植物生态学报 ›› 2018, Vol. 42 ›› Issue (3): 349-360.DOI: 10.17521/cjpe.2016.0083
所属专题: 生态系统碳水能量通量; 凋落物
张素彦1,2,蒋红志2,王扬2,张艳杰1,鲁顺保1,2,*(),白永飞2
出版日期:
2018-03-20
发布日期:
2017-06-16
通讯作者:
鲁顺保 ORCID:0000-0003-3557-7777
基金资助:
ZHANG Su-Yan1,2,JIANG Hong-Zhi2,WANG Yang2,ZHANG Yan-Jie1,LU Shun-Bao1,2,*(),BAI Yong-Fei2
Online:
2018-03-20
Published:
2017-06-16
Contact:
Shun-Bao LU ORCID:0000-0003-3557-7777
Supported by:
摘要:
为揭示凋落物去除和添加处理对草原生态系统碳通量的影响, 2013和2014年连续两年在成熟群落围封样地进行凋落物去除实验、在退化群落放牧样地进行凋落物添加实验, 并运用静态箱法探讨碳通量变化规律并分析其主要影响因子。结果表明: 两种群落的净生态系统CO2交换(NEE)有明显的季节性变化。对成熟群落而言, 去除50%凋落物显著增加了NEE, 去除100%凋落物显著降低了NEE, 而对生态系统总初级生产力(GEP)和生态系统呼吸(ER)均无显著影响; 对退化群落而言, 凋落物添加显著增加了GEP和NEE, 而对ER无显著影响。两种群落的GEP与10 cm土壤温度显著正相关, 但NEE和GEP的变化规律与土壤温度相反, 与10 cm土壤湿度相同。由此可见, 凋落物去除和添加处理对生态系统碳通量的影响主要是改变土壤湿度和地上生物量,而不是改变土壤温度。该研究为合理利用凋落物改善草地生态系统管理和促进草地恢复提供了理论依据。
张素彦, 蒋红志, 王扬, 张艳杰, 鲁顺保, 白永飞. 凋落物去除和添加处理对典型草原生态系统碳通量的影响. 植物生态学报, 2018, 42(3): 349-360. DOI: 10.17521/cjpe.2016.0083
ZHANG Su-Yan, JIANG Hong-Zhi, WANG Yang, ZHANG Yan-Jie, LU Shun-Bao, BAI Yong-Fei. Effects of litter removal and addition on ecosystem carbon fluxes in a typical steppe. Chinese Journal of Plant Ecology, 2018, 42(3): 349-360. DOI: 10.17521/cjpe.2016.0083
处理 Treatment | 2013 | 2014 |
---|---|---|
对照 Control | 0 | 0 |
剪碎凋落物, 不移除0, litter cut but not removed | 0 | 0 |
凋落物去除50% 50% litter removal | 333 | 61 |
凋落物去除100% 100% litter removal | 667 | 122 |
表1 2013-2014年成熟群落不同处理下凋落物去除量(g·m-2)
Table 1 The amounts (g·m-2) of litter removal under different treatments in the mature community in 2013 and 2014
处理 Treatment | 2013 | 2014 |
---|---|---|
对照 Control | 0 | 0 |
剪碎凋落物, 不移除0, litter cut but not removed | 0 | 0 |
凋落物去除50% 50% litter removal | 333 | 61 |
凋落物去除100% 100% litter removal | 667 | 122 |
处理 Treatment | 2013 | 2014 |
---|---|---|
对照 Control | 0 | 0 |
凋落物添加50% 50% litter addition | 333 | 61 |
凋落物添加100% 100% litter addition | 667 | 122 |
表2 2013-2014年退化群落不同处理下每平方米凋落物的添加量(g·m-2)
Table 2 The amounts (g·m-2) of litter addition under different treatments in the degraded community in 2013 and 2014
处理 Treatment | 2013 | 2014 |
---|---|---|
对照 Control | 0 | 0 |
凋落物添加50% 50% litter addition | 333 | 61 |
凋落物添加100% 100% litter addition | 667 | 122 |
图2 2014-2015年成熟群落凋落物去除和退化群落凋落物添加对土壤温度和土壤水分的影响(平均值±标准误差)。不同小写字母a、b、c表示同一群落不同处理间差异显著(p < 0.05)。ns表示处理之间差异不显著(p > 0.05)。Control, 对照; -50%, 凋落物去除50%; -100%, 凋落物去除100%; +50%, 凋落物添加50%; +100%, 凋落物添加100%。
Fig. 2 Effects of litter removal in the mature community and litter addition in the degraded community on soil temperature and soil moisture in 2014 and 2015 (mean ± SE). Different small letters a, b and c indicate significant differences among treatments in the same community (p < 0.05). ns indicates no significant differences among treatments (p > 0.05). -50%, litter removal of 50%; -100%, litter removal of 100%; +50%, 50% litter addition; +100%, 100% litter addition.
