植物生态学报 ›› 2018, Vol. 42 ›› Issue (4): 498-507.DOI: 10.17521/cjpe.2017.0320
出版日期:
2018-04-20
发布日期:
2018-03-21
通讯作者:
康华靖
基金资助:
Zi-Piao YE1,Shi-Hua DUAN2,Ting AN1,Hua-Jing KANG3,*()
Online:
2018-04-20
Published:
2018-03-21
Contact:
Hua-Jing KANG
Supported by:
摘要:
非直角双曲线模型(简称模型I)是Farquhar、von Caemmerer和Berry提出的生物化学光合模型(简称FvCB生化模型)的主要子模型。在植物光合作用对光响应曲线的拟合中, 模型I得到广泛的应用和验证。同时, 模型I也可用于估算植物叶片的最大电子传递速率(Jmax)。然而, 由模型I估算植物叶片的Jmax是否与实测值相符, 尚未得到严格的验证。该文应用LI-6400-40光合测定仪测定了遮阴和全日照条件下大豆(Glycine max)叶片的光合速率和电子传递速率对光的响应曲线, 然后分别用模型I和电子传递速率对光响应机理模型(简称模型II)进行了拟合。结果表明, 由模型I估算遮阴和全日照条件下大豆叶片的Jmax与观测值之间存在显著差异; 由模型II计算得到的Jmax与实测值之间不存在显著差异。此外, 用模型I估算的Jmax将高估光合电子流分配到光呼吸的量, 从而高估光呼吸对植物的光保护作用。因此, 在估算植物叶片Jmax和准确评估光呼吸对植物光保护作用方面, 模型II更合理。
叶子飘, 段世华, 安婷, 康华靖. 最大电子传递速率的确定及其对电子流分配的影响. 植物生态学报, 2018, 42(4): 498-507. DOI: 10.17521/cjpe.2017.0320
Zi-Piao YE, Shi-Hua DUAN, Ting AN, Hua-Jing KANG. Determination of maximum electron transport rate and its impact on allocation of electron flow. Chinese Journal of Plant Ecology, 2018, 42(4): 498-507. DOI: 10.17521/cjpe.2017.0320
图1 遮阴(A)和全光照(B)下大豆叶片的光合电子传递速率对光的响应曲线(平均值±标准误差, n = 5)。模型I, 非直角双曲线模型; 模型II, 电子传递速率对光响应机理模型。
Fig. 1 Light response of electron transport rate for leaves of Glycine max under shading (A) and full sunlight (B) environments (mean ± SE, n = 5). Model I, non-rectangular hyperbola model; Model II, mechanistic model of light-response of electron transport rate.
参数 Parameter | 处理 Treatment | |||||
---|---|---|---|---|---|---|
遮阴 Shading | 全日照 Full sunlight | |||||
模型I Model I | 模型II Model II | 测量值 Observed value | 模型I Model I | 模型II Model II | 测量值 Observed value | |
最大电子传递速率 Maximum electron transport rate (Jmax, mmol·m-2·s-1) | 269.13 ± 5.22a | 236.68 ± 1.39b | ?236.29 | 354.26 ± 17.73a | 307.91 ± 8.95b | ?306.43 |
饱和光强 Saturated light intensity (PARsat, mmol·m-2·s-1) | — | 1 839.98 ± 50.53 | ?1 800 | — | 1 967.69 ± 110.64 | ?2 000 |
确定系数 Determination coefficient (R2) | 0.999 | 0.999 | — | 0.999 | 0.999 | — |
表1 由非直角双曲线模型(模型I)和光合电子流对光响应机理模型(模型II)拟合两种光照条件下电子传递速率对光的响应曲线(J-I曲线)得到最大电子传递速率(Jmax)和饱和光强(PARsat)两个参数及与它们对应的观测数据(平均值±标准误差, n = 5)
Table 1 Observed data and results fitted by non-rectangular hyperbola model (model I) and the mechanistic model of light-response of electron transport rate (model II) for light-response curves of electron transport rate (J-I curves) of soybean under two light environments (mean ± SE, n = 5)
参数 Parameter | 处理 Treatment | |||||
---|---|---|---|---|---|---|
遮阴 Shading | 全日照 Full sunlight | |||||
模型I Model I | 模型II Model II | 测量值 Observed value | 模型I Model I | 模型II Model II | 测量值 Observed value | |
最大电子传递速率 Maximum electron transport rate (Jmax, mmol·m-2·s-1) | 269.13 ± 5.22a | 236.68 ± 1.39b | ?236.29 | 354.26 ± 17.73a | 307.91 ± 8.95b | ?306.43 |
饱和光强 Saturated light intensity (PARsat, mmol·m-2·s-1) | — | 1 839.98 ± 50.53 | ?1 800 | — | 1 967.69 ± 110.64 | ?2 000 |
确定系数 Determination coefficient (R2) | 0.999 | 0.999 | — | 0.999 | 0.999 | — |
图2 遮阴(A)和全光照(B)下大豆叶片的光合作用对光的响应曲线 (平均值±标准误差, n = 5)。模型I, 非直角双曲线模型; 模型II, 电子传递速率对光响应机理模型。
Fig. 2 Light-response curves of photosynthesis for shade (A) and sun (B) leaves of soybean (mean ± SE, n = 5). Model I, non-rectangular hyperbola model; Model II, mechanistic model of light-response of electron transport rate.
