36 | Ta (0.80), RH (-0.27), VPD (-0.80), PAR (-0.37) | 0.46 | RH (0.61) | 0.40 | PAR (-0.85) | 0.73 | |
密云 Miyun | Ta (0.18), RH (0.26), VPD (-0.13), PAR (-0.18) | 0.20 | Ta (0.71), VPD (-0.57), PAR (-0.33) | 0.49 | RH (0.51), Ta (0.57) | 0.69 | RH (0.80) | 0.65 | |
张掖 Zhangye | Ta (0.30), RH (0.50), PAR (-0.39) | 0.45 | Ta (0.32), RH (0.70), PAR (-0.14) | 0.61 | Ta (0.36), RH (0.58), PAR (-0.44) | 0.69 | (无显著因子) (No significant factor) | ||
大满 Daman | Ta (0.68), RH (0.37), VPD (-0.52), PAR (-0.21) | 0.57 | Ta (0.54), RH (0.53), PAR (-0.31) | 0.63 | Ta (0.94), VPD (-0.46) | 0.70 | Ta (0.84) | 0.71 | |
巴吉滩 Bajitan | Ta (-0.36), RH (-0.48), PAR (-0.24) | 0.20 | Ta (-0.33), RH (-0.58), PAR (-0.12) | 0.30 | RH (-0.77), VPD (-0.46) | 0.70 | RH (-0.87) | 0.70 | |
花寨子 Huazhaizi | RH (-0.27), PAR (-0.27) | 0.12 | RH (-0.65), PAR (-0.50) | 0.31 | RH (-0.66) | 0.40 | (无显著因子) (No significant factor) |
图5 不同站点叶面积指数(LAI)与水分利用效率(WUE)的关系(p < 0.05)。
Fig. 5 Relationships between leaf area index (LAI) and water use efficiency (WUE) for different sites (p < 0.05).
图6 年生长季平均叶面积指数(LAI)与年平均水分利用效率(WUE)的关系(p < 0.05)。
Fig. 6 Relationship between annual average leaf area index (LAI) and water use efficiency (WUE) in growing season (p < 0.05).
图9 各站点平均每天总初级生产力(GPP)、蒸发散(ET)和水分利用效率(WUE)的值。横坐标根据WUE的由小到大的顺序排列的。
Fig. 9 The average daily gross primary production (GPP), evapotranspiration (ET) and water use efficiency (WUE) for the study sites. The sites were arranged in the order of increasing WUE.
图10 不同站点水分利用效率(WUE)与总初级生产力(GPP)的相关关系(p < 0.05)。
Fig. 10 Relationships between water use efficiency (WUE) and gross primary production (GPP) for the study sites (p < 0.05).
图11 不同站点水分利用效率(WUE)与蒸发散(ET)的相关关系(p < 0.05)。
Fig. 11 Relationships between water use efficiency (WUE) and evapotranspiration (ET) for the study sites (p < 0.05).
1 |
Beer C , Ciais P , Reichstein M , Baldocchi D , Law BE , Papale D , Soussana JF , Ammann C , Buchmann N , Frank D ( 2009). Temporal and among site variability of inherent water use efficiency at the ecosystem level. Global Biogeochemical Cycles, 23, GB2018. DOI: 10.1029/2008GB003233.
DOI URL |
2 |
Bohn BA , Kershner JL ( 2002). Establishing aquatic restoration priorities using a watershed approach. Journal of Environmental Management, 64, 355- 363.
DOI URL PMID |
3 |
Chen SP , Bai YF , Han XG ( 2002). Application of stable carbon isotope techniques to ecological research. Acta Phytoecologica Sinica, 26, 549- 560.
DOI URL |
[ 陈世苹, 白永飞, 韩兴国 ( 2002). 稳定性碳同位素技术在生态学研究中的应用. 植物生态学报, 26, 549- 560.]
DOI URL |
|
4 |
Du JJ , Chen ZW ( 2010). Methods of path analysis using SPSS linear regression. Bulletin of Biology, 45, 4- 6.
