植物生态学报 ›› 2018, Vol. 42 ›› Issue (4): 466-474.DOI: 10.17521/cjpe.2017.0249
出版日期:
2018-04-20
发布日期:
2018-03-08
通讯作者:
杜盛
基金资助:
Qiu-Yue HE1,2,Mei-Jie YAN2,3,Jian-Guo ZHANG4,Sheng DU2,3,*()
Online:
2018-04-20
Published:
2018-03-08
Contact:
Sheng DU
Supported by:
摘要:
随着全球气候变化加剧, 局部地区温度上升和降水量改变将对区域植被的分布与生长产生重要影响。在黄土高原半湿润及半干旱地区植被恢复中, 刺槐(Robinia pseudoacacia)是大面积种植的人工林树种。为探究该树种蒸腾耗水特征对降水量改变及水分条件差异的响应, 于2015年4月起, 在地处黄土高原半湿润区的陕西省永寿县槐平林场, 于35年生刺槐人工林样地中布设了人工截留降雨试验, 减少了47.5%的降雨输入。处理当年生长季内, 截留降雨处理区0-100 cm土层的平均土壤含水量相对于对照区(23.76%)有明显降低(22.59%)。采用Granier热扩散探针对截留降雨处理区和对照区的样树树干液流动态进行连续监测, 并同步监测主要气象环境因子(太阳辐射、空气温度和湿度)和林地土壤含水量, 分析了截留降雨处理区与对照区树干液流通量密度动态特征及其对环境因子的响应。结果表明: 截留降雨输入处理降低了刺槐树干液流通量密度, 截留降雨处理期间典型天气的平均液流通量密度(1.64 mL·m -2·s -1)不仅低于同组样树在处理前一年同期的水平(2.42 mL·m -2·s -1), 而且远低于试验期间对照区样树的平均水平(3.38 mL·m -2·s -1); 同时, 截留降雨处理还降低了刺槐液流通量密度对气象因子变化的敏感性, 截留降雨处理区样树液流通量密度响应空气水汽压亏缺的拟合方程参数值与对照区样树差异显著。分析可知, 降水量水平不仅影响土壤水分状况, 而且影响刺槐对气象环境因子响应的敏感性, 降水量减少导致的土壤含水量整体降低会使得该区域刺槐蒸腾耗水量下降, 显示其对环境因子的适应性, 但最终会导致生产力的大幅度降低。
何秋月, 闫美杰, 张建国, 杜盛. 黄土高原半湿润区刺槐树干液流对人工截留降雨输入及环境因子的响应. 植物生态学报, 2018, 42(4): 466-474. DOI: 10.17521/cjpe.2017.0249
Qiu-Yue HE, Mei-Jie YAN, Jian-Guo ZHANG, Sheng DU. Sap flow of Robinia pseudoacacia in response to rainfall exclusion treatment and environment factors in a sub-humid area in Loess Plateau. Chinese Journal of Plant Ecology, 2018, 42(4): 466-474. DOI: 10.17521/cjpe.2017.0249
年份 Year | 样树号 Sample tree No. | 树高 Tree height (m) | 胸径 Diameter at breast height (cm) | 边材厚度 Sap wood thinkness (cm) |
---|---|---|---|---|
2014 | 1 | 14.1 | 13.8 | 3.6 |
2 | 17.7 | 19.5 | 4.6 | |
3 | 10.7 | 10.3 | 2.9 | |
4 | 10.4 | 10.4 | 2.9 | |
5 | 10.6 | 10.4 | 2.9 | |
6 | 18.7 | 20.0 | 4.7 | |
2015 | 1 | 16.5 | 14.1 | 3.6 |
2 | 19.9 | 20.0 | 4.7 | |
3 | 10.7 | 10.3 | 2.9 | |
4 | 11.3 | 10.8 | 3.0 | |
5 | 11.3 | 10.5 | 2.9 | |
6 | 18.8 | 20.3 | 4.7 |
表1 供试样树基本信息
Table 1 Basic parameters of sample trees
年份 Year | 样树号 Sample tree No. | 树高 Tree height (m) | 胸径 Diameter at breast height (cm) | 边材厚度 Sap wood thinkness (cm) |
---|---|---|---|---|
2014 | 1 | 14.1 | 13.8 | 3.6 |
2 | 17.7 | 19.5 | 4.6 | |
3 | 10.7 | 10.3 | 2.9 | |
4 | 10.4 | 10.4 | 2.9 | |
5 | 10.6 | 10.4 | 2.9 | |
6 | 18.7 | 20.0 | 4.7 | |
2015 | 1 | 16.5 | 14.1 | 3.6 |
2 | 19.9 | 20.0 | 4.7 | |
3 | 10.7 | 10.3 | 2.9 | |
4 | 11.3 | 10.8 | 3.0 | |
5 | 11.3 | 10.5 | 2.9 | |
6 | 18.8 | 20.3 | 4.7 |
图2 两试验时段刺槐样树液流通量密度及气象因子日变化曲线(2015年7月14日为阴天, 未包括)。
Fig. 2 Diurnal courses of sap flux density of sample trees and meteorology factors during two study periods (14 July 2015 was excluded from analyses due to overcast).