图3 成熟群落凋落物去除和退化群落凋落物添加对地上生物量的影响(平均值±标准误差)。不同小写字母a、b表示同一群落不同处理间差异显著(p < 0.05)。ns表示处理之间差异不显著(p > 0.05)。Control, 对照; -50%, 凋落物去除50%; -100%, 凋落物去除100%; +50%, 凋落物添加50%; +100%, 凋落物添加100%。
Fig. 3 Effects of litter removal in the mature community and litter addition in the degraded community on aboveground biomass (mean ± SE). Different small letters a and b indicate significant differences among treatments in the same community (p < 0.05). ns indicates no significant differences among treatments (p > 0.05). -50%, litter removal of 50%; -100%, litter removal of 100%; +50%, 50% litter addition; +100%, 100% litter addition.
指标 Index | 因素 Factor | 自由度 Degree of freedom | p值 p value | |
---|---|---|---|---|
成熟群落 Mature community | 退化群落 Degraded community | |||
GEP | 时间 Time | 5 | 0.000**** | 0.000**** |
处理 Treatment | 2 | 0.132 | 0.037* | |
时间×处理 Time × treatment | 10 | 0.000**** | 0.000**** | |
ER | 时间 time | 5 | 0.000**** | 0.000**** |
处理 Treatment | 2 | 0.605 | 0.709 | |
时间×处理 Time × treatment | 10 | 0.047* | 0.189 | |
NEE | 时间 Time | 5 | 0.000**** | 0.000**** |
处理 Treatment | 2 | 0.008** | 0.018* | |
时间×处理 Time × treatment | 10 | 0.000**** | 0.013* |
表3 凋落物去除和添加对生态系统总初级生产力(GEP)、生态系统呼吸(ER)和净生态系统CO2交换(NEE)影响的重复测量方差分析
Table 3 Effects of litter removal and addition on gross ecosystem productivity (GEP), ecosystem respiration (ER) and net ecosystem CO2 exchange (NEE) based on repeated measures ANOVA
指标 Index | 因素 Factor | 自由度 Degree of freedom | p值 p value | |
---|---|---|---|---|
成熟群落 Mature community | 退化群落 Degraded community | |||
GEP | 时间 Time | 5 | 0.000**** | 0.000**** |
处理 Treatment | 2 | 0.132 | 0.037* | |
时间×处理 Time × treatment | 10 | 0.000**** | 0.000**** | |
ER | 时间 time | 5 | 0.000**** | 0.000**** |
处理 Treatment | 2 | 0.605 | 0.709 | |
时间×处理 Time × treatment | 10 | 0.047* | 0.189 | |
NEE | 时间 Time | 5 | 0.000**** | 0.000**** |
处理 Treatment | 2 | 0.008** | 0.018* | |
时间×处理 Time × treatment | 10 | 0.000**** | 0.013* |
图4 两种群落凋落物去除和添加处理下生态系统总初级生产力(GEP)、生态系统呼吸(ER)和CO2净交换(NEE)的季节动态。不同小写字母a、b、c表示相同测定时间下不同处理间差异显著(p < 0.05)。ns表示处理之间差异不显著(p > 0.05)。 Control, 对照; -50%, 凋落物去除50%; -100%, 凋落物去除100%; +50%, 凋落物添加50%; +100%, 凋落物添加100%。
Fig. 4 Seasonal dynamics of net ecosystem CO2 exchange (NEE), ecosystem respiration (ER) and gross ecosystem productivity (GEP) under litter removal and addition treatments in the two communities. Different small letters a, b, and c indicate significant differences among treatments (p < 0.05). ns indicates no significant difference among treatments (p > 0.05). -50%, litter removal of 50%; -100%, litter removal of 100%; +50%, 50% litter addition; +100%, 100% litter addition.