参数 Parameter | 处理 Treatment | |||||
---|---|---|---|---|---|---|
遮阴 Shading | 全日照 Full sunlight | |||||
模型I Model I | 模型II Model II | 测量值 Observed value | 模型I Model I | 模型II Model II | 测量值 Observed value | |
初始斜率 Initial slope of A-I curve, α (mmol·mol-1) | 0.061 ± 0.044b | 0.081 ± 0.032a | - | 0.064 ± 0.025a | 0.069 ± 0.025a | - |
最大净光合速率 Maximum net photosynthetic rate, Anmax (mmol·m-2·s-1) | 31.28 ± 1.33a | 26.92 ± 1.23b | ?27.23 | 45.56 ± 1.41a | 35.52 ± 1.26b | ?36.17 |
饱和光强 Saturated irradiance, Isat (mmol ·m-2·s-1) | - | 1 569.96 ± 24.89 | ?1 600 | - | 1 998.36 ± 36.45 | ?1 800 |
光补偿点 Light compensation point, Ic (mmol·m-2·s-1) | 40.65 ± 2.85a | 40.83 ± 2.74a | ?41.59 | 51.49 ± 3.52a | 51.62 ± 3.45a | ?51.96 |
暗呼吸速率 Dark respiration, Rd (mmol·m-2 ·s-1) | 2.42 ± 0.87b | 2.99 ± 0.58a | ?3.12 | 3.19 ± 0.56a | 3.45 ± 0.42a | ?3.51 |
确定系数 Determination coefficient, R2 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
表2 由非直角双曲线模型(模型I)和光合电子流对光响应机理模型(模型II)拟合两种光照条件下光合作用对光的响应曲线(An-I)得到的光合参数及观测数据(平均数±标准误差, n = 5)
Table 2 Observed data and photosynthetic parameters fitted by non-rectangular hyperbola model (model I) and the mechanistic model of light-response of electron transport rate (model II) for light-response curves of photosynthesis (An-I curves) of soybean under two light environments, respectively (mean ± SE, n = 5).