测定时段 Study period | 平均日总太阳辐射 Mean daily solar radiation (MJ·m-2·d-1) | 平均空气水汽压亏缺 Mean vapor pressure deficit (kPa) | 样树1-3平均液流通量密度 Mean sap flux density of sample tree 1-3 (mL·m-2·s-1) | 样树4-6平均液流通量密度 Mean sap flux density of sample tree 4-6 (mL·m-2·s-1) |
---|---|---|---|---|
处理前 | 20.62 ± 1.69 | 0.65 ± 0.03 | 3.53 ± 2.67 | 2.42 ± 1.84 |
处理期 | 21.96 ± 1.51 | 0.53 ± 0.0201 | 3.38 ± 2.93 | 1.64 ± 1.39 |
处理期/处理前Treatment/Before treatment | 1.07 | 0.81 | 0.96 | 0.68 |
表2 两个试验时段太阳辐射、空气水汽压亏缺、液流通量密度及比值(平均值±标准误差, n = 6)
Table 2 Solar radiation, vapor pressure deficit and sap flux densities (Fd) in the two study periods and their ratios (mean ± SE, n = 6)
测定时段 Study period | 平均日总太阳辐射 Mean daily solar radiation (MJ·m-2·d-1) | 平均空气水汽压亏缺 Mean vapor pressure deficit (kPa) | 样树1-3平均液流通量密度 Mean sap flux density of sample tree 1-3 (mL·m-2·s-1) | 样树4-6平均液流通量密度 Mean sap flux density of sample tree 4-6 (mL·m-2·s-1) |
---|---|---|---|---|
处理前 | 20.62 ± 1.69 | 0.65 ± 0.03 | 3.53 ± 2.67 | 2.42 ± 1.84 |
处理期 | 21.96 ± 1.51 | 0.53 ± 0.0201 | 3.38 ± 2.93 | 1.64 ± 1.39 |
处理期/处理前Treatment/Before treatment | 1.07 | 0.81 | 0.96 | 0.68 |
年份 Year | 样树1-3 Sample tree 1-3 | 样树4-6 Sample tree 4-6 | 斜率差异检验 Difference between slopes |
---|---|---|---|
2014 | a = 8.41 | a = 6.78 | NS |
R2 = 0.64 | R2 = 0.63 | ||
p < 0.000 1 | p < 0.000 1 | ||
2015 | a = 12.33 | a = 5.34 | p < 0.001 |
R2 = 0.59 | R2 = 0.69 | ||
p < 0.000 1 | p < 0.000 1 |
表3 两试验时段平均液流通量密度与空气水汽压亏缺拟合直线斜率的差异性检验
Table 3 Difference analyses on regression parameters for sap flux density vs. vapor pressure deficit
年份 Year | 样树1-3 Sample tree 1-3 | 样树4-6 Sample tree 4-6 | 斜率差异检验 Difference between slopes |
---|---|---|---|
2014 | a = 8.41 | a = 6.78 | NS |
R2 = 0.64 | R2 = 0.63 | ||
p < 0.000 1 | p < 0.000 1 | ||
2015 | a = 12.33 | a = 5.34 | p < 0.001 |
R2 = 0.59 | R2 = 0.69 | ||
p < 0.000 1 | p < 0.000 1 |
1 | Alberti G, Inglima I, Arriga N, Piermatteo D, Pecchiari M, Zaldei A, Papale D, Peressotti A, Valentini R, Cotrufo M, Magnani F, Miglietta F ( 2007). Cambiamenti nel regime pluviometrico in ecosistemi mediterranei: II progetto MIND. Forest@, 4, 460-468. |
2 |
Besson CK, Lobo-do-Vale R, Rodrigues ML, Almeida P, Herd A, Grant OM, David TS, Schmidt M, Otieno D, Keenan TF, Gouveia C, Meriaux C, Chaves MM, Pereira JS ( 2014). Cork oak physiological responses to manipulated water availability in a Mediterranean woodland. Agricultural and Forest Meteorology, 184, 230-242.