DOI URL |
[ 杜家菊, 陈志伟 ( 2010). 使用SPSS线性回归实现通径分析的方法. 生物学通报, 45, 4- 6.]
DOI URL |
|
5 |
Dong G , Guo JX , Chen JQ , Sun G , Gao S , Hu LJ , Wang YL. ( 2011). Effects of spring drought on carbon sequestration, evapotranspiration and water use efficiency in the Songnen meadow steppe in northeast China. Ecohydrology, 4, 211- 224.
DOI URL |
6 |
Farquhar GD , Sharkey TD ( 1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33, 317- 345.
DOI URL |
7 |
Guo RP , Lin ZH , Mo XG , Yang CL ( 2010). Responses of crop yield and water use efficiency to climate change in the North China Plain. Agricultural Water Management, 97, 1185- 1194.
DOI URL |
8 |
Hu ZM , Yu GR , Fu YL , Sun XM , Li YN , Shi PL , Wang YF , Zheng ZM ( 2008). Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China. Global Change Biology, 14, 1609- 1619.
DOI URL |
9 | Hu ZM , Yu GR , Wang QF , Zhao FH ( 2009). Ecosystem level water use efficiency: A review. Acta Ecologica Sinica, 29, 1498- 1507. |
[ 胡中民, 于贵瑞, 王秋凤, 赵风华 ( 2009). 生态系统水分利用效率研究进展. 生态学报, 29, 1498- 1507.] | |
10 | Huang RH , Zhou DG , Chen W , Zhou LT , Wei ZG , Zhang Q , Gao XQ , Wei GA , Hou XH ( 2013). Recent progress in studies of air-land interaction over the arid area of Northwest China and its impact on climate. Chinese Journal of Atmospheric Sciences, 37, 189- 210. |
[ 黄荣辉, 周德刚, 陈文, 周连童, 韦志刚, 张强, 高晓清, 卫国安, 候旭宏 ( 2013). 关于中国西北干旱区陆—气相互作用及其对气候影响研究的最近进展. 大气科学, 37, 189- 210.] | |
11 |
Jaleel CA , Gopi R , Sankar B , Gomathinayagam M , Panneerselvam R ( 2008). Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. Comptes Rendus Biologies, 331, 42- 47.
DOI URL PMID |
12 |
Jia X , Zha TS , Gong JN , Wang B , Zhang YQ , Wu B , Qin SG , Peltola H ( 2016). Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. Agricultural and Forest Meteorology, 228, 120- 129.
DOI URL |
13 |
Law BE , Falge E , Gu LV , Baldocchi DD , Bakwin P , Berbigier P , Davis K , Dolman AJ , Falk M , Fuentes JD ( 2002). Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113, 97- 120.
DOI URL |
14 |
Li HD , Guan DX , Yuan FH , Wang AZ , Jin CJ , Wu JB , Li Z , Jing YL ( 2015). Water use efficiency and its influential factor over Horqin Meadow. Acta Ecologica Sinica, 35, 478- 488.
DOI URL |
[ 李辉东, 关德新, 袁凤辉, 王安志, 金昌杰, 吴家兵, 李峥, 井艳丽 ( 2015). 科尔沁草甸生态系统水分利用效率及影响因素. 生态学报, 35, 478- 488.]
DOI URL |
|
15 | Li XZ , Liu XD , Ma ZG ( 2004). Analysis on the characteristics of aridification in the main arid areas of the world in recent 100 years. Arid Zone Research, 21, 97- 103. |
[ 李新周, 刘晓东, 马柱国 ( 2004). 近百年来全球主要干旱区的干旱化特征分析. 干旱区研究, 21, 97- 103.] | |
16 |
Liu SM , Xu ZW , Song LS , Zhao QY , Ge Y , Xu TR , Ma YF , Zhu ZL , Jia ZZ , Zhang F ( 2016). Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteorology, 230, 97- 113.
DOI URL |
17 |
Liu XD , Chen XZ , Li RH , Long FL , Zhang L , Zhang QM , Li JY ( 2017). Water-use efficiency of an old-growth forest in lower subtropical China. Scientific Reports, 7, 42761. DOI: 10.1038/srep42761.
