植物生态学报 ›› 2021, Vol. 45 ›› Issue (12): 1350-1364.DOI: 10.17521/cjpe.2021.0220
韩璐1,2, 杨菲1,2, 吴应明1,2, 牛云明1,2, 曾祎明1,2, 陈立欣1,2,*()
收稿日期:
2021-06-09
接受日期:
2021-08-11
出版日期:
2021-12-20
发布日期:
2021-09-18
通讯作者:
陈立欣
作者简介:
*(myclover17@126.com)基金资助:
HAN Lu1,2, YANG Fei1,2, WU Ying-Ming1,2, NIU Yun-Ming1,2, ZENG Yi-Ming1,2, CHEN Li-Xin1,2,*()
Received:
2021-06-09
Accepted:
2021-08-11
Online:
2021-12-20
Published:
2021-09-18
Contact:
CHEN Li-Xin
Supported by:
摘要:
为明确晋西黄土区植物的水分利用规律及对半干旱区的适应策略, 提高黄土地区植被建设效益, 该研究对该地区典型乔灌木短期水分利用效率随环境因子的变化进行了探究。以典型乔木油松(Pinus tabuliformis)、刺槐(Robinia pseudoacacia)及其林下灌木黄刺玫(Rosa xanthina)、杠柳(Periploca sepium)为研究对象, 测定叶片可溶性糖稳定碳同位素比值(δ13Cleaf)与枝条渗出液稳定碳同位素比值(δ13Cbranch), 使用δ13Cleaf推导计算7-10月叶片尺度下植物短期水分利用效率(WUEleaf)变化趋势, 使用δ13Cbranch明确植物光合作用后分馏情况, 确定半干旱区植物在生长季的水分变化规律对环境因子变化的响应。结果表明: (1) 7-10月4种植物δ13Cleaf总体呈现降低趋势, δ13Cbranch呈现先升高后降低趋势。δ13Cleaf在种间和生活型中均存在差异。具体表现为: 灌木>乔木, 常绿乔木(油松) >落叶乔木(刺槐)。研究过程中未发现明显的碳同位素在光合作用后发生分馏的情况。(2) 4种植物WUEleaf在7-8月保持稳定, 9-10月逐渐升高。21.5 ℃、0.9 kPa、52.4%分别为WUEleaf随温度(Ta)、饱和水汽压差(VPD)、相对湿度(RH)变化的突变点, 突变点之后4种植物WUEleaf均表现出稳定的变化趋势, 不再随Ta、VPD、RH升高而降低。(3) WUEleaf与Ta、RH、VPD之间存在显著负相关关系, Ta通过非气孔因素, 即酶的作用改变光合速率, 引起WUEleaf变化。RH、VPD等水分因子则通过改变气孔开度, 影响蒸腾, 进而改变WUEleaf。随着土壤含水量(SWC)的升高, WUEleaf呈现先升高后降低的趋势。油松林和刺槐林在SWC分别达到15%-18%、13%-14%时, WUEleaf达到最高值。经过混合线性模型(LMM)分析得到, 油松和刺槐WUEleaf主导环境因子分别为RH和VPD, 黄刺玫和杠柳WUEleaf主导环境因子均为Ta。该研究得到了黄土地区典型乔灌木生长季水分利用效率变化的规律和主要环境影响因子, 明确了黄土地区植物对气候因子变化的适应机制。
韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应. 植物生态学报, 2021, 45(12): 1350-1364. DOI: 10.17521/cjpe.2021.0220
HAN Lu, YANG Fei, WU Ying-Ming, NIU Yun-Ming, ZENG Yi-Ming, CHEN Li-Xin. Responses of short-term water use efficiency to environmental factors in typical trees and shrubs of the loess area in West Shanxi, China. Chinese Journal of Plant Ecology, 2021, 45(12): 1350-1364. DOI: 10.17521/cjpe.2021.0220
样地编号 Plot No. | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) | 海拔 Altitude (m) | 林分密度 Stand density (tree·hm-2) | 坡度 Slope gradient (°) |
---|---|---|---|---|---|
PTF 1 | 12.38 ± 3.49 | 7.04 ± 1.04 | 1 140 | 1 050 | 32 |
PTF 2 | 13.38 ± 2.13 | 7.29 ± 0.96 | 1 130 | 1 325 | 27 |
PTF 3 | 13.88 ± 2.47 | 7.94 ± 1.03 | 1 120 | 1 100 | 29 |
RPF 1 | 10.08 ± 4.33 | 8.29 ± 1.89 | 1 120 | 1 675 | 20 |
RPF 2 | 10.68 ± 2.56 | 9.28 ± 1.20 | 1 120 | 1 425 | 20 |
RPF 3 | 9.41 ± 2.71 | 8.20 ± 2.23 | 1 130 | 1 475 | 21 |
表1 晋西黄土区典型乔灌木样地基本信息表(平均值±标准差)
Table 1 Basic information of sampling plots for typical trees and shrubs in the loess area of West Shanxi (mean ± SD)
样地编号 Plot No. | 胸径 Diameter at breast height (cm) | 树高 Tree height (m) | 海拔 Altitude (m) | 林分密度 Stand density (tree·hm-2) | 坡度 Slope gradient (°) |
---|---|---|---|---|---|
PTF 1 | 12.38 ± 3.49 | 7.04 ± 1.04 | 1 140 | 1 050 | 32 |
PTF 2 | 13.38 ± 2.13 | 7.29 ± 0.96 | 1 130 | 1 325 | 27 |
PTF 3 | 13.88 ± 2.47 | 7.94 ± 1.03 | 1 120 | 1 100 | 29 |
RPF 1 | 10.08 ± 4.33 | 8.29 ± 1.89 | 1 120 | 1 675 | 20 |