参数 Parameter | 处理 Treatment | |||||
---|---|---|---|---|---|---|
遮阴 Shading | 全日照 Full sunlight | |||||
模型I Model I | 模型II Model II | 测量值 Observed value | 模型I Model I | 模型II Model II | 测量值 Observed value | |
初始斜率 Initial slope of A-I curve, α (mmol·mol-1) | 0.061 ± 0.044b | 0.081 ± 0.032a | - | 0.064 ± 0.025a | 0.069 ± 0.025a | - |
最大净光合速率 Maximum net photosynthetic rate, Anmax (mmol·m-2·s-1) | 31.28 ± 1.33a | 26.92 ± 1.23b | ?27.23 | 45.56 ± 1.41a | 35.52 ± 1.26b | ?36.17 |
饱和光强 Saturated irradiance, Isat (mmol ·m-2·s-1) | - | 1 569.96 ± 24.89 | ?1 600 | - | 1 998.36 ± 36.45 | ?1 800 |
光补偿点 Light compensation point, Ic (mmol·m-2·s-1) | 40.65 ± 2.85a | 40.83 ± 2.74a | ?41.59 | 51.49 ± 3.52a | 51.62 ± 3.45a | ?51.96 |
暗呼吸速率 Dark respiration, Rd (mmol·m-2 ·s-1) | 2.42 ± 0.87b | 2.99 ± 0.58a | ?3.12 | 3.19 ± 0.56a | 3.45 ± 0.42a | ?3.51 |
确定系数 Determination coefficient, R2 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
参数 Parameter | 处理 Treatment | |||||
---|---|---|---|---|---|---|
遮阴 Shading | 全日照 Full sunlight | |||||
模型I Model I | 模型II Model II | 测量或计算值 Observed value | 模型I Model I | 模型II Model II | 测量或计算值 Observed value | |
最大电子传递速率 Maximum electron transport rate, Jmax (mmol·m-2·s-1) | 269.13a | 236.68b | 236.29b | 354.26a | 307.91b | 306.43b |
最大净光合速率 Maximum net photosynthetic rate, Anmax (mmol·m-2·s-1) | 31.28a | 26.92b | 27.23b | 45.56a | 35.52b | 36.17b |
碳同化电子流 Electron flow of partitioning C assimilation, JC-max (mmol·m-2·s-1) | 166.48a | 155.67a | 155.54a | 219.23a | 203.78a | 203.26a |
光呼吸电子流 Electron flow of partitioning photorespiration assimilation, JO-max (mmol·m-2·s-1) | 102.65a | 81.01b | 80.75b | 135.03a | 104.13b | 103.17b |
表3 分配到碳同化和光呼吸途径的光合电子流
Table 3 Photosynthetic electron flows of partitioning C assimilation and photorespiration pathway
参数 Parameter | 处理 Treatment | |||||
---|---|---|---|---|---|---|
遮阴 Shading | 全日照 Full sunlight | |||||
模型I Model I | 模型II Model II | 测量或计算值 Observed value | 模型I Model I | 模型II Model II | 测量或计算值 Observed value | |
最大电子传递速率 Maximum electron transport rate, Jmax (mmol·m-2·s-1) | 269.13a | 236.68b | 236.29b | 354.26a | 307.91b | 306.43b |
最大净光合速率 Maximum net photosynthetic rate, Anmax (mmol·m-2·s-1) | 31.28a | 26.92b | 27.23b | 45.56a | 35.52b | 36.17b |
碳同化电子流 Electron flow of partitioning C assimilation, JC-max (mmol·m-2·s-1) | 166.48a | 155.67a | 155.54a | 219.23a | 203.78a | 203.26a |
光呼吸电子流 Electron flow of partitioning photorespiration assimilation, JO-max (mmol·m-2·s-1) | 102.65a | 81.01b | 80.75b | 135.03a | 104.13b | 103.17b |
1 |
Baker NR ( 2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113.
DOI URL PMID |
2 |
Bellucco V, Marras S, Grimmond CSB, J?rvi L, Sirca C, Spano D ( 2017). Modelling the biogenic CO2 exchange in urban and non-urban ecosystems through the assessment of light-response curve parameters. Agricultural and Forest Meteorology, 236, 113-122.
DOI URL |
3 |
Brading P, Warner ME, Davey P, Smith DJ, Achterberg EP, Suggett DJ ( 2011). Differential effects of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium (Dinophyceae). Limnology and Oceanography, 56, 927-938.
DOI URL |
4 |
Buckley TN, Diaz-Espejo A ( 2015). Reporting estimates of maximum potential electron transport rate. New Phytologist, 205, 14-17.
DOI URL PMID |
5 |
Calama R, Puértolas J, Madrigal G, Pardos M ( 2013). Modeling the environmental response of leaf net photosynthesis in Pinus pinea L. natural regeneration. Ecological Modelling, 251, 9-21.
DOI URL |
6 |
Cheng LL, Fuchigami LH, Breen PJ ( 2001). The relationship between photosystem II efficiency and quantum yield for CO2 assimilation is not affected by nitrogen content in apple leaves. Journal of Experimental Botany, 52, 1865-1872.
