植物生态学报 ›› 2020, Vol. 44 ›› Issue (3): 228-235.DOI: 10.17521/cjpe.2019.0316
刘雪飞1,2,吴林1,2,*(),王涵1,2,洪柳1,2,熊莉军3
收稿日期:
2019-11-19
接受日期:
2020-01-19
出版日期:
2020-03-20
发布日期:
2020-02-24
通讯作者:
吴林
基金资助:
LIU Xue-Fei1,2,WU Lin1,2,*(),WANG Han1,2,HONG Liu1,2,XIONG Li-Jun3
Received:
2019-11-19
Accepted:
2020-01-19
Online:
2020-03-20
Published:
2020-02-24
Contact:
Lin WU
Supported by:
摘要:
泥炭藓(Sphagnum)是湿地土壤碳的重要来源, 在土壤碳累积过程中发挥着关键作用, 但有关亚热带湿地泥炭藓生长与分解的研究鲜有报道。该研究选择鄂西南亚高山泥炭藓湿地为研究区域, 原位开展不同微生境泥炭藓的生长及其凋落物的分解实验, 室内测试凋落物的化学成分, 探讨亚热带亚高山湿地泥炭藓的生长与分解规律。结果表明: 泥炭藓在自然状态生长12个月后, 丘上和丘间两种微生境下泥炭藓的平均高度增长量分别为2.9和2.7 cm, 对应的净生产量分别为270.94和370.88 g·m -2, 生长时间与微生境对泥炭藓的高度增长量及净生产量均有显著影响, 且两者之间存在交互作用, 但是两种微生境下泥炭藓的生长变化过程不同; 两种微生境下泥炭藓的平均生长速率(2017年7-10月)为0.33 mm·d -1, 其生长速率高于寒温带地区。另外, 分解时间对泥炭藓的分解量有显著影响, 其残留率随时间增加表现为先减少后增加的趋势。12个月后, 丘间、丘上和水坑3种微生境下最终残留率分别为100.67%、90.54%和85.63%。凋落物中碳含量、碳氮比和多酚含量相比初始值均有所下降, 氮含量则为增加。同时, 微生境对凋落物分解的影响取决于分解时间。分解3个月时, 微生境之间凋落物的分解量差异显著, 其他时间段差异不明显。
刘雪飞, 吴林, 王涵, 洪柳, 熊莉军. 鄂西南亚高山湿地泥炭藓的生长与分解. 植物生态学报, 2020, 44(3): 228-235. DOI: 10.17521/cjpe.2019.0316
LIU Xue-Fei, WU Lin, WANG Han, HONG Liu, XIONG Li-Jun. Growth and decomposition characteristics of Sphagnum in a subalpine wetland, southwestern Hubei, China. Chinese Journal of Plant Ecology, 2020, 44(3): 228-235. DOI: 10.17521/cjpe.2019.0316
图1 鄂西南亚高山泥炭藓湿地中的3种微生境(从左至右依次为: 丘上、丘间、水坑)。
Fig. 1 Three types of microhabitats in Sphagnum-dominated subalpine wetland in southwestern Hubei (From left to right: hummock, hollow, and pool).
图2 鄂西南亚高山泥炭藓湿地丘间与丘上两种微生境下泥炭藓高度增长量(A)及净生产量(B)变化(平均值±标准误差, n = 3)。*表示在同一时间不同微生境下有显著性差异(p < 0.05)。
Fig. 2 Increment of height growth (A) and net production (B) of Sphagnum in hollow and hummock of Sphagnum-dominated subalpine wetlands in southwestern Hubei (mean ± SE, n = 3). * refers a significant difference between the two microhabitats at the same time (p < 0.05).
图3 鄂西南亚高山泥炭藓湿地3种微生境下泥炭藓凋落物残留率变化规律(平均值±标准误差, n = 3)。*表示在同一时间不同微生境下有显著性差异(p < 0.05), 不同小写字母表示在同一微生境不同时间有显著性差异(p < 0.05)。
Fig. 3 Changes in litters residual rate of Sphagnum under three microhabitats of Sphagnum-dominated subalpine wetlands in southwestern Hubei (mean ± SE, n = 3). * refers a significant difference among the three microhabitats at the same time (p < 0.05); different lowercase letters indicate significant differences at different time periods in the same microhabitat (p < 0.05).