RPF 2 | 10.68 ± 2.56 | 9.28 ± 1.20 | 1 120 | 1 425 | 20 |
RPF 3 | 9.41 ± 2.71 | 8.20 ± 2.23 | 1 130 | 1 475 | 21 |
种名 Species | 株高 Shrub height (m) | 基径 Shrub diameter (cm) | 盖度 Coverage (%) | 冠幅长度 Crown length (m) | 冠幅宽度 Crown width (m) |
---|---|---|---|---|---|
黄刺玫 Rosa xanthina | 1.05 ± 0.19 | 0.51 ± 0.08 | 26.60 ± 0.07 | 2.43 ± 0.13 | 2.30 ± 0.16 |
杠柳 Periploca sepium | 0.53 ± 0.09 | 0.35 ± 0.10 | 16.81 ± 0.04 | 1.30 ± 0.07 | 1.23 ± 0.06 |
表2 晋西黄土区灌木基本信息(平均值±标准差)
Table 2 Basic information of shrubs in the loess area of West Shanxi (mean ± SD)
种名 Species | 株高 Shrub height (m) | 基径 Shrub diameter (cm) | 盖度 Coverage (%) | 冠幅长度 Crown length (m) | 冠幅宽度 Crown width (m) |
---|---|---|---|---|---|
黄刺玫 Rosa xanthina | 1.05 ± 0.19 | 0.51 ± 0.08 | 26.60 ± 0.07 | 2.43 ± 0.13 | 2.30 ± 0.16 |
杠柳 Periploca sepium | 0.53 ± 0.09 | 0.35 ± 0.10 | 16.81 ± 0.04 | 1.30 ± 0.07 | 1.23 ± 0.06 |
图1 晋西黄土区研究区观测期间环境因子变化。由于测定太阳辐射的气象站于9月份进行维修, 故B中太阳净辐射缺失9月部分数据和10月全部数据。
Fig. 1 Variations of environmental factors during the observation period in the study area in the loess area of West Shanxi. Since the weather station for measuring solar radiation was repaired in September, the net solar radiation in B missed part of the data for September and all the data for October. PTF, Pinus tabuliformis forest; RPF, Robinia pseudoacacia forest.
月份 Month | 温度 Temperature (℃) | n | 太阳净辐射 Solar radiation (μmol·m-2·s-1) | n | 相对湿度 Relative humidity (%) | n | 饱和水汽压差 Vapor pressure difference (kPa) | n |
---|---|---|---|---|---|---|---|---|
7 | 24.66 ± 2.84a | 22 | 304.45 ± 117.92a | 22 | 69.38 ± 7.25a | 22 | 0.97 ± 0.32a | 22 |
8 | 23.14 ± 2.71b | 31 | 331.81 ± 114.69a | 31 | 72.37 ± 9.57a | 31 | 0.81 ± 0.33ab | 31 |
9 | 17.37 ± 2.14c | 30 | 345.06 ± 39.74a | 9 | 59.19 ± 8.86b | 30 | 0.82 ± 0.21b | 30 |
10 | 13.12 ± 3.10d | 6 | - | 0 | 55.94 ± 10.70b | 6 | 0.65 ± 0.10b | 6 |
表3 晋西黄土区不同月份之间气象因子单因素方差分析(平均值±标准差)
Table 3 One way ANOVA of meteorological factors in different months in the loess area of West Shanxi (mean ± SD)
月份 Month | 温度 Temperature (℃) | n | 太阳净辐射 Solar radiation (μmol·m-2·s-1) | n | 相对湿度 Relative humidity (%) | n | 饱和水汽压差 Vapor pressure difference (kPa) | n |
---|---|---|---|---|---|---|---|---|
7 | 24.66 ± 2.84a | 22 | 304.45 ± 117.92a | 22 | 69.38 ± 7.25a | 22 | 0.97 ± 0.32a | 22 |
8 | 23.14 ± 2.71b | 31 | 331.81 ± 114.69a | 31 | 72.37 ± 9.57a | 31 | 0.81 ± 0.33ab | 31 |
9 | 17.37 ± 2.14c | 30 | 345.06 ± 39.74a | 9 | 59.19 ± 8.86b | 30 | 0.82 ± 0.21b | 30 |
10 | 13.12 ± 3.10d | 6 | - | 0 | 55.94 ± 10.70b | 6 | 0.65 ± 0.10b | 6 |
图2 晋西黄土区典型乔灌木不同月份各植物种胞间CO2浓度(Ci)变化。Ps, 杠柳; Pt, 油松; Rp, 刺槐; Rx, 黄刺玫。
Fig. 2 Changes in intercellular CO2 concentration (Ci) of different plant species in different months in typical trees and shrubs in the loess area of West Shanxi. Ps, Periploca sepium; Pt, Pinus tabuliformis; Rp, Robinia pseudoacacia; Rx, Rosa xanthina.