DOI URL PMID |
18 |
Lu XL , Zhuang QL ( 2010). Evaluating evapotranspiration and water-use efficiency of terrestrial ecosystems in the conterminous United States using MODIS and AmeriFlux data. Remote Sensing of Environment, 114, 1924- 1939.
DOI URL |
19 |
Muraoka H , Saigusa N , Nasahara KN , Noda H , Yoshino J , Saitoh TM , Nagai S , Murayama S , Koizumi H ( 2010). Effects of seasonal and interannual variations in leaf photosynthesis and canopy leaf area index on gross primary production of a cool-temperate deciduous broadleaf forest in Takayama, Japan. Journal of Plant Research, 123, 563- 576.
DOI URL |
20 |
Munns R ( 2005). Genes and salt tolerance: Bringing them together. New Phytologist, 167, 645- 663.
DOI URL PMID |
21 |
Ponton S , Flanagan LB , Alstad KP , Johnson BG , Morgenstern K , Kljun N , Black TA , Barr AG ( 2006). Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Global Change Biology, 12, 294- 310.
DOI URL |
22 |
Reichstein M , Ciais P , Papale D , Valentini R , Running S , Viovy N , Cramer W , Granier A , Ogee J , Allard V ( 2007). Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: A joint flux tower, remote sensing and modelling analysis. Global Change Biology, 13, 634- 651.
DOI URL |
23 |
Sala OE , Gherardi LA , Reichmann L , Jobbagy E , Peters D ( 2012). Legacies of precipitation fluctuations on primary production: Theory and data synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 3135- 3144.
DOI URL PMID |
24 |
Song QH , Fei XH , Zhang YP , Sha LQ , Liu YT , Zhou WJ , Wu CS , Lu ZY , Luo K , Gao JB ( 2017). Water use efficiency in a primary subtropical evergreen forest in Southwest China. Scientific Reports, 7, 43031. DOI: 10.1038/srep43031.
DOI URL PMID |
25 | Sun XK , Fan ZP , Wang H , Jie B , Zhang Y , Deng DZ ( 2008). Photosynthetic characteristics and water use efficiency of three broad-leaved tree species in the Horqin Sandland. Journal of Arid Land Resources and Environment, 10, 188- 194. |
[ 孙学凯, 范志平, 王红, 白洁, 张营, 邓东周 ( 2008). 科尔沁沙地复叶槭等3个阔叶树种的光合特性及其水分利用效率. 干旱区资源与环境, 10, 188- 194.] | |
26 |
Tan ZH , Zhang YP , Deng XB , Song QH , Liu WJ , Deng Y , Tang JW , Liao ZY , Zhao JF , Song L ( 2015). Interannual and seasonal variability of water use efficiency in a tropical rainforest: Results from a 9 year eddy flux time series. Journal of Geophysical Research: Atmospheres, 120, 464- 479.
DOI URL |
27 |
Tang XG , Li HP , Griffis TJ , Xu XB , Ding Z , Liu GH ( 2015). Tracking ecosystem water use efficiency of cropland by exclusive use of MODIS EVI data. Remote Sensing, 7, 11016- 11035.
DOI URL |
28 |
Thomey ML , Collins SL , Vargas R , Johnson JE , Brown RF , Natvig DO , Friggens MT ( 2011). Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland. Global Change Biology, 17, 1505- 1515.
DOI URL |
29 |
Tong XJ , Li J , Yu Q , Qin Z ( 2009). Ecosystem water use efficiency in an irrigated cropland in the North China Plain. Journal of Hydrology, 374, 329- 337.
DOI URL |
30 |
Wang F , Jiang FL , Chen XF , Niu XD ( 2016). Bamboo forest water use efficiency in the Yangtze River Delta Region, China. Terrestrial, Atmospheric & Oceanic Sciences, 27, 981- 989.