图4 鄂西南亚高山泥炭藓湿地3种微生境下泥炭藓凋落物C (A)、N (B)、C:N (C)及多酚含量(D)变化规律(平均值±标准误差, n = 3)。*表示在同一时间不同微生境下有显著性差异(p < 0.05), 不同小写字母表示在同一微生境不同时间有显著性差异(p < 0.05)。
Fig. 4 Contents of C (A), N (B), C:N (C) and polyphenols (D) in the litters of Sphagnum of the three microhabitats of Sphagnum- dominated subalpine wetlands in southwestern Hubei (mean ± SE, n = 3). * refers a significant difference among the three microhabitats at the same time (p < 0.05); different lowercase letters indicate significant differences at different time periods in the same microhabitat(p < 0.05)
纬度 Latitude (°) | 经度 Longitude (°) | 年平均气温 Annual mean temperature (℃) | 年降水量 Precipitation (mm) | 物种 Species | 生长速率 Growth rate (mm·d-1) | 净生产力 Net primary productivity (g·m-2·d-1) | 参考文献 Reference |
---|---|---|---|---|---|---|---|
68.35 | 18.82 | 0.5 | 320 | S. fus | 0.04 | 1.51 | |
60.52 | 17.92 | 3.1 | 544 | S. fus | 0.10 | 0.64 | |
59.90 | 15.83 | 1.4 | 515 | S. fus, S. mag | 0.13 | 1.12 | |
57.15 | -111.98 | 2.1 | 387 | S. fus | 0.09 | 1.68 | |
56.63 | -110.20 | 1.1 | 420 | S. fus | 0.09 | 1.72 | |
55.68 | -111.83 | 2.1 | 421 | S. fus | 0.10 | 1.96 | |
54.68 | -113.47 | 1.7 | 500 | S. fus | 0.03 | 1.15 | |
49.67 | -93.72 | 2.6 | 714 | S. mag, S. fus, S. ang | 0.12 | 0.86 | |
46.32 | 11.67 | 5.0 | 1 100 | S. cap, S. mag, S. fal | 0.26 | 1.70 | |
39.12 | -79.58 | 7.9 | 1 330 | S. mag, S. rec | 0.42 | 3.44 | |
30.17 | 109.73 | 7.2 | 1 590 | S. pal | 0.33 | 3.84 | 本研究 This study |
表1 不同纬度地区泥炭藓属植物的生长速率及净生产力
Table 1 Growth rate and net primary productivity of Sphagnum spp. in areas of different latitude
纬度 Latitude (°) | 经度 Longitude (°) | 年平均气温 Annual mean temperature (℃) | 年降水量 Precipitation (mm) | 物种 Species | 生长速率 Growth rate (mm·d-1) | 净生产力 Net primary productivity (g·m-2·d-1) | 参考文献 Reference |
---|---|---|---|---|---|---|---|
68.35 | 18.82 | 0.5 | 320 | S. fus | 0.04 | 1.51 | |
60.52 | 17.92 | 3.1 | 544 | S. fus | 0.10 | 0.64 | |
59.90 | 15.83 | 1.4 | 515 | S. fus, S. mag | 0.13 | 1.12 | |
57.15 | -111.98 | 2.1 | 387 | S. fus | 0.09 | 1.68 | |
56.63 | -110.20 | 1.1 | 420 | S. fus | 0.09 | 1.72 | |
55.68 | -111.83 | 2.1 | 421 | S. fus | 0.10 | 1.96 | |
54.68 | -113.47 | 1.7 | 500 | S. fus | 0.03 | 1.15 | |
49.67 | -93.72 | 2.6 | 714 | S. mag, S. fus, S. ang | 0.12 | 0.86 | |
46.32 | 11.67 | 5.0 | 1 100 | S. cap, S. mag, S. fal | 0.26 | 1.70 | |
39.12 | -79.58 | 7.9 | 1 330 | S. mag, S. rec | 0.42 | 3.44 | |
30.17 | 109.73 | 7.2 | 1 590 | S. pal | 0.33 | 3.84 | 本研究 This study |
[1] |
Asada T, Warner BG, Banner A (2003). Growth of mosses in relation to climate factors in a hypermaritime coastal peatland in British Columbia, Canada. The Bryologist, 106, 516-527.