图3 晋西黄土区观测期间不同植物叶片可溶性糖稳定碳同位素比值(δ13Cleaf)与枝条渗出液稳定碳同位素比值(δ13Cbranch)变化情况(平均值±标准差)。
Fig. 3 Changes in the stable carbon isotope of soluble sugars in leaves (δ13Cleaf) and phloem in branches (δ13Cbranch) of different plants during the observation period in the loess area of West Shanxi (mean ± SD).
图4 7-10月晋西黄土区不同植物种叶片、枝条稳定碳同位素比值(δ13C)箱形图。*, p < 0.05; **, p < 0.01。
Fig. 4 Box plots of the stable carbon isotope ratios (δ13C) of leaves and branches for different tree species in the loess area of West Shanxi from July to October. *, p < 0.05; **, p < 0.01.
图5 晋西黄土区观测期间不同植物种短期水分利用效率(WUEleaf)及气孔限制值(Ls)变化(平均值±标准差)。
Fig. 5 Changes in the short-term water use efficiency (WUEleaf) and stomatal limit values (Ls) of different plant species during the observation period in the loess area of West Shanxi (mean ± SD).
图6 7-10月晋西黄土区不同植物种短期水分利用效率(WUEleaf)箱形图。Ps, 杠柳; Pt, 油松; Rp, 刺槐; Rx, 黄刺玫。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 6 Box plots of the short-term water use efficiency (WUEleaf) for different tree species in the loess area of West Shanxi from July to October. Ps, Periploca sepium; Pt, Pinus tabuliformis; Rp, Robinia pseudoacacia; Rx, Rosa xanthina. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图7 晋西黄土区短期水分利用效率(WUEleaf)随日平均气温(Ta)(A)、相对湿度(RH)(B)、饱和水汽压差(VPD)(C)和土壤含水量(SWC)(D)变化趋势(平均值±标准差)。Ps, 杠柳; Pt, 油松; Rp, 刺槐; Rx, 黄刺玫。
Fig. 7 Trends of changes in the short-term water use efficiency (WUEleaf) with temperature (Ta)(A), relative humidity (RH)(B), vapor pressure deficit (VPD)(C) and soil water content (SWC)(D) in the loess area of West Shanxi (mean ± SD). Ps, Periploca sepium; Pt, Pinus tabuliformis; Rp, Robinia pseudoacacia; Rx, Rosa xanthina.
