植物生态学报 ›› 2016, Vol. 40 ›› Issue (8): 827-833.DOI: 10.17521/cjpe.2015.0439
王丹1,2, 乔匀周2, 董宝娣2, 葛静1, 杨萍果1,,A;*(), 刘孟雨2
出版日期:
2016-08-10
发布日期:
2016-08-23
通讯作者:
杨萍果
基金资助:
Dan WANG1,2, Yun-Zhou QIAO2, Bao-Di DONG2, Jing GE1, Ping-Guo YANG1,*(), Meng-Yu LIU2
Online:
2016-08-10
Published:
2016-08-23
Contact:
Ping-Guo YANG
摘要:
全球气候变暖并不是白天和夜间的平均变暖, 而是呈现一定的不对称性。大豆(Glycine max)是世界范围内种植较广泛的豆科作物, 也是中国重要的粮食作物。研究大豆的生长与水分利用对不对称性气候变暖的响应, 可为预测未来气候变暖情景下大豆的适应提供科学的参考依据。该实验在人工气候箱中采用盆栽方式进行, 设立对照(CON, 昼26 ℃夜16 ℃)、对称性升温(ETs, 昼夜均升高3 ℃)和不对称性升温(ETa, 昼升高2 ℃, 夜升高4 ℃)三个温度情景, 研究了大豆产量和水分利用对昼夜不对称性与对称性升温的差异性响应。结果表明: 在昼/夜26 ℃/16 ℃的背景下, 1) ETs对大豆产量影响不显著, 主要是因为生物量的增加缓解了收获指数下降对大豆的不利影响; ETa使大豆产量减少38.9%, 是由于大豆的收获指数和产量构成要素(荚数、粒数、百粒重)均显著降低。2) ETs对大豆全生育期蒸散量(ET)的影响不显著, ETa使大豆整个生育期ET减少14.8%。3)两种升温模式对大豆耗水量中蒸发量的影响都不显著, 耗水量的差异主要来自蒸腾量的差异, 其中ETs和ETa分别使大豆全生育期蒸腾量降低10.7%和26.1%。综上所述, 只针对ETs进行研究, 而没有对ETa进行研究的实验会低估真正的气候变暖情景(ETa)对大豆生长和产量的不利影响, 高估其对大豆耗水量的影响。
王丹, 乔匀周, 董宝娣, 葛静, 杨萍果, 刘孟雨. 昼夜不对称性与对称性升温对大豆产量和水分利用的影响. 植物生态学报, 2016, 40(8): 827-833. DOI: 10.17521/cjpe.2015.0439
Dan WANG, Yun-Zhou QIAO, Bao-Di DONG, Jing GE, Ping-Guo YANG, Meng-Yu LIU. Differential effects of diurnal asymmetric and symmetric warming on yield and water utilization of soybean. Chinese Journal of Plant Ecology, 2016, 40(8): 827-833. DOI: 10.17521/cjpe.2015.0439
处理 Treatment | 荚数 Pod number | 粒数 Seed number | 百粒重 100-seed weight (g) | 产量 Grain yield (g·plant-1) | 生物量 Biomass (g·plant-1) | 收获指数 Harvest index (%) |
---|---|---|---|---|---|---|
CON | 6.8 ± 0.66a | 1.76 ± 0.00a | 10.92 ± 3.15a | 1.31 ± 0.06a | 4.27 ± 0.85ab | 0.31 ± 0.07a |
ETa | 5.2 ± 0.12b | 1.60 ± 0.02b | 9.60 ± 1.72b | 0.80 ± 0.10b | 4.05 ± 0.79b | 0.20 ± 0.02c |
ETs | 6.6 ± 0.35a | 1.74 ± 0.05a | 10.75 ± 0.47a | 1.24 ± 0.06a | 4.58 ± 0.41a | 0.27 ± 0.01b |
表1 不对称与对称增温对大豆产量及其构成组分的影响(平均值±标准误差, n = 5)
Table 1 The effects of asymmetric and symmetric warming on yield and its components of soybean (mean ± SE, n = 5)
处理 Treatment | 荚数 Pod number | 粒数 Seed number | 百粒重 100-seed weight (g) | 产量 Grain yield (g·plant-1) | 生物量 Biomass (g·plant-1) | 收获指数 Harvest index (%) |
---|---|---|---|---|---|---|
CON | 6.8 ± 0.66a | 1.76 ± 0.00a | 10.92 ± 3.15a | 1.31 ± 0.06a | 4.27 ± 0.85ab | 0.31 ± 0.07a |
ETa | 5.2 ± 0.12b | 1.60 ± 0.02b | 9.60 ± 1.72b | 0.80 ± 0.10b | 4.05 ± 0.79b | 0.20 ± 0.02c |
ETs | 6.6 ± 0.35a | 1.74 ± 0.05a | 10.75 ± 0.47a | 1.24 ± 0.06a | 4.58 ± 0.41a | 0.27 ± 0.01b |
图1 不对称与对称升温对大豆全生育期蒸散(ET)、蒸发(E)和蒸腾(T)的影响(平均值±标准误差, n = 5)。ET = E + T。不同小写字母表示不同处理间差异显著(p < 0.05)。CON, 对照; ETa, 不对称升温; ETs, 对称升温。
Fig. 1 Effects of asymmetric and symmetric warming on whole stage evapotranspiration (ET), evaporation (E), transpiration (T) of soybean (mean ± SE, n = 5). ET = E + T. Different small letters indicate significant differences among different treatments (p < 0.05). CON, control; ETa, asymmetric warming; ETs, symmetric warming.