DOI URL |
[2] |
Bell MC, Ritson JP, Verhoef A, Brazier RE, Templeton MR, Graham NJD, Freeman C, Clark JM (2018). Sensitivity of peatland litter decomposition to changes in temperature and rainfall. Geoderma, 331, 29-37.
DOI URL |
[3] |
Bengtsson F, Granath G, Rydin H (2016). Photosynthesis, growth, and decay traits in Sphagnum—A multispecies comparison. Ecology and Evolution, 6, 3325-3341.
DOI URL |
[4] |
Bengtsson F, Rydin H, Hájek T (2018). Biochemical determinants of litter quality in 15 species of Sphagnum. Plant and Soil, 425, 161-176.
DOI URL |
[5] |
Bragazza L, Siffi C, Iacumin P, Gerdol R (2007). Mass loss and nutrient release during litter decay in peatland: the role of microbial adaptability to litter chemistry. Soil Biology & Biochemistry, 39, 257-267.
DOI URL |
[6] |
Breeuwer A, Heijmans M, Robroek BJM, Limpens J, Berendse F (2008). The effect of increased temperature and nitrogen deposition on decomposition in bogs. Oikos, 117, 1258-1268.
DOI URL |
[7] |
Clymo RS (1970). The growth of Sphagnum: methods of measurement. Journal of Ecology, 58, 13-49.
DOI URL |
[8] |
Clymo RS, Hayward PM (1982). The ecology of Sphagnum// Smith AJE. Bryophyte Ecology. Chapman and Hall, London.
DOI URL PMID |
[9] |
Dorrepaal E, Aerts R, Cornelissen JHC, Callaghan TV, van Logtestijn RSP (2003). Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog. Global Change Biology, 10, 93-104.
DOI URL |
[10] | Editorial Board of Wetland Vegetation in China (1999). Wetland Vegetation in China. Science Press, Beijing. |
[ 中国湿地植被编辑委员会(1999). 中国湿地植被. 科学出版社, 北京.] | |
[11] |
Furness SB, Grime JP (1982). Growth rate and temperature responses in bryophytes: I. An investigation of Brachythecium rutabulum. Journal of Ecology, 70, 513-523.
DOI URL |
[12] |
Genet H, Oberbauer SF, Colby SJ, Staudhammer CL, Starr G (2013). Growth responses of Sphagnum hollows to a growing season lengthening manipulation in Alaskan Arctic tundra. Polar Biology, 36, 41-50.
DOI URL |
[13] |
Gerdol R (1995). The growth dynamics of Sphagnum based on field measurements in a temperate bog and on laboratory cultures. Journal of Ecology, 83, 431-437.
DOI URL |
[14] |
Gerdol R, Petraglia A, Bragazza L, Iacumin P, Brancaleoni L (2007). Nitrogen deposition interacts with climate in affecting production and decomposition rates in Sphagnum mosses. Global Change Biology, 13, 1810-1821.
DOI URL |
[15] |
Gorham E (1991). Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195.
DOI URL |
[16] |
Gunnarsson U (2005). Global patterns of Sphagnum productivity. Journal of Bryology, 27, 269-279.
DOI URL |
[17] |
Ho YS, Mckay G (2000). The kinetics of sorption of divalent metal ions onto Sphagnum moss peat. Water Research, 34, 735-742.
DOI URL |
[18] |
Jassey VEJ, Chiapusio G, Gilbert D, Buttler A, Toussaint ML, Binet P (2011). Experimental climate effect on seasonal variability of polyphenol/phenoloxidase interplay along a narrow fen-bog ecological gradient in Sphagnum fallax. Global Change Biology, 17, 2945-2957.
DOI URL |
[19] | Johnson LC, Damman AWH (1993). Decay and its regulation in Sphagnum peatlands. Advances in Bryology, 5, 249-296. |
[20] |
Kosykh NP, Koronatova NG, Granath G (2017). Effect of temperature and precipitation on linear increment of Sphagnum fuscum and S. magellanicum in Western Siberia. Russian Journal of Ecology, 2017,48, 203-211.