模型固定因子 Model fixed factors | 油松 Pinus tabuliformis | 黄刺玫 Rosa xanthina | 刺槐 Robinia pseudoacacia | 杠柳 Periploca sepium |
---|---|---|---|---|
Ta + RH | - | 0.19 | 7.99 | 5.24 |
P + VPD | - | 4.38 | 3.83 | 2.34 |
Rn + VPD | 5.51 | - | 9.75 | 16.07 |
P + Rn + VPD | - | 5.03 | 4.13 | 2.98 |
Ta + P + SWC | 9.83 | 2.22 | - | 0.00 |
Ta + Rn + SWC | 2.38 | 6.11 | 7.50 | 5.01 |
P + RH + SWC | 0.00 | - | 433.28 | - |
Ta + RH + SWC | - | 0.00 | 8.89 | 6.80 |
Ta + VPD + SWC | - | 3.16 | 8.84 | 4.45 |
P + VPD + SWC | - | 2.73 | 0.00 | 2.15 |
Rn + VPD + SWC | 5.43 | - | 11.74 | 16.01 |
RH + VPD + SWC | 12.76 | 12.84 | 28.29 | 19.72 |
表4 晋西黄土区4种植物短期水分利用效率(WUEleaf)不同混合线性模型中赤池信息准则(AIC)差值(计算模型的AIC与最低AIC的差值)
Table 4 Difference in Akaike information criterion (AIC)(difference between AIC of the calculated model and the lowest AIC) in different mixed linear models for short-term water use efficiency (WUEleaf) of four plant species in the loess area of West Shanxi
模型固定因子 Model fixed factors | 油松 Pinus tabuliformis | 黄刺玫 Rosa xanthina | 刺槐 Robinia pseudoacacia | 杠柳 Periploca sepium |
---|---|---|---|---|
Ta + RH | - | 0.19 | 7.99 | 5.24 |
P + VPD | - | 4.38 | 3.83 | 2.34 |
Rn + VPD | 5.51 | - | 9.75 | 16.07 |
P + Rn + VPD | - | 5.03 | 4.13 | 2.98 |
Ta + P + SWC | 9.83 | 2.22 | - | 0.00 |
Ta + Rn + SWC | 2.38 | 6.11 | 7.50 | 5.01 |
P + RH + SWC | 0.00 | - | 433.28 | - |
Ta + RH + SWC | - | 0.00 | 8.89 | 6.80 |
Ta + VPD + SWC | - | 3.16 | 8.84 | 4.45 |
P + VPD + SWC | - | 2.73 | 0.00 | 2.15 |
Rn + VPD + SWC | 5.43 | - | 11.74 | 16.01 |
RH + VPD + SWC | 12.76 | 12.84 | 28.29 | 19.72 |
树种 Species | 固定因子 Fixed factor | R2 | 方差解释量占比 Percentage of variance explained (%) | p |
---|---|---|---|---|
黄刺玫 Rosa xanthina | Ta | 0.497 | 54.33 | 0.000*** |
RH | 0.447 | 48.84 | 0.837 | |
SWC | 0.005 | 0.57 | 0.352 | |
杠柳 Periploca sepium | Ta | 0.851 | 88.74 | 0.000 *** |
SWC | 0.006 | 0.57 | 0.946 | |
P | 0.120 | 12.50 | 0.249 | |
油松 Pinus tabuliformis | RH | 0.769 | 84.12 | 0.000*** |
SWC | 0.019 | 2.06 | 0.167 | |
P | 0.145 | 15.91 | 0.078 | |
刺槐 Robinia pseudoacacia | VPD | 0.637 | 68.91 | 0.000*** |
SWC | 0.044 | 4.71 | 0.032* | |
P | 0.276 | 29.78 | 0.000*** |
表5 晋西黄土区4种植物短期水分利用效率(WUEleaf)不同混合线性模型贡献率比较
Table 5 Comparision of contributions by different linear mixed models for short-term water use efficiency (WUEleaf) of the four plant species in the loess area of West Shanxi
树种 Species | 固定因子 Fixed factor | R2 | 方差解释量占比 Percentage of variance explained (%) | p |
---|---|---|---|---|
黄刺玫 Rosa xanthina | Ta | 0.497 | 54.33 | 0.000*** |
RH | 0.447 | 48.84 | 0.837 | |
SWC | 0.005 | 0.57 | 0.352 | |
杠柳 Periploca sepium | Ta | 0.851 | 88.74 | 0.000 *** |
SWC | 0.006 | 0.57 | 0.946 | |
P | 0.120 | 12.50 | 0.249 | |
油松 Pinus tabuliformis | RH | 0.769 | 84.12 | 0.000*** |
SWC | 0.019 | 2.06 | 0.167 | |
P | 0.145 | 15.91 | 0.078 | |
刺槐 Robinia pseudoacacia | VPD | 0.637 | 68.91 | 0.000*** |
SWC | 0.044 | 4.71 | 0.032* | |
P | 0.276 | 29.78 | 0.000*** |
[1] |
Beer C, Ciais P, Reichstein M, Baldocchi D, Law BE, Papale D, Soussana JF, Ammann C, Buchmann N, Frank D, Gianelle D, Janssens IA, Knohl A, Köstner B, Moors E, et al. (2009). Temporal and among-site variability of inherent water use efficiency at the ecosystem level. Global Biogeochemical Cycles, 23, GB2018. DOI: 10.1029/2008GB003233.
DOI |
[2] | Berry JA, Downton WJS (1982). Photosynthesis. Academic Press, New York. 263-343. |
[3] |
Bögelein R, Lehmann MM, Thomas FM (2019). Differences in carbon isotope leaf-to-phloem fractionation and mixing patterns along a vertical gradient in mature European beech and Douglas fir. New Phytologist, 222, 1803-1815.