DOI URL |
3 | Campbell GS, Norman JM ( 1998). An Introduction to Environmental Biophysics. Springer-Verlag, New York. |
4 |
Cermak J, Cienciala E, Kucera J, Lindroth A, Bednarova E ( 1995). Individual variation of sap-flow rate in large pine and spruce trees and stand transpiration: A pilot-study at the central NOPEX site. Journal of Hydrology, 168, 17-27.
DOI URL |
5 | Editorial Board of Silva of China ( 1978). Technology for Chief Tree Species Afforestation in China (Volume One). Agriculture Press, Beijing. |
[ 中国树木志编委会 ( 1978). 中国主要树种造林技术(上册). 农业出版社, 北京.] | |
6 | Du S, Liu GB ( 2015). Ecological Function of Vegetation Restoration in Loess Plateau. Science Press, Beijing. |
[ 杜盛, 刘国彬 ( 2015). 黄土高原植被恢复的生态功能. 科学出版社, 北京.] | |
7 |
Du S, Wang YL, Kume T, Zhang JG, Otsuki K, Yamanaka N, Liu GB ( 2011). Sapflow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China. Agricultural and Forest Meteorology, 151, 1-10.
DOI URL |
8 |
Fisher RA, Williams M, Da Costa AL, Malhi Y, Da Costa RF, Almeida S, Meir P ( 2007). The response of an Eastern Amazonian rain forest to drought stress: Results and modelling analyses from a throughfall exclusion experiment. Global Change Biology, 13, 2361-2378.
DOI URL |
9 |
Granier A ( 1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309-320.
DOI URL PMID |
10 |
Green SR ( 1993). Radiation balance, transpiration and photosynthesis of an isolated tree. Agricultural and Forest Meteorology, 64, 201-221.
DOI URL |
11 | Han RL, Liang ZS, Hou QC, Zou HY ( 1994). Water consumption properties of adaptable nuisery stocks on Loess Plateau. Chinese Journal of Applied Ecology, 5, 210-213. |
[ 韩蕊莲, 梁宗锁, 侯庆春, 邹厚远 ( 1994). 黄土高原适生树种苗木的耗水特性. 应用生态学报, 5, 210-213.] | |
12 |
James SA, Clearwater MJ, Meinzer FC, Goldstein G ( 2002). Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood. Tree Physiology, 22, 277-283.
DOI URL PMID |
13 |
Knapp AK, Briggs JM, Collins SL, Archer SR, Bret-Harte MS, Ewers BE, Peters DP, Young DR, Shaver GR, Pendall E, Cleary MB ( 2008). Shrub encroachment in North American grasslands: Shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14, 615-623.
DOI URL |
14 |
Li GQ, Xu GH, Zhang XQ, Huang JH, Wen ZM, Du S ( 2018). Afforestation and climate niche dynamics of black locust (Robinia pseudoacacia). Forest Ecology and Management, 407, 184-190
DOI URL |
15 |
Limousin JM, Rambal S, Ourcival JM, Rocheteau A, Joffre R, Rodriguez-Cortina R ( 2009). Long-term transpiration change with rainfall decline in a Mediterranean Quercus ilex forest. Global Change Biology, 15, 2163-2175.
DOI URL |
16 |
Llorens P, Poyatos R, Latron J, Delgado J, Oliveras I, Gallart F ( 2010). A multi-year study of rainfall and soil water controls on Scots pine transpiration under Mediterranean mountain conditions. Hydrological Processes, 24, 3053-3064.
DOI URL |
17 |
Oren R, Zimmermann R, Terborgh J ( 1996). Transpiration in upper Amazonia floodplain and upland forests in response to drought-breaking rains. Ecology, 77, 968-973.
DOI URL |
18 |
Otieno DO, Schmidt MWT, Kinyamario JI, Tenhunen J ( 2005). Responses of Acacia tortilis and Acacia xanthophloea to seasonal change in soil water availability in the savanna region of Kenya. Journal of Arid Environments, 62, 377-400.
DOI URL |
19 |
Pataki DE, Oren R ( 2003). Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest. Advances in Water Resources, 26, 1267-1278.
DOI URL |
20 |
Ru TQ, Li JY, Kong LS, Zhu YL ( 2005). Review on the research of water consumption characteristic of Robinia psedudoacia. Research of Soil and Water Conservation, 12, 135-140.
DOI URL |
[ 茹桃勤, 李吉跃, 孔令省, 朱延林 ( 2005). 刺槐耗水研究进展. 水土保持研究, 12, 135-140.]
DOI URL |
|
21 |
Tsunekawa A, Liu GB, Yamanaka N, Du S ( 2014). Restoration and Development of the Degraded Loess Plateau, China. Springer Japan, Tokyo.