图5 凋落物去除和添加两种群落生态系统总初级生产力(GEP)、生态系统呼吸(ER)和净生态系统CO2交换(NEE)与土壤温度的相关性分析。Control, 对照; -50%, 凋落物去除50%; -100%, 凋落物去除100%。+50%, 凋落物添加50%; +100%, 凋落物添加100%。
Fig. 5 Correlation analysis of the two communitiess of net ecosystem CO2 exchange (NEE), ecosystem respiration (ER) and gross ecosystem productivity (GEP) and soil temperature under litter removal and addition treatments. -50%, litter removal of 50%; -100%, litter removal of 100%; +50%, 50% litter addition; +100%, 100% litter addition.
[1] |
Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG ( 2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia Grasslands. Global Change Biology, 16, 358-372.
DOI URL |
[2] |
Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG ( 2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140-2153.
DOI URL PMID |
[3] |
Baldocchi D ( 2008). Breathing of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany, 56, 1-26.
DOI URL |
[4] | Chu XJ, Han GX ( 2015). Effect of air temperature and rainfall on wetland ecosystem CO2 exchange in China. Chinese Journal of Applied Ecology, 26, 2978-2990. |
初小静, 韩广轩 ( 2015). 气温和降雨量对中国湿地生态系统CO2交换的影响. 应用生态学报, 26, 2978-2990. | |
[5] |
Deutsch ES, Bork EW, Willms WD ( 2010). Soil moisture and plant growth responses to litter and defoliation impacts in parkland grasslands. Agriculture Ecosystems and Environment, 135, 1-9.
DOI URL |
[6] |
Dugas WA, Heuer ML, Mayeux HS ( 1999). Carbon dioxide fluxes over bermudagrass, native prairie, and sorghum. Agricultural and Forest Meteorology, 93, 121-139.
DOI URL |
[7] |
Dyksterhuis EJ, Schmutz EM ( 1947). Natural mulches or litter of grasslands―With kinds and amounts on a southern prairie. Ecology, 28, 163-179.
DOI URL |
[8] |
Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Guemundsson J, Hollinger D, Kowalski AS, Katul G, Malhi Y, Meyers T, Monson RK, Munger JW, Oechel W, Paw UKT, Pilegaard K, Rannik ü, Rebmann C, Suyker A, Valentini R, Wilson K, Wofs S ( 2002). Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 113, 53-74.
DOI URL |
[9] |
Frank AB, Dugas WA ( 2001). Carbon dioxide fluxes over a northern, semiarid, mixed-grass prairie. Agricultural and Forest Meteorology, 108, 317-326.
DOI URL |
[10] |
Haeussler S, Kabzems R ( 2005). Aspen plant community response to organic matter removal and soil compaction. Canadian Journal of Forest Research, 35, 2030-2044.
DOI URL |
[11] |
Heady HF ( 1956). Changes in a California annual plant community induced by manipulation of natural mulch. Ecology, 37, 798-812.
DOI URL |
[12] |
Hunt JE, Kelliher FM, McSeveny TM, Byers JN ( 2002). Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought. Agricultural and Forest Meteorology, 111, 65-82.
DOI URL |
[13] |
Knapp AK, Seastedt TR ( 1986). Detritus accumulation limits productivity of tallgrass prairie. Bioscience, 36, 662-668.
DOI URL |
[14] | Li HS, Wang JS, Zhao XH, Kang FF, Zhang CY, Liu X, Wang N, Zhao B ( 2014). Effects and its sustained effect of simulated nitrogen deposition on soil respiration in Pinus tabulaeformis forests in the Taiyue Mountain, China. Chinese Journal of Ecology, 34, 857-866. |
李化山, 汪金松, 赵秀海, 康峰峰, 张春雨, 刘星, 王娜, 赵博 ( 2014). 模拟氮沉降下去除凋落物对太岳山油松林土壤呼吸的影响. 生态学杂志, 34, 857-866. | |
[15] |
Li SG, Asanuma J, Eugster W, Kotani A, Liu JJ, Urano T, Oikawa T, Davaa G, Oyunbaatar D, Sugita M ( 2005). Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Global Change Biology, 11, 1941-1955.
DOI URL |
[16] |
Liu LL, King JS, Giardina CP ( 2005). Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities. Tree Physiology, 25, 1511-1522.
DOI URL PMID |
[17] |
Matsushima M, Chang SX ( 2006). Vector analysis of understory competition, N fertilization, and litter layer removal effects on white spruce growth and nutrition in a 13-year- old plantation. Forest Ecology and Management, 236, 332-341.