DOI PMID |
[4] | Cao SK, Feng Q, Si JH, Chang ZQ, Zhuomacuo, Xi HY, Su YH (2009). Summary on the plant water use efficiency at leaf level. Acta Ecologica Sinica, 29, 3882-3892. |
[ 曹生奎, 冯起, 司建华, 常宗强, 卓玛错, 席海洋, 苏永红 (2009). 植物叶片水分利用效率研究综述. 生态学报, 29, 3882-3892.] | |
[5] | Chang EH, Li P, Zhang TG, Xiao L, Xu GC, Zhao BH, Zhang Y (2016). Root systems distribution and water use pattern of vegetation from abandoned croplands during dry and wet season in Loess Hilly Region. Transactions of the Chinese Society of Agricultural Engineering, 32, 129-138. |
[ 常恩浩, 李鹏, 张铁钢, 肖列, 徐国策, 赵宾华, 张祎 (2016). 旱季雨季对黄土丘陵退耕区植被根系分布及水分利用的影响. 农业工程学报, 32, 129-138.] | |
[6] | Chen GL, Pang DB, Ma JP, Wan HY, Wang JF, Li JY, Chen L, Li XB (2021). Study on photosynthesis and water use efficiency of ten typical plants in Helan Mountain. Acta Botanica Boreali-Occidentalia Sinica, 41, 290-299. |
[ 陈高路, 庞丹波, 马进鹏, 万红云, 王继飞, 李静尧, 陈林, 李学斌 (2021). 贺兰山10种典型植物光合及水分利用效率特征研究. 西北植物学报, 41, 290-299.] | |
[7] | Diao HY, Wang AZ, Yuan FH, Guan DX, Sun Y, Wu JB (2020). Applications of compound-specific isotope analysis in tree non-structural carbohydratesresearch: a review. Chinese Journal of Applied Ecology, 31, 4291-4300. |
[ 刁浩宇, 王安志, 袁凤辉, 关德新, 孙雨, 吴家兵 (2020). 特定化合物同位素分析技术在树木非结构性碳水化合物研究中的应用. 应用生态学报, 31, 4291-4300.] | |
[8] |
Farquhar GD, Ehleringer JR, Hubick KT (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503-537.
DOI URL |
[9] |
Farquhar GD, O’Leary MH, Berry JA (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Functional Plant Biology, 9, 121-137.
DOI URL |
[10] |
Feng XH (1998). Long-term ci/ca response of trees in western North America to atmospheric CO2concentration derived from carbon isotope chronologies. Oecologia, 117, 19-25.
DOI URL |
[11] |
Franks PJ, Adams MA, Amthor JS, Barbour MM, Berry JA, Ellsworth DS, Farquhar GD, Ghannoum O, Lloyd J, McDowell N, Norby RJ, Tissue DT, von Caemmerer S (2013). Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytologist, 197, 1077-1094.
DOI PMID |
[12] |
Gessler A, Rennenberg H, Keitel C (2004). Stable isotope composition of organic compounds transported in the phloem of European beech-evaluation of different methods of phloem sap collection and assessment of gradients in carbon isotope composition during leaf-to-stem transport. Plant Biology, 6, 721-729.
PMID |
[13] |
Geßler A, Schrempp S, Matzarakis A, Mayer H, Rennenberg H, Adams MA (2001). Radiation modifies the effect of water availability on the carbon isotope composition of beech (Fagus sylvatica). New Phytologist, 150, 653-664.
DOI URL |
[14] |
Gimeno TE, Crous KY, Cooke J, O’Grady AP, Ósvaldsson A, Medlyn BE, Ellsworth DS (2016). Conserved stomatal behaviour under elevated CO2 and varying water availability in a mature woodland. Functional Ecology, 30, 700-709.
DOI URL |
[15] |
Hebbar KB, Apshara E, Chandran KP, Prasad PVV (2020). Effect of elevated CO2, high temperature, and water deficit on growth, photosynthesis, and whole plant water use efficiency of cocoa (Theobroma cacao L.). International Journal of Biometeorology, 64, 47-57.
DOI PMID |
[16] | Jin X, Chen LH (2019). Soil anti-scourability and root distribution characteristics in surface soil under different vegetation types in the loess region of western Shanxi Province. Journal of Soil and Water Conservation, 33, 121-126. |
[ 金晓, 陈丽华 (2019). 晋西黄土区不同植被类型土壤抗冲性及表层根系分布特征. 水土保持学报, 33, 121-126.] | |
[17] |
Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499, 324-327.