DOI URL |
7 |
Cruz JA, Avenson TJ, Kanazawa A, Takizawa K, Edwards GE, Kramer DM ( 2005). Plasticity in light reactions of photosynthesis for energy production and photoprotection. Journal of Experimental Botany, 56, 395-406.
DOI URL PMID |
8 |
dos Santos JUM, de Carvalho GJF, Fearnside PM ( 2013). Measuring the impact of flooding on Amazonian trees: Photosynthetic response models for ten species flooded by hydroelectric dams. Trees, 27, 193-210.
DOI URL |
9 |
Dubois JJB, Fiscus EL, Booker FL, Flowers MD, Reid CD ( 2007). Optimizing the statistical estimation of the parameters of the Farquhar-von Caemmerer-Berry model of photosynthesis. New Phytologist, 176, 402-414.
DOI URL PMID |
10 |
Epron D, Godard D, Cornic G, Genty B ( 1995). Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). Plant,Cell & Environment, 18, 43-51.
DOI URL |
11 |
Farquhar GD, Busch FA ( 2017). Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: A model. New Phytologist, 214, 570-584.
DOI URL PMID |
12 |
Farquhar GD, Caemmerers S, Berry JA ( 1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.
DOI URL PMID |
13 |
Fila G, Badeck FW, Meyer S, Cerovic Z, Ghashghaie J ( 2006). Relationships between leaf conductance to CO2 diffusion and photosynthesis in micropropagated grapevine plants, before and after ex vitro acclimatization. Journal of Experimental Botany, 57, 2687-2695.
DOI URL PMID |
14 |
Gao S, Yan Q, Chen L, Song Y, Li J, Fu C, Dong M ( 2017 a). Effects of ploidy level and haplotype on variation of photosynthetic traits: Novel evidence from two Fragaria species. PLOS ONE, 12, e0179899. DOI: 10.1371/journal.? pone.0179899.
DOI URL PMID |
15 |
Gao Y, Xia JB, Chen YP, Zhao YY, Kong QX, Lang Y ( 2017b). Effects of extreme soil water stress on photosynthetic efficiency and water consumption characteristics of Tamarix chinensis in China’s Yellow River Delta. Journal of Forestry Research, 28, 491-501.
DOI URL |
16 |
Guo W, Zhan SY, Yin H, Li XY, Lü X, Yang L, Wang Y ( 2016). Effect of enhanced UV-B radiation on photosynthetic electron transport and light response characteristics of japonica. Journal of Nanjing Agricultural University, 39, 603-610.
DOI URL |
[ 郭巍, 战莘晔, 殷红, 李雪莹, 吕晓, 杨璐, 王一 ( 2016). UV-B辐射增强对粳稻光合电子传递与光响应特性的影响. 南京农业大学学报, 39, 603-610.]
DOI URL |
|
17 |
Harley PC, Sharkey TD ( 1991). An improved model of C3 photosynthesis at high CO2: Reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynthesis Research, 27, 169-178.
DOI URL PMID |
18 | Hu WH, Ye ZP, Yan XH, Yang XS ( 2017). PSII function and intrinsic characteristics of light-harvesting pigment molecules for sun- and shading-leaf in Magnolia grandiflora during overwintering. Bulletin of Botanical Research, 37, 281-287. |
[ 胡文海, 叶子飘, 闫小红, 杨旭升 ( 2017). 越冬期广玉兰阳生叶和阴生叶PSII功能及捕光色素分子内禀特性的比较研究. 植物研究, 37, 281-287.] | |
19 |
Je?ilová E, No?ková-Hlavá?ková V, Duchoslav M ( 2015). Photosynthetic characteristics of three ploidy levels of Allium oleraceum L. (Amaryllidaceae) differing in ecological amplitude. Plant Species Biology, 30, 212-224.
DOI URL |
20 |
Kang HJ, Li H, Tao YL, Zhang HL, Quan W, Ouyang Z ( 2015). Discussion on simultaneous measurements of leaf gas exchange and chlorophyll fluorescence for estimating photosynthetic electron allocation. Acta Ecologica Sinica, 35, 1217-1224.
DOI URL |
[ 康华靖, 李红, 陶月良, 张海利, 权伟, 欧阳竹 ( 2015). 气体交换与荧光同步测量估算植物光合电子流的分配. 生态学报, 35, 1217-1224.]