图2 不对称与对称升温对大豆不同时期叶片蒸腾速率和单株叶面积的影响(平均值±标准误差, n = 5)。图注同图1。
Fig. 2 Effects of asymmetric and symmetric warming on leaf transpiration rate and leaf area per plant of soybean at different growth period (mean ± SE, n = 5). Notes see Fig. 1.
图3 不对称与对称升温对大豆水分利用效率(WUE)和蒸腾效率(TE)的影响(平均值±标准误差, n = 5)。不同小写字母表示不同处理间差异显著(p < 0.05)。图注同图1。
Fig. 3 Effects of asymmetric and symmetric warming on water use efficiency (WUE) and transpiration efficiency (TE) of soybean (mean ± SE, n = 5). Different small letters indicate significant differences among different treatments (p < 0.05). Notes see Fig. 1.
[1] | Abou-Hussein SD (2012). Climate change and its impact on the productivity and quality of vegetable crops (review article). Journal of Applied Sciences Research, 8, 4359-4383. |
[2] | Brown RA, Rosenberg NJ (1997). Sensitivity of crop yield and water use to change in a range of climate factors and CO2 concentrations a simulation study applying EPCI to the central USA. Agricultural and Forest Meteorology, 83, 171-203. |
[3] | Chu YM, Yang J, Li JJ, Peng PH (2014). Three warming scenarios differentially affect themorphological plasticity of an invasive herb Alternanthera philoxeroides. Acta Ecologica Sinica, 34, 1411-1417. (in Chinese with English abstract)[褚延梅, 杨健, 李景吉, 彭培好 (2014). 三种增温情景对入侵植物空心莲子草形态可塑性的影响. 生态学报, 34, 1411-1417.] |
[4] | Dhakhwa GB, Campbell CL, Le Duc SK, Cooter EJ (1997). Maize growth: Assessing the effects of global warming and CO2 fertilization with crop models. Agricultural and Forest Meteorology, 87, 253-272. |
[5] | Dong WJ, Deng AX, Zhang B, Tian YL, Chen J, Yang F, Zhang WJ (2011). An experimental study on the effects of different diurnal warming regimes single cropping rice with free air temperature increased (ATI) facility. Journal of Ecology, 31, 2169-2177. (in Chinese with English abstract)[董文军, 邓艾兴, 张彬, 田云录, 陈金, 杨飞, 张卫健 (2011). 开放式昼夜不同增温对单季稻影响的实验研究. 生态学报, 31, 2169-2177.] |
[6] | Hao XY, Han X, Ju H, Lin RD (2010). Impact of climatic change on soybean production: A review. Chinese Journal of Applied Ecology, 21, 2697-2706. (in Chinese with English abstract)[郝兴宇, 韩雪, 居辉, 林而达 (2010). 气候变化对大豆影响的研究进展. 应用生态学报, 21, 2697-2706.] |
[7] | Hou WJ, Geng T, Chen Q, Chen CQ (2015). Impacts of climate warming on growth period and yield of rice in Northeast China during recent tow decades. Chinese Journal of Applied Ecology, 26, 249-259. (in Chinese with English abstract)[侯雯嘉, 耿婷, 陈群, 陈长青 (2015). 近20年气候变暖对东北水稻生育期和产量的影响. 应用生态学报, 26, 249-259.] |
[8] | IPCC (. Cited: 2007-12-17. |
[9] | Jiang XD, Su HB, Wang XM, Wan CJ, Hao MJ, Hao MJ (2014). Effect of asymmetric between day and night warming on soil moisture in wheat field. Journal of Irrigation and Drainage, 33(4/5), 283-286. (in Chinese with English abstract)[江晓东, 苏海报, 王晓梅, 万长健, 韩小梅, 郝鸣驹 (2014). 昼夜不对称增温对麦田土壤水分的影响. 灌溉排水学报, 33(4/5), 283-286.] |
[10] | Karl TR, Jones PD, Knight RW, Kukla G, Plummer N, Razuvayev V (1993). A new perspective on recent global warming asymmetric trends of daily maximum and minimum temperature. Bulletin of the American Meteorological Society, 74, 1007-1023. |
[11] | Klein JA, Harte J, Zhao XQ (2005). Dynamic and complex microclimate responses to warming and grazing manipulations. Global Change Biology, 11, 1440-1451. |