DOI URL |
22 | Wang JX, Huang BL, Wang MC, Wang DH ( 2005). Transpiration water consumption of young Platycladus orientalis and Robinia pseudoacacia trees and their correction functions under different water supply. Chinese Journal of Applied Ecology, 16, 419-425. |
[ 王进鑫, 黄宝龙, 王明春, 王迪海 ( 2005). 不同供水条件下侧柏和刺槐幼树的蒸腾耗水与土壤水分应力订正. 应用生态学报, 16, 419-425.] | |
23 |
Wang YL, Liu GB, Kume T, Otsuki K, Yamanaka N, Du S ( 2010). Estimating water use of a black locust plantation by the thermal dissipation probe method in the semiarid region of Loess Plateau, China. Journal of Forest Research, 15, 241-251.
DOI URL |
24 |
Wang ZH, Miao YF, Li SX ( 2015). Effect of ammonium and nitrate nitrogen fertilizers on wheat yield in relation to accumulated nitrate at different depths of soil in drylands of China. Field Crops Research, 183, 221-224.
DOI URL |
25 |
Wightman MG, Martin TA, Gonzalez-Benecke CA, Jokela EJ, Cropper Jr WP, Ward EJ ( 2016). Loblolly pine productivity and water relations in response to throughfall reduction and fertilizer application on a poorly drained site in northern Florida. Forests, 7, 1-19.
DOI URL |
26 |
Wullschleger SD, Hanson PJ ( 2006). Sensitivity of canopy transpiration to altered precipitation in an upland oak forest: Evidence from a long-term field manipulation study. Global Change Biology, 12, 97-109.
DOI URL |
27 | Yuan Y, Hui YY, Wu YL, Wang YM, Zhao HP ( 1996). Study of influence factors locust growing in the Loess hilly region. Research of Soil and Water Conservation, 3, 146-154. |
[ 袁瀛, 惠养瑜, 吴永麟, 王郁民, 赵惠萍 ( 1996). 黄土丘陵区刺槐生长的影响因子研究. 水土保持研究, 3, 146-154.] | |
28 |
Zhang HP, Simmonds LP, Morison JIL, Payne D ( 1997). Estimation of transpiration by single trees: Comparison of sap flow measurements with a combination equation. Agricultural and Forest Meteorology, 87, 155-169.
DOI URL |
29 | Zhang JG, Kume T, Otsuke K, Yamanaka N, Du S ( 2011). Sap flow dynamics of dominant trees of Quercus liaotungensis forest in the semiarid Loess Plateau region. Scientia Silvae Sinicae, 47(4), 64-69. |
[ 张建国, 久米朋宣, 大规恭一, 山中典和, 杜盛 ( 2011). 黄土高原半干旱区辽东栎的树干液流动态. 林业科学, 47(4), 64-69.] |
[1] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[2] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[3] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[4] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[5] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[6] | 赵小宁, 田晓楠, 李新, 李广德, 郭有正, 贾黎明, 段劼, 席本野. Granier原始公式计算树干液流速率的适用性分析——以毛白杨为例[J]. 植物生态学报, 2023, 47(3): 404-417. |
[7] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[8] | 熊博文, 李桐, 黄樱, 鄢春华, 邱国玉. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393. |
[9] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[10] | 赵文芹, 席本野, 刘金强, 刘洋, 邹松言, 宋午椰, 陈立欣. 不同灌溉条件下杨树人工林蒸腾过程及环境响应[J]. 植物生态学报, 2021, 45(4): 370-382. |
[11] | 李唐吉, 王懋林, 曹颖, 徐刚, 杨琪祺, 任思源, 胡尚连. 竹笋期竹箨和笋体的日间蒸腾特性及其对水分运输的影响[J]. 植物生态学报, 2021, 45(12): 1365-1379. |
[12] | 陈胜楠, 陈左司南, 张志强. 北京山区油松和元宝槭冠层气孔导度特征及其环境响应[J]. 植物生态学报, 2021, 45(12): 1329-1340. |
[13] | 赵飞飞, 马煦, 邸楠, 王烨, 刘洋, 李广德, 贾黎明, 席本野. 毛白杨茎干不同方位夜间液流变化规律及其主要影响因子[J]. 植物生态学报, 2020, 44(8): 864-874. |
[14] | 马龙龙, 杜灵通, 丹杨, 王乐, 乔成龙, 吴宏玥. 基于茎流-蒸渗仪法的荒漠草原带人工灌丛群落蒸散特征[J]. 植物生态学报, 2020, 44(8): 807-818. |
[15] | 杨军军, 封建民, 何志斌. 基于热比率法的青海云杉林蒸腾量估算[J]. 植物生态学报, 2018, 42(2): 195-201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19