DOI URL |
[18] | Li J, Zhu QK, Guo XP (2007). Effects of different soil water conditions on physiological characteristics and biomass of young pear tree. Bulletin of Soil and Water Conservation, 27, 79-82. |
[ 李洁, 朱清科, 郭小平 (2007). 不同土壤水分对幼龄梨树生理特性及生物量的影响. 水土保持通报, 27, 79-82.] | |
[19] | Li JM, Huang RZ, Wang J, Zheng HZ, Huang W (2009). Water use efficiency of terrestrial plants: a review. Chinese Journal of Ecology, 28, 1655-1663. |
[ 李机密, 黄儒珠, 王健, 郑怀舟, 黄玮 (2009). 陆生植物水分利用效率. 生态学杂志, 28, 1655-1663.] | |
[20] | Li MC, Luo TX, Liu XS, Kong GQ (2007). Distribution characteristics of δ13C values in different organs of Abies georgei growing at alpine timberline. Chinese Journal of Applied Ecology, 18, 2654-2660. |
[ 李明财, 罗天祥, 刘新圣, 孔高强 (2007). 高山林线急尖长苞冷杉不同器官的稳定碳同位素组成分布特征. 应用生态学报, 18, 2654-2660.] | |
[21] | Li Q, Zhao CZ, Wang JW, Zhao LC, Xu T, Han L (2017). Relationship analysis between specific leaf area and water use efficiency of Phragmites australis in the Zhangye wetland. Acta Ecologica Sinica, 37, 4956-4962. |
[ 李群, 赵成章, 王继伟, 赵连春, 徐婷, 韩玲 (2017). 张掖湿地芦苇比叶面积和水分利用效率的关系. 生态学报, 37, 4956-4962.] | |
[22] | Li YY, Shi H, Shao MA (2010). Leaf water use efficiency and its relationship with hydraulic characteristics in eight dominant trees and shrubs in loess hilly area during vegetation succession. Scientia Silvae Sinicae, 46(2), 67-73. |
[ 李秧秧, 石辉, 邵明安 (2010). 黄土丘陵区乔灌木叶水分利用效率及与水力学特性关系. 林业科学, 46(2), 67-73.] | |
[23] | Lin GH (2013). Stable Isotope Ecology. Higher Education Press, Beijing. 141. |
[ 林光辉 (2013). 稳定同位素生态学. 高等教育出版社, 北京. 141.] | |
[24] | Liu MX, Xia SJ, Mu RL, Nan XN, Li QD, Jiang XX (2020). Seasonal variation of photosynthetic characteristics of three typical green plant species in central Loess Plateau. Chinese Journal of Ecology, 39, 4098-4109. |
[ 刘旻霞, 夏素娟, 穆若兰, 南笑宁, 李全弟, 蒋晓轩 (2020). 黄土高原中部三种典型绿化植物光合特性的季节变化. 生态学杂志, 39, 4098-4109.] | |
[25] | Liu XY, Li JY, Zhai HB, Zhu GB (2003). Discussion on drought resistance through hydraulic architecture of trees. Journal of Beijing Forestry University, 25(3), 48-54. |
[ 刘晓燕, 李吉跃, 翟洪波, 朱国彬 (2003). 从树木水力结构特征探讨植物耐旱性. 北京林业大学学报, 25(3), 48-54.] | |
[26] | Lu WW, Yu XX, Jia GD, Li HZ, Liu ZQ (2018). Response of stable carbon isotope of tree-ring to temperature and precipitation changes in Pinus tabulaeformis in Miyun mountain area. Scientia Silvae Sinicae, 54(3), 1-7. |
[ 路伟伟, 余新晓, 贾国栋, 李瀚之, 刘自强 (2018). 密云山区油松树轮δ13C对气温和降水量变化的响应. 林业科学, 54(3), 1-7.] | |
[27] |
Lu YX, Wang ZX, Zheng HZ, Zhu JM (2012). δ13C values of stem phloem water soluble sugars of Pinus massoniana and Cunninghamia lanceolata response to meteorological factors. Acta Ecologica Sinica, 32, 2466-2473.
DOI URL |
[ 卢钰茜, 王振兴, 郑怀舟, 朱锦懋 (2012). 马尾松和杉木树干韧皮部水溶性糖δ13C值对气象因子的响应. 生态学报, 32, 2466-2473.] | |
[28] | Luo YY, Zhao XY, Huang YX, Su N, Feng J (2009). Research progress on plant water use efficiency and its measuring methods. Journal of Desert Research, 29, 648-655. |
[ 罗亚勇, 赵学勇, 黄迎新, 苏娜, 冯静 (2009). 植物水分利用效率及其测定方法研究进展. 中国沙漠, 29, 648-655.] | |
[29] |
Marchand W, Girardin MP, Hartmann H, Depardieu C, Isabel N, Gauthier S, Boucher É, Bergeron Y (2020). Strong overestimation of water-use efficiency responses to rising CO2 in tree-ring studies. Global Change Biology, 26, 4538-4558.
DOI URL |
[30] |
Martínez-Sancho E, Dorado-Liñán I, Gutiérrez-Merino E, Matiu M, Helle G, Heinrich I, Menzel A (2018). Increased water-use efficiency translates into contrasting growth patterns of Scots pine and sessile oak at their southern distribution limits. Global Change Biology, 24, 1012-1028.