[12] | Lai SK, Zhuang ST, Wu YZ, Wang YX, Zhu JG, Yang LX, Wang YL (2015). Impact of elevated atmospheric CO2 concentration and tenperature on growth and development of super rice. China Journal of Ecology, 34, 1253-1262. (in Chinese with English abstract)[赖上坤, 庄时腾, 吴艳珍, 王云霞, 朱建国, 杨连新, 王余龙 (2015). 大气CO2浓度和温度升高对超级稻生长发育的影响. 生态学杂志, 34, 1253-1262.] |
[13] | Liu JD, Wang JS, Yu Q, Bi JJ (2002). Influence of temperature and concentration of CO2 on crop respiration. Agricultural Meteorology of China, 23(1), 1-3. (in Chinese with English abstract)[刘建栋, 王吉顺, 于强, 毕建杰 (2002). 作物夜间呼吸作用与温度、CO2浓度的关系. 中国农业气象, 23(1), 1-3.] |
[14] | Liu YJ, Tao FL (2013). Response of crop water use efficiency to elevated temperature and CO2 concentration. Progress in Geography, 32, 416-424. (in Chinese with English abstract)[刘玉洁, 陶福禄 (2013). 作物水分利用效率对温度和CO2浓度升高的响应研究进展. 地理科学进展, 32, 416-424.] |
[15] | Lobell DB, Field CB (2007). Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2, 625-630. |
[16] | Lovelli S, Perniola M, Tommaso TD, Ventrella D, Moriondo M, Amato M (2010). Effects of rising atmospheric CO2 on crop evapotranspiration in a Mediterranean area. Agricultural Water Management, 97, 1287-1292. |
[17] | Rosenzweig C, Tubiello FN (1996). Effects of changes in minimum and maximum temperature on wheat yields in the central US: A simulation study. Agricultural and Forest Meteorology, 80, 215-230. |
[18] | Shi JJ, Jiang XD, Qiu SQ (2015). Effects of different temperature treatments on growth and yield of wheat. Jiangsu Agricultural Sciences, 43, 82-84. (in Chinese with English abstract)[石姣姣, 江晓东, 邱思齐 (2015). 昼夜不同增温处理对小麦生长发育和产量的影响. 江苏农业科学, 43, 82-84.] |
[19] | Su Y, Zhang YF, Mou WY, Xing GN, Chen FJ (2016). Morphological traits and yield of sobean under elevated atmospheric CO2 concentration and temperature. Acta Ecologica Sinica, 36, 2597-2606. (in Chinese with English abstract)[苏营, 张逸飞, 牟文雅, 邢光南, 陈法军 (2016). 大豆主要株型和产量指标对大气CO2和温度升高的响应. 生态学报, 36, 2597-2606.] |
[20] | Tan KY, Fang SB, Ren SX, Zhang XS (2009). Asymmetric trends of daily maximum and minimum temperature in global warming and its effects on agriculture ecosystems. Journal of Applied Meteorological Science, 20, 634-641. (in Chinese with English abstract)[谭凯炎, 房世波, 任三学, 张新时 (2009). 非对称升温对农业生态系统影响研究进展. 应用气象学报, 20, 634-641.] |
[21] | Tian YL, Zheng JC, Zhang B, Chen J, Dong WJ, Yang F, Zhang WJ (2010). Design of free air temperature increasing (FATI) system for upland with three diurnal warming scenarios and their effects. Scientia Agricultuca Sinica, 43, 3724-3731. (in Chinese with English abstract)[田云录, 郑建初, 张彬, 陈金, 董文军, 杨飞, 张卫健 (2010). 麦田开放式昼夜不同增温系统的设计及增温效果. 中国农业科学, 43, 3724-3731.] |
[22] | Wan YF, You SC, Li YE, Wang B, Gao QZ, Qing XB, Liu S (2014). Influence of elevated atmospheric CO2 concentration and temperature on growth and yield of early rice. Journal of Agro-Environment Science, 33, 1693-1698. (in Chinese with English abstract)[万运帆, 游松财, 李玉娥, 王斌, 高清竹, 秦晓波, 刘硕 (2014). CO2浓度和温度升高对早稻生长及产量的影响. 农业环境科学学报, 33, 1693-1698.] |
[23] | Wang H, Greenberg SE (2007). Reconstructing the response of C3 and C4 plants to decadalscale climate change during the late plestocene in southern Illinois using isotopic analyses of calcified rootlets. Quaternary Research, 67, 136-142. |