DOI URL |
[21] |
Lang SI, Cornelissen JHC, Klahn T, van Logtestijn RSP, Broekman R, Schweikert W, Aerts R (2009). An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. Journal of Ecology, 97, 886-900.
DOI URL |
[22] |
Leroy F, Gogo S, Guimbaud C, Bernard-Jannin L, Hu Z, Laggoun-Défarge F (2017). Vegetation composition controls temperature sensitivity of CO2 and CH4 emissions and DOC concentration in peatlands. Soil Biology & Biochemistry, 107, 164-167.
DOI URL |
[23] |
Li H, Parent LE, Karam A, Tremblay C (2004). Potential of Sphagnum peat for improving soil organic matter, water holding capacity, bulk density and potato yield in a sandy soil. Plant and Soil, 265, 355-365.
DOI URL |
[24] | Li W, Bu ZJ, Zhang BJ, Long C, Tang RJ, Cui QW (2013). Decomposition of Sphagnum litter in 4 peatlands of the Changbai Mountains along an altitudinal gradient. Journal of Mountain Science, 31, 442-447. |
[ 李伟, 卜兆君, 张兵将, 龙川, 唐瑞江, 崔钱王 (2013). 长白山不同海拔泥炭地泥炭藓残体的分解. 山地学报, 31, 442-447.] | |
[25] |
Limpens J, Berendse F (2003). How litter quality affects mass loss and N loss from decomposing Sphagnum. Oikos, 103, 537-547.
DOI URL |
[26] |
Liu YY, Ma JZ, Bu ZJ, Wang SZ, Zhang XB, Zhang TY, Liu SS, Fu B, Kang Y (2018). Effect of geographical sources and biochemical traits on plant litter decomposition in a peatland. Chinese Journal of Plant Ecology, 42, 713-722.
DOI URL |
[ 刘媛媛, 马进泽, 卜兆君, 王升忠, 张雪冰, 张婷玉, 刘莎莎, 付彪, 康媛 (2018). 地理来源与生物化学属性对泥炭地植物残体分解的影响. 植物生态学报, 42, 713-722.]
DOI URL |
|
[27] |
Loisel J, Gallego-Sala AV, Yu Z (2012). Global-scale pattern of peatland Sphagnum growth driven by photosynthetically active radiation and growing season length. Biogeosciences, 9, 2737-2746.
DOI URL |
[28] | Ma JZ (2018). The Simulation Study on Effects of Climate Warming on Plant Litter Decomposition in Peatlands Basing on Three Experimental Modes. Master degree dissertation, Northeast Normal University, Changchun. |
[ 马进泽, (2018) . 基于三种实验方式的气候变暖对泥炭地植物凋落物分解影响的模拟研究. 硕士学位论文, 东北师范大学, 长春.] | |
[29] |
Mironov VL, Kondratev AY (2017). Peat moss Sphagnum riparium follows a circatrigintan growth rhythm in situ: a case report. Chronobiology International, 34, 981-984.
DOI URL |
[30] |
Moore TR (1989). Growth and net production of Sphagnum at five fen sites, subarctic eastern Canada. Canadian Journal of Botany, 67, 1203-1207.
DOI URL |
[31] |
Newman TR, Wright N, Wright B, Sjögersten S (2018). Interacting effects of elevated atmospheric CO2 and hydrology on the growth and carbon sequestration of Sphagnum moss. Wetlands Ecology and Management, 26, 763-774.
DOI URL |
[32] |
Orwin KH, Ostle NJ (2012). Moss species effects on peatland carbon cycling after fire. Functional Ecology, 26, 829-836.
DOI URL |
[33] |
Philben M, Holmquist J, MacDonald G, Duan DD, Kaiser, K, Benner R (2015). Temperature, oxygen, and vegetation controls on decomposition in a James Bay peatland. Global Biogeochemical Cycles, 29, 729-743.