DOI URL |
[18] |
Niu S, Wu M, Han Y, Xia J, Li L, Wan S ( 2008). Water-mediated responses of ecosystem carbon fluxes to climatic change in a temperate steppe. New Phytologist, 177, 209-219.
DOI URL PMID |
[19] |
Niu S, Yang H, Zhang Z, Wu M, Lu Q, Li L, Han X, Wan S ( 2009). Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe. Ecosystems, 12, 915-926.
DOI URL |
[20] |
Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG ( 2001). Elevated CO2, litter chemistry, and decomposition: A synthesis. Oecologia, 127, 153-165.
DOI URL PMID |
[21] |
Oberbauer SF, Tweedie CE, Welker JM, Fahnestock JT, Henry GHR, Webber PJ, Hollister RD, Walker MD, Kuchy A, Elmore E, Starr G ( 2007). Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecological Monographs, 77, 221-238.
DOI URL |
[22] |
Patrick LB, Fraser LH, Kershner MW ( 2008). Large-scale manipulation of plant litter and fertilizer in a managed successional temperate grassland. Plant Ecology, 197, 183-195.
DOI URL |
[23] | Piao SL, Fang JY, He JS, Xiao Y ( 2004). Spatial distribution of grassland biomass in China. Acta Phytoecologica Sinica, 28, 491-498. |
朴世龙, 方精云, 贺金生, 肖玉 ( 2004). 中国草地植被生物量及其空间分布格局. 植物生态学报, 28, 491-498. | |
[24] |
Pierson FB, Spaeth KE, Weltz MA, Carlson DH ( 2002). Hydrologic response of diverse western rangelands. Journal of Range Management, 55, 558-570.
DOI URL |
[25] |
Ruprecht E, Szabó A ( 2012). Grass litter is a natural seed trap in long-term undisturbed grassland. Journal of Vegetation Science, 23, 495-504.
DOI URL |
[26] |
Sayer EJ, Tanner EVJ ( 2010). A new approach to trenching experiments for measuring root-rhizosphere respiration in a lowland tropical forest. Soil Biology & Biochemistry, 42, 347-352.
DOI URL |
[27] |
Sayer EJ, Tanner EVJ, Lacey AL ( 2006). Effects of litter manipulation on early-stage decomposition and meso-arthropod abundance in a tropical moist forest. Forest Ecology and Management, 229, 285-293.
DOI URL |
[28] | Wang GJ, Tian DL, Yan WD, Zhu F, Xiang WH, Liang XC ( 2009). Effects of aboveground litter exclusion and addition on soil respiration in a Cunninghamia lanceolata plantation in China. Chinese Journal of Plant Ecology, 33, 739-747. |
王光军, 田大伦, 闫文德, 朱凡, 项文化, 梁小翠 ( 2009). 改变凋落物输入对杉木人工林土壤呼吸的短期影响. 植物生态学报, 33, 739-747. | |
[29] |
Wang J, Zhao ML, Walter W, Han GD, Gao XL, Wu YS ( 2013). Productivity responses of different functional groups to litter removal in typical grassland of Inner Mongolia. Acta Prataculturae Sinica, 22, 31-38.
DOI URL |
王静, 赵萌莉, Walter Willms, 韩国栋, 高新磊, 武玉山 ( 2013). 内蒙古典型草原不同功能群生产力对凋落物去除的响应. 草业学报, 22, 31-38.
DOI URL |
|
[30] |
Wang J, Zhao ML, Willms W, Wang ZW, Han GD ( 2010). Productivity responses of different functional groups to litter addition in typical grassland of Inner Mongolia. Chinese Journal of Plant Ecology, 34, 907-914.
DOI URL |
王静, 赵萌莉, Walter Willms, 王忠武, 韩国栋 ( 2010). 内蒙古典型草原不同功能群生产力对凋落物添加的响应. 植物生态学报, 34, 907-914.
DOI URL |
|
[31] | Waring RH, Schlesinger WH ( 1992). Grasslands and Grassland Sciences in Northern China. National Academy Press, Washington. |
[32] |
Weaver JE, Rowland NW ( 1952). Effects of excessive natural mulch on development, yield, and structure of native grassland. Botanical Gazette, 114, 1-19.
DOI URL |
[33] |
Wu H, Ye BS, Wu JK, Li M, Qin J, Wang XY, Wang J ( 2013). Observations and study on the CO2 flux in an alpine meadow ecosystem in the upper reaches of the Shule River Basin. Acta Prataculturae Sinica, 22(4), 18-26.