[24] | Wang SL, Zhao YX, Wang FT (1996). Study on the possible impact of climate warming on the evapotranspiration and yield of winter wheat. Chinese Journal of Agrometeorola) ogy, 17(4), 18-22. (in Chinese with English abstract)[王石立, 赵艳霞, 王馥棠 (1996). 气候变暖对小麦蒸散和产量的可能影响. 中国农业气象, 17(4), 18-22.] |
[25] | Wang YW, Li PC, Cao XF, Wang XJ, Zhang AM, Li X (2009). Identification and expression analysis of miRNAs form nitrogen-fixing soybean nodules. Biochemical and Biophysical Research Communication, 378, 799-803. |
[26] | Wang YX, Yan HQ (2014). Effect of climate change on rice production in Heilongjiang Province. Chinese Agricultural Science Bulletin, 30(9), 92-98. (in Chinese with English abstract)[王永兴, 严火其 (2014). 气候变暖对黑龙江省水稻生产的影响初探. 中国农通学报, 30(9), 92-98.] |
[27] | Wei JL, Pan XH, Deng QH (2010). Effects of nighttime temperature increase on the yield of double season rice. Acta Ecologica Sinica, 30, 2793-2798. (in Chinese with English abstract)[魏金连, 潘晓华, 邓强辉 (2010). 夜间温度升高对双季早晚稻产量的影响. 生态学报, 30, 2793-2798.] |
[28] | Yu JY, He Y, Zhao ZF, Wang D (2007). Study on the correction coefficient of crop leaf area by the method of length and width. Jiangsu Agricultural Sciences, (2), 37-39. (in Chinese with English abstract)[郁进元, 何岩, 赵忠福, 王栋 (2007). 长宽法测定作物叶面积的校正系数研究. 江苏农业科学, (2), 37-39.] |
[29] | Zhang GH, Wang YQ, Zheng H, Pan HS (2004). Effect of atmospheric humidity on water evaporation in dry hot valley of Yuanmou. Journal of Natural Disasters, 13(3), 95-100. (in Chinese with English abstract)[张桂华, 王艳秋, 郑红, 潘华盛 (2004). 气候变暖对黑龙江省作物生产的影响及其对策. 自然灾害学报, 13(3), 95-100.] |
[30] | Zhang XF, Wang HZ, Liu LS, Xu XL (2014). Spatial-temporal characteristics of soybean production potential change under the background of climate change over the past 50 years in China. Progress in Geography, 33, 1414-1423. (in Chinese with English abstract)[张晓峰, 王宏志, 刘洛神, 徐新良 (2014). 近50年来气候变化背景下中国大豆生产潜力时空演变特征. 地理科学进展, 33, 1414-1423.] |
[31] | Zhou X, Wang KQ, Zhong ZF (2006). Effect of atmospheric humidity on water evaporation in dry hot valley of Yuanmou. Modern Agricultural Science and Technology, 8, 191-194. (in Chinese with English abstract)[周祥, 王克勤, 仲增福 (2006). 大气湿度对元谋干热河谷水水面蒸发的影响. 现代农业科技, 8, 191-194.] |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦光合碳代谢的调控[J]. 植物生态学报, 2023, 47(3): 374-388. |
[3] | 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响[J]. 植物生态学报, 2022, 46(2): 188-196. |
[4] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[5] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[6] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[7] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[8] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[9] | 刘雪飞, 吴林, 王涵, 洪柳, 熊莉军. 鄂西南亚高山湿地泥炭藓的生长与分解[J]. 植物生态学报, 2020, 44(3): 228-235. |
[10] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[11] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[12] | 刘璐, 赵常明, 徐文婷, 申国珍, 谢宗强. 神农架常绿落叶阔叶混交林凋落物动态及影响因素[J]. 植物生态学报, 2018, 42(6): 619-628. |
[13] | 叶子飘, 段世华, 安婷, 康华靖. 最大电子传递速率的确定及其对电子流分配的影响[J]. 植物生态学报, 2018, 42(4): 498-507. |
[14] | 冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018, 42(4): 453-465. |
[15] | 张鑫, 邢亚娟, 闫国永, 王庆贵. 细根对降水变化响应的meta分析[J]. 植物生态学报, 2018, 42(2): 164-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19