DOI URL |
[34] |
Rochefort L, Vitt DH, Bayley SE (1990). Growth, production, and decomposition dynamics of Sphagnum under natural and experimentally acidified conditions. Ecology, 71, 1986-2000.
DOI URL |
[35] | Singleton VL, Orthofer R, Lamuela-Raventós RM (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152-178. |
[36] |
Tahvanainen T, Haraguchi A (2013). Effect of pH on phenol oxidase activity on decaying Sphagnum mosses. European Journal of Soil Biology, 54, 41-47.
DOI URL |
[37] |
Thormann MN, Bayley SE (1997). Aboveground net primary production along a bog-fen-marsh gradient in southern boreal Alberta, Canada. Écoscience, 4, 374-384.
DOI URL |
[38] | Waddington JM, Rochefort L, Campeau S (2003). Sphagnum production and decomposition in a restored cutover peatland. Wetlands Ecology & Management, 11, 85-95. |
[39] | Wang LS, Jia Y, Zhang XC, Qin HN (2018). Species Catalogue of China. Volume 1 Plants A Synoptic Checklist (I). Science Press, Beijing. |
[ 王立松, 贾谕, 张宪春, 覃海宁 (2018). 中国生物名录第一卷植物总名录(上册). 科学出版社, 北京.] | |
[40] |
Wieder RK, Lang GE (1983). Net primary production of the dominant bryophytes in a Sphagnum-dominated wetland in West Virginia. The Bryologist, 86, 280-286.
DOI URL |
[41] |
Wieder RK, Vitt DH, Burke-Scoll M, Scott KD, House M, Vile MA (2010). Nitrogen and sulphur deposition and the growth of Sphagnum fuscum in bogs of the Athabasca Oil Sands Region, Alberta. Journal of Limnology, 69, 161-170.
DOI URL |
[42] |
Yazaki T, Yabe K (2012). Effects of snow-load and shading by vascular plants on the vertical growth of hummocks formed by Sphagnum papillosum in a mire of northern Japan. Plant Ecology, 213, 1055-1067.
DOI URL |
[43] |
Yu ZC (2012). Northern peatland carbon stocks and dynamics: a review. Biogeosciences, 9, 4071-4085.
DOI URL |
[44] | Yu ZC, Loisel J, Brosseau DP, Beilman DW, Hunt SJ (2010). Global peatland dynamics since the last glacial maximum. Geophysical Research Letters, 37, L13402. DOI: 10.1029/2010gl043584. |
[45] |
Zhang XH, Sun XX, Mao R (2017). Effects of litter evenness, nitrogen enrichment and temperature on short-term litter decomposition in freshwater marshes of Northeast China. Wetlands, 37, 145-152.
DOI URL |
[1] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[2] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[3] | 邓文婕, 吴华征, 李添翔, 周丽娜, 胡仁勇, 金鑫杰, 张永普, 张永华, 刘金亮. 洞头国家级海洋公园主要植被类型及其特征[J]. 植物生态学报, 2024, 48(2): 254-268. |
[4] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[5] | 张慧玲, 张耀艺, 彭清清, 杨静, 倪祥银, 吴福忠. 中亚热带同质园不同生活型树种微量元素重吸收效率的差异[J]. 植物生态学报, 2023, 47(7): 978-987. |
[6] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[7] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[8] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[9] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[10] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[11] | 李小玲, 朱道明, 余玉蓉, 吴浩, 牟利, 洪柳, 刘雪飞, 卜贵军, 薛丹, 吴林. 模拟氮沉降对鄂西南贫营养泥炭地两种藓类植物生长与分解的影响[J]. 植物生态学报, 2023, 47(5): 644-659. |
[12] | 李慧璇, 马红亮, 尹云锋, 高人. 亚热带天然阔叶林凋落物分解过程中活性、惰性碳氮的动态特征[J]. 植物生态学报, 2023, 47(5): 618-628. |
[13] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[14] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[15] | 余玉蓉, 吴浩, 高娅菲, 赵媛博, 李小玲, 卜贵军, 薛丹, 刘正祥, 武海雯, 吴林. 模拟氮沉降对鄂西南湿地泥炭藓生理及形态特征的影响[J]. 植物生态学报, 2023, 47(11): 1493-1506. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19