DOI URL |
吴灏, 叶柏生, 吴锦奎, 李曼, 秦甲, 王晓云, 王杰 ( 2013). 疏勒河上游高寒草甸生态系统CO2通量观测研究. 草业学报, 22(4), 18-26.
DOI URL |
|
[34] |
Xia J, Niu S, Wan S ( 2009). Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe. Global Change Biology, 15, 1544-1556.
DOI URL |
[35] |
Xu LK, Baldocchi DD, Tang JW ( 2004). How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Global Biogeochemical Cycles, 18, 10.
DOI URL |
[36] |
Xu S, Liu LL, Sayer EJ ( 2013). Variability of above-ground litter inputs alters soil physicochemical and biological processes: A meta-analysis of litterfall-manipulation experiments. Biogeosciences, 10, 7423-7433.
DOI URL |
[37] |
Xue L, Shi XL, Feng HF, Fu JD, Zheng WG, Tian XQ ( 2009). Effects of litter in Pinus caribaea stands on runoff and nitrogen and phosphorus losses. Chinese Journal of Plant Ecology, 33, 878-884.
DOI URL |
薛立, 史小玲, 冯慧芳, 傅静丹, 郑卫国, 田雪琴 ( 2009). 加勒比松林凋落物对地表径流和氮、磷流失的影响. 植物生态学报, 33, 878-884.
DOI URL |
|
[38] | Zhang H, Xiao Y, Liu XZ, Yan JH ( 2014). Effects of litter treatments on CO2 emission at forest floor. Ecology and Environmental Sciences, 23, 406-414. |
张灏, 肖崟, 刘兴诏, 闫俊华 ( 2014). 凋落物处理对森林地表CO2通量的影响及其调控机理. 生态环境学报, 23, 406-414. | |
[39] |
Zhang WL, Chen SP, Miao HX, Lin GH ( 2008). Effects in carbon flux of conversion of grassland steppe. Journal of Plant Ecology (Chinese Version), 32, 1301-1311.
DOI URL |
张文丽, 陈世苹, 苗海霞, 林光辉 ( 2008). 开垦对克氏针茅草地生态系统碳通量的影响. 植物生态学报, 32, 1301-1311.
DOI URL |
|
[40] |
Zhao MS, Running SW ( 2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940-943.
DOI URL PMID |
[1] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[2] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[3] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[4] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[5] | 余继梅, 吴福忠, 袁吉, 金遐, 魏舒沅, 袁朝祥, 彭艳, 倪祥银, 岳楷. 全球尺度上凋落物初始酚类含量特征及影响因素[J]. 植物生态学报, 2023, 47(5): 608-617. |
[6] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[7] | 刘谣, 焦泽彬, 谭波, 李晗, 王丽霞, 刘思凝, 游成铭, 徐振锋, 张丽. 川西亚高山森林凋落物去除对土壤腐殖质动态的影响[J]. 植物生态学报, 2022, 46(3): 330-339. |
[8] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[9] | 朱蔚娜, 张国龙, 张璞进, 张迁迁, 任瑾涛, 徐步云, 清华. 大针茅草原6种主要植物叶凋落物和根系分解特征与功能性状的关系[J]. 植物生态学报, 2021, 45(6): 606-616. |
[10] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[11] | 杨德春, 胡雷, 宋小艳, 王长庭. 降雨变化对高寒草甸不同植物功能群凋落物质量及其分解的影响[J]. 植物生态学报, 2021, 45(12): 1314-1328. |
[12] | 嘎玛达尔基, 杨泽, 谭星儒, 王珊珊, 李伟晶, 游翠海, 王彦兵, 张兵伟, 任婷婷, 陈世苹. 凋落物输入变化和氮添加对半干旱草原群落生产力及功能群组成的影响[J]. 植物生态学报, 2020, 44(8): 791-806. |
[13] | 刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262-1272. |
[14] | 贾丙瑞. 凋落物分解及其影响机制[J]. 植物生态学报, 2019, 43(8): 648-657. |
[15] | 闫鹏飞, 展鹏飞, 肖德荣, 王燚, 余瑞, 刘振亚, 王行. 模拟增温及分解界面对茭草凋落物分解速率及叶际微生物结构和功能的影响[J]. 植物生态学报, 2019, 43(2): 107-118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19