DOI URL |
|
21 |
Kirchhoff H, Haase W, Wegner S, Danielsson R, Ackermann R, Albertsson P ( 2007). Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplasts. Biochemistry, 46, 11169-11176.
DOI URL |
22 | Leng HB, Qin J, Ye K, Feng SC, Gao K ( 2014). Comparison of light response models of photosynthesis in Nelumbo nucifera leaves under different light conditions. Chinese Journal of Applied Ecology, 25, 2855-2860. |
[ 冷寒冰, 秦俊, 叶康, 奉树成, 高凯 ( 2014). 不同光照环境下荷花叶片光合光响应模型比较. 应用生态学报, 25, 2855-2860.] | |
23 |
Li XN, Brestic M, Tan DX, Zivcak M, Zhu XC, Liu SQ, Song FB, Reiter RJ, Liu FL ( 2018). Melatonin alleviates low PSI-limited carbon assimilation under elevated CO2 and enhances the cold tolerance of offspring in chlorophyll b-deficient mutant wheat. Journal of Pineal Research, 64, DOI: 10.1111/jpi.12453.
DOI URL PMID |
24 |
Li XN, Hao CL, Zhong JW, Liu FL, Cai J, Wang X, Zhou Q, Dai TB, Cao WX, Jiang D ( 2015). Mechano-stimulated modifications in the chloroplast antioxidant system and proteome changes are associated with cold response in wheat. BMC Plant Biology, 15, 1-13.
DOI URL PMID |
25 |
Liang XY, Liu SR ( 2017). A review on the FvCB biochemical model of photosynthesis and the measurement of A-Ci curves. Chinese Journal of Plant Ecology, 41, 693-706.
DOI URL |
[ 梁星云, 刘世荣 ( 2017). FvCB生物化学光合模型及A-Ci曲线测定. 植物生态学报, 41, 693-706.]
DOI URL |
|
26 |
Long SP, Bernacchi CJ ( 2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany, 54, 2393-2401.
DOI URL PMID |
27 |
Mayoral C, Calama R, Sánchez-González M, Pardos M ( 2015). Modelling the influence of light, water and temperature on photosynthesis in young trees of mixed Mediterranean forests. New Forests, 46, 485-506.
DOI URL |
28 | Miao Z, Xu M, Lathrop RG, Wang Y ( 2009). Comparison of the A-Cc curve fitting methods in determining maximum ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation rate, potential light saturated electron transport rate and leaf dark respiration. Plant, Cell & Environment, 32, 109-122. |
29 |
Niyogi KK, Truong TB ( 2013). Evolution of flexible non-?photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Current Opinion in Plant Biology, 16, 307-314.
DOI URL PMID |
30 |
Park KS, Bekhzod K, Kwon JK, Son JE ( 2016). Development of a coupled photosynthetic model of sweet basil hydroponically grown in plant factories. Horticulture, Environment and Biotechnology, 57, 20-26.
DOI URL |
31 |
Quiroz R, Loayza H, Barreda C, Gavilán C, Posadas A, Ramírez DA ( 2017). Linking process-based potato models with light reflectance data: Does model complexity enhance yield prediction accuracy? European Journal of Agronomy, 82, 104-112.
DOI URL |
32 |
Ralph PJ, Gademann R ( 2005). Rapid light curves: A powerful tool to assess photosynthetic activity. Aquatic Botany, 82, 222-237.
DOI URL |
33 |
Ser?dio J, Ezequiel J, Frommlet J, Laviale M, Lavaud J ( 2013). A method for the rapid generation of nonsequential light-response curves of chlorophyll fluorescence. Plant Physiology, 163, 1089-1102.
DOI URL PMID |
34 |
Shimada A, Kubo T, Tominaga S, Yamamoto M ( 2017). Effect of temperature on photosynthesis characteristics in the passion fruits ‘Summer Queen’ and ‘Ruby Star’. The Horticulture Journal, 86, 194-199.
DOI URL |
35 |
Smith E ( 1937). The influence of light and carbon dioxide on photosynthesis. Journal of General Physiology, 20, 807-830.