DOI PMID |
[31] |
Mathias JM, Thomas RB (2021). Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO2 and modulated by climate and plant functional types. Proceedings of the National Academy of Sciences of the United States of America, 118, e2014286118. DOI: 10.173/pnas.2014286118.
DOI |
[32] |
Medlyn BE, de Kauwe MD, Lin YS, Knauer J, Duursma RA, Williams CA, Arneth A, Clement R, Isaac P, Limousin JM, Linderson ML, Meir P, Martin-Stpaul N, Wingate L (2017). How do leaf and ecosystem measures of water-use efficiency compare? New Phytologist, 216, 758-770.
DOI URL |
[33] |
Moreno-Gutiérrez C, Dawson TE, Nicolás E, Querejeta JI (2012). Isotopes reveal contrasting water use strategies among coexisting plant species in a Mediterranean ecosystem. New Phytologist, 196, 489-496.
DOI PMID |
[34] | Nijat M, Dai Y, Shi QD, Li T, Bayi X, Abudureyimu A (2020). Response of foliar δ13C in Populus euphratica and Tamarix sp. to different groundwater depths in the oasis of desert hinterland. Chinese Journal of Applied Ecology, 31, 1083-1087. |
[ 麦尔哈巴•尼加提, 戴岳, 师庆东, 李涛, 肖合来提•巴义, 安外尔•阿布杜热伊木 (2020). 沙漠腹地天然绿洲胡杨和柽柳叶片δ13C值对不同地下水埋深的响应. 应用生态学报, 31, 1083-1087.] | |
[35] |
Niu SL, Xing XR, Zhang Z, Xia JY, Zhou XH, Song B, Li LH, Wan SQ (2011). Water-use efficiency in response to climate change: from leaf to ecosystem in a temperate steppe. Global Change Biology, 17, 1073-1082.
DOI URL |
[36] |
Rahman M, Islam M, Gebrekirstos A, Bräuning A (2019). Trends in tree growth and intrinsic water-use efficiency in the tropics under elevated CO2 and climate change. Trees, 33, 623-640.
DOI URL |
[37] |
Ren SJ, Yu GR (2011). Carbon isotope composition (δ13C) of C3 plants and water use efficiency in China. Chinese Journal of Plant Ecology, 35, 119-124.
DOI URL |
[ 任书杰, 于贵瑞 (2011). 中国区域478种C3植物叶片碳稳定性同位素组成与水分利用效率. 植物生态学报, 35, 119-124.]
DOI |
|
[38] |
Schäfer C, Grams T, Rötzer T, Feldermann A, Pretzsch H (2017). Drought stress reaction of growth and Δ13C in tree rings of European beech and Norway spruce in monospecific versus mixed stands along a precipitation gradient. Forests, 8, 177-193.
DOI URL |
[39] | Tong CY, Wang ZL, Zhang DF, Fan GH (2020). Effects of soil moisture content and light intensity on the photosynthetic characteristics of Picea crassifolia. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 41, 22-26. |
[ 童翠芸, 王占林, 张得芳, 樊光辉 (2020). 土壤水分含量和光照强度对青海云杉光合特性的影响. 内蒙古农业大学学报(自然科学版), 41, 22-26.] | |
[40] |
Wang C, Liu DW, Luo WT, Fang YT, Wang XB, Lü X, Jiang Y, Han XG, Bai E (2016). Variations in leaf carbon isotope composition along an arid and semi-arid grassland transect in northern China. Journal of Plant Ecology, 9, 576-585.
DOI URL |
[41] |
Wang Y, del Campo AD, Wei XH, Winkler R, Liu WY, Li Q (2020). Responses of forest carbon and water coupling to thinning treatments from leaf to stand scales in a young montane pine forest. Carbon Balance and Management, 15, 24.
DOI URL |
[42] | Wang YN, Xiong W, Wang YH, Yu PT, Xu LH, Zuo HJ, Cao GX, Sun H (2012). A review on leaf water use efficiency of major trees species in arid and semi-arid area. World Forestry Research, 25(2), 17-23. |
[ 王云霓, 熊伟, 王彦辉, 于澎涛, 徐丽宏, 左海军, 曹恭祥, 孙浩 (2012). 干旱半干旱地区主要树种叶片水分利用效率研究综述. 世界林业研究, 25(2), 17-23.] | |
[43] | Wang YT, Li JY, Liu P, Chen C, He CX (2010). Seasonal differences in leaf carbon isotope composition among landscaping species of different life forms in Beijing, China. Chinese Journal of Plant Ecology, 34, 151-159. |
[ 王玉涛, 李吉跃, 刘平, 陈崇, 何春霞 (2010). 不同生活型绿化植物叶片碳同位素组成的季节特征. 植物生态学报, 34, 151-159.]