DOI URL |
31 | Wang QW , Yu DP , Dai LM , Zhou L , Zhou WM , Qi G , Qi L , Ye YJ ( 2010). Research progress in water use efficiency of plants under global climate change. Chinese Journal of Applied Ecology, 21, 3255- 3265. |
[ 王庆伟, 于大炮, 代力民, 周莉, 周旺明, 齐光, 齐麟, 叶雨静 ( 2010). 全球气候变化下植物水分利用效率研究进展. 应用生态学报, 21, 3255- 3265.] | |
32 |
Xu ZW , Liu SM , Li X , Shi SJ , Wang JM , Zhu ZL , Xu TR , Wang WZ , Ma MG ( 2013). Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. Journal of Geophysical Research: Atmospheres, 118, 13140- 13157.
DOI URL |
33 |
Yu GR , Song X , Wang QF , Liu YF , Guan DX , Yan JH , Sun XM , Zhang LM , Wen XF ( 2008). Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytologist, 177, 927- 937.
DOI URL PMID |
34 | Yu GR , Fu YL , Sun XM , Wen XF , Zhang LM ( 2006). Research progress and development of China’s Terrestrial Ecosystem Fluorescence Observation Network (ChinaFLUX). Science in China Series D Earth Science, S1, 1- 21. |
[ 于贵瑞, 伏玉玲, 孙晓敏, 温学发, 张雷明 ( 2006). 中国陆地生态系统通量观测研究网络(ChinaFLUX)的研究进展及其发展思路. 中国科学. D辑: 地球科学, S1, 1- 21.] | |
35 |
Zhang FM , Ju WM , Shen SH , Wang SQ , Yu GR , Han SJ ( 2014). How recent climate change influences water use efficiency in East Asia. Theoretical and Applied Climatology, 116, 359- 370.
DOI URL |
36 |
Zhang L , Tian J , He HL , Ren XL , Sun XM , Yu GR , Lu QQ , Lü LY ( 2015). Evaluation of water use efficiency derived from MODIS products against eddy variance measurements in China. Remote Sensing, 7, 11183- 11201.
DOI URL |
37 | Zhang LX , Hu ZM , Fan JW , Shao QQ , Tang FP ( 2014). Advances in the spatiotemporal dynamics in ecosystem water use efficiency at regional scale. Advances in Earth Science, 29, 691- 699. |
[ 张良侠, 胡中民, 樊江文, 邵全琴, 唐风沛 ( 2014). 区域尺度生态系统水分利用效率的时空变异特征研究进展. 地球科学进展, 29, 691- 699.] | |
38 |
Zhao LW , Zhao WZ , Ji XB ( 2015). Division between transpiration and evaporation, and crop water consumption over farmland within oases of the middlestream of Heihe River basin, Northwestern China. Acta Ecologica Sinica, 35, 1114- 1123.
DOI URL |
[ 赵丽雯, 赵文智, 吉喜斌 ( 2015). 西北黑河中游荒漠绿洲农田作物蒸腾与土壤蒸发区分及作物耗水规律. 生态学报, 35, 1114- 1123.]
DOI URL |
|
39 |
Zhou S , Yu B , Huang YF , Wang GQ ( 2015). Daily underlying water use efficiency for AmeriFlux sites. Journal of Geophysical Research: Biogeosciences, 120, 887- 902.
DOI URL |
[1] | 许泽海 赵燕东. 生长季五角枫茎干水分含量序列特征及其影响因素解译[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[3] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[4] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[5] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[6] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[7] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[8] | 丁键浠, 周蕾, 王永琳, 庄杰, 陈集景, 周稳, 赵宁, 宋珺, 迟永刚. 叶绿素荧光主动与被动联合观测应用前景[J]. 植物生态学报, 2021, 45(2): 105-118. |
[9] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[10] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[11] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[12] | 季倩雯, 郑成洋, 张磊, 曾发旭. 河北塞罕坝樟子松径向生长动态变化及其与气象因子的关系[J]. 植物生态学报, 2020, 44(3): 257-265. |
[13] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[14] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[15] | 张素彦, 蒋红志, 王扬, 张艳杰, 鲁顺保, 白永飞. 凋落物去除和添加处理对典型草原生态系统碳通量的影响[J]. 植物生态学报, 2018, 42(3): 349-360. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19