DOI URL PMID |
36 |
Sun J, Sun J, Feng Z ( 2015). Modelling photosynthesis in flag leaves of winter wheat (Triticum aestivum) considering the variation in photosynthesis parameters during developpment. Functional Plant Biology, 42, 1036-1044.
DOI URL |
37 |
Takahashi S, Badger M ( 2011). Photoprotection in plants: A new light on photosystem II damage. Trends in Plant Sciences, 16, 53-59.
DOI URL PMID |
38 | Tang XL, Cao YH, Gu LH, Zhou BZ ( 2017a). Advances in photo-physiological responses of leaves to environmental factors based on the FvCB model. Acta Ecologica Sinica, 37, 6633-6645. |
[ 唐星林, 曹永慧, 顾连宏, 周本智 ( 2017a). 基于FvCB模型的叶片光合生理对环境因子的响应研究进展. 生态学报, 37, 6633-6645.] | |
39 | Tang XL, Zhou BZ, Zhou Y, Ni X, Cao YH, Gu LH ( 2017b). Photo-physiological and photo-biochemical characteristics of several herbaceous and woody species based on FvCB model. Chinese Journal of Applied Ecology, 28, 1482-1488. |
[ 唐星林, 周本智, 周燕, 倪霞, 曹永慧, 顾连宏 ( 2017b). 基于FvCB模型的几种草本和木本植物光合生理生化特性. 应用生态学报, 28, 1482-1488.] | |
40 | Thornley JHM ( 1976). Mathematical Models in Plant Physiology. Academic Press, London. 86-110. |
41 |
Valentini R, Epron D, de Angelis P, Matteucci G, Dreyer E ( 1995). In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Tukey oak (Q. cerris L.) leaves: Diurnal cycles under different levels of water supply. Plant, Cell & Environment, 18, 631-640.
DOI URL |
42 | von Caemmerer S ( 2000). Biochemical Models of Leaf Photosynthesis. Techniques in Plant Sciences No. 2. Collingwood. CSIRO Publishing, Australia, Victoria. |
43 |
von Caemmerer S ( 2013). Steady-state models of photosynthesis. Plant, Cell & Environment, 36, 1617-1630.
DOI URL PMID |
44 |
von Caemmerer S, Farquhar GD ( 1981). Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta, 153, 376-387.
DOI URL |
45 |
Wang HZ, Han L, Xu YL, Niu JL, Yu J ( 2017). Simulated photosynthetic responses of Populus euphratica during drought stress using light-response models. Acta Ecologica Sinica, 37, 2315-2324.
DOI URL |
[ 王海珍, 韩路, 徐雅丽, 牛建龙, 于军 ( 2017). 干旱胁迫下胡杨光合光响应过程模拟与模型比较. 生态学报, 37, 2315-2324.]
DOI URL |
|
46 |
Wang RR, Xia JB, Yang JH, Zhao YY, Liu JT, Sun JK ( 2013). Comparison of light response models of photosynthesis in leaves of Periploca sepium under drought stress in sand habitat formed from seashells. Chinese Journal of Plant Ecology, 37, 111-121.
DOI URL |
[ 王荣荣, 夏江宝, 杨吉华, 赵艳云, 刘京涛, 孙景宽 ( 2013). 贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较. 植物生态学报, 37, 111-121.]
DOI URL |
|
47 |
White AJ, Critchley C ( 1999). Rapid light curves: A new fluorescence method to asses the state of the photosynthetic apparatus. Photosynthesis Research, 59, 63-72.
DOI URL |
48 |
Ye ZP ( 2007). A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica, 45, 637-640.
DOI URL |
49 |
Ye ZP, Hu WH, Xiao YA, Fan DY, Yi JH, Duan SH, Yan XH, He L, Zhang SS ( 2014). A mechanistic model of light-response of photosynthetic electron flow and its application. Chinese Journal of Plant Ecology, 38, 1241-1249.
DOI URL |
[ 叶子飘, 胡文海, 肖宜安, 樊大勇, 尹建华, 段世华, 闫小红, 贺俐, 张斯斯 ( 2014). 光合电子流对光响应的机理模型及其应用. 植物生态学报, 38, 1241-1249.]