DOI |
|
[44] |
Wu X, Chen YM, Tang YK (2015). Sap flow characteristics and its responses to precipitation in Robinia pseudoacacia and Platycladus orientalis plantations. Chinese Journal of Plant Ecology, 39, 1176-1187.
DOI URL |
[ 吴旭, 陈云明, 唐亚坤 (2015). 黄土丘陵区刺槐和侧柏人工林树干液流特征及其对降水的响应. 植物生态学报, 39, 1176-1187.]
DOI |
|
[45] | Xie HC, Jiang ZL (2010). Dynamics of WUE of Quercus variabilis. Journal of Anhui Agricultural Sciences, 38, 14372-14373. |
[ 谢会成, 姜志林 (2010). 栓皮栎水分利用效率的动态变化. 安徽农业科学, 38, 14372-14373.] | |
[46] | Yu XY, Chi LJ, Mao YL (2014). A preliminary study on 13C enrichment of in Cunninghamia lanceolata using pulse labeling technique. Journal of Nuclear Agricultural Sciences, 28, 1473-1477. |
[ 于晓燕, 池丽娟, 毛艳玲 (2014). 应用脉冲标记法对杉木富集13C技术的初步研究. 核农学报, 28, 1473-1477.] | |
[47] | Yu YH, Cheng W, Yang DL, Zhong XP (2018). Carbon stable isotopic characteristics of organic matter in the leaf-litter- soil continuum of dominant tree species in a secondary forest in northwestern Guizhou. Acta Ecologica Sinica, 38, 8733-8740. |
[ 喻阳华, 程雯, 杨丹丽, 钟欣平 (2018). 黔西北次生林优势树种叶片-凋落物-土壤连续体有机质碳稳定同位素特征. 生态学报, 38, 8733-8740.] | |
[48] | Zhang GL, Li YQ, Luo XQ, Mo C (2021). Change of water use efficiency of different species in karst secondary forest under seasonal drought. Earth and Environment, 49, 25-31. |
[ 张桂玲, 李艳琴, 罗绪强, 莫愁 (2021). 季节性干旱下喀斯特次生林不同树种水分利用效率变化. 地球与环境, 49, 25-31.] | |
[49] |
Zhang YE, Yu XX, Chen LH, Jia GD, Zhao N, Li HZ, Chang XM (2017). Foliar water use efficiency of Platycladus orientalis sapling under different soil water contents. Chinese Journal of Applied Ecology, 28, 2149-2154.
DOI PMID |
[ 张永娥, 余新晓, 陈丽华, 贾国栋, 赵娜, 李瀚之, 常晓敏 (2017). 不同土壤含水量下侧柏幼树叶片水分利用效率. 应用生态学报, 28, 2149-2154.]
PMID |
|
[50] | Zhao DY, Bi HX, Hou GR, Cui YH, Wang N, Wang SS, Ma XZ, Feng X (2021). Soil moisture dynamics of typical plantation in loess region of west Shanxi. Journal of Soil and Water Conservation, 35, 181-187. |
[ 赵丹阳, 毕华兴, 侯贵荣, 崔艳红, 王宁, 王珊珊, 马晓至, 冯星 (2021). 晋西黄土区典型林地土壤水分变化特征. 水土保持学报, 35, 181-187.] | |
[51] | Zhao N, Li SN, Xu XT, Wang WN, Lu SW (2021). Water use efficiency and its influencing factors of typical greening tree species in Beijing region. Journal of Beijing Forestry University, 43(3), 44-53. |
[ 赵娜, 李少宁, 徐晓天, 王伟娜, 鲁绍伟 (2021). 北京地区典型绿化树种水分利用效率及其影响因素. 北京林业大学学报, 43(3), 44-53.] |
[1] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[3] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[4] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[5] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
[6] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[7] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[8] | 葛体达, 王东东, 祝贞科, 魏亮, 魏晓梦, 吴金水. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 2020, 44(4): 360-372. |
[9] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[10] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[11] | 冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018, 42(4): 453-465. |
[12] | 徐婷, 赵成章, 韩玲, 冯威, 段贝贝, 郑慧玲. 张掖湿地旱柳叶脉密度与水分利用效率的关系[J]. 植物生态学报, 2017, 41(7): 761-769. |
[13] | 刘晓, 戚超, 闫艺兰, 袁国富. 不同生态系统水分利用效率指标在黄土高原半干旱草地应用的适宜性评价[J]. 植物生态学报, 2017, 41(5): 497-505. |
[14] | 黄小涛, 罗格平. 新疆草地蒸散与水分利用效率的时空特征[J]. 植物生态学报, 2017, 41(5): 506-518. |
[15] | 王丹, 乔匀周, 董宝娣, 葛静, 杨萍果, 刘孟雨. 昼夜不对称性与对称性升温对大豆产量和水分利用的影响[J]. 植物生态学报, 2016, 40(8): 827-833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19