DOI URL |
|
50 |
Ye ZP, Robakowski P, Suggett JD ( 2013a). A mechanistic model for the light response of photosynthetic electron transport rate based on light harvesting properties of photosynthetic pigment molecules. Planta, 237, 837-847.
DOI URL PMID |
51 |
Ye ZP, Suggett JD, Robakowski P, Kang HJ ( 2013b). A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of PSII in C3 and C4 species. New Phytologist, 152, 1251-1262.
DOI URL PMID |
52 | Yin XY, Struik PC, Romero P, Harbinson J, Evers JB, van der Putten PEL, Vos J ( 2009). Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: A critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant, Cell & Environment, 32, 448-464. |
[1] | 王复标, 叶子飘. 植物电子传递速率光响应模型的研究进展[J]. 植物生态学报, 2024, 48(3): 287-305. |
[2] | 叶子飘, 段世华, 安婷, 康华靖. C4作物电子传递速率对CO2响应模型的构建及应用[J]. 植物生态学报, 2018, 42(10): 1000-1008. |
[3] | 李理渊, 李俊, 同小娟, 孟平, 张劲松, 张静茹. 黄河小浪底栓皮栎、刺槐叶片电子传递速率-光响应的模拟[J]. 植物生态学报, 2018, 42(10): 1009-1021. |
[4] | 王丹, 乔匀周, 董宝娣, 葛静, 杨萍果, 刘孟雨. 昼夜不对称性与对称性升温对大豆产量和水分利用的影响[J]. 植物生态学报, 2016, 40(8): 827-833. |
[5] | 叶子飘, 胡文海, 闫小红. 光系统II实际光化学量子效率对光的响应模型的比较[J]. 植物生态学报, 2016, 40(11): 1208-1217. |
[6] | 郭数进,李玮瑜,马艳芸,赵恒,乔玲,李贵全. 山西不同生态型大豆品种苗期耐低温性综合评价[J]. 植物生态学报, 2014, 38(9): 990-1000. |
[7] | 彭东海,杨建波,李健,邢永秀,覃刘东,杨丽涛,李杨瑞. 间作大豆对甘蔗根际土壤细菌及固氮菌多样性的影响[J]. 植物生态学报, 2014, 38(9): 959-969. |
[8] | 叶子飘,胡文海,肖宜安,樊大勇,尹建华,段世华,闫小红,贺俐,张斯斯. 光合电子流对光响应的机理模型及其应用[J]. 植物生态学报, 2014, 38(11): 1241-1249. |
[9] | 王芳妹, 蔡妙珍, 张淑娜, 王宁, 李华飞, 胡雪娜, 虞舒航. NO和H2O2诱导大豆根尖和边缘细胞耐铝反应的 作用[J]. 植物生态学报, 2011, 35(9): 981-989. |
[10] | 张绪成, 于显枫, 高世铭. 高大气CO2浓度下氮素对小麦叶片光能利用的影响[J]. 植物生态学报, 2010, 34(10): 1196-1203. |
[11] | 蔡妙珍, 邢承华, 刘鹏, 徐根娣, 吴韶辉, 何璠. 大豆根尖边缘细胞和粘液分泌对铝胁迫解除的响应[J]. 植物生态学报, 2008, 32(5): 1007-1014. |
[12] | 严茂粉, 李向华, 王克晶. 北京地区野生大豆种群SSR标记的遗传多样性评价[J]. 植物生态学报, 2008, 32(4): 938-950. |
[13] | 李荣峰, 蔡妙珍, 刘鹏, 徐根娣, 陈敏燕, 梁和. Al3+对大豆根边缘细胞程序性死亡诱导的生理生态作用[J]. 植物生态学报, 2008, 32(3): 690-697. |
[14] | 苗保河, 李向东, 刘波, 何启平, 朱陶, 刘兴坦, 朱启玉, 乔广法, 樊廷安, 陈成君, 董庆裕, 余松烈. 波浪冠层栽培模式对高油大豆叶片活性氧代谢和膜脂过氧化的影响[J]. 植物生态学报, 2008, 32(3): 673-680. |
[15] | 宋开山, 张柏, 王宗明, 刘殿伟, 刘焕军. 基于小波分析的大豆叶绿素a含量高光谱反演模型[J]. 植物生态学报, 2008, 32(1): 152-160. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19