植物生态学报 ›› 2018, Vol. 42 ›› Issue (2): 195-201.DOI: 10.17521/cjpe.2017.0082
出版日期:
2018-02-20
发布日期:
2018-04-16
通讯作者:
杨军军
基金资助:
YANG Jun-Jun1,*(),FENG Jian-Min1,HE Zhi-Bin2
Online:
2018-02-20
Published:
2018-04-16
Contact:
Jun-Jun YANG
Supported by:
摘要:
流域上游森林蒸腾量的准确估算对于干旱区水资源管理至关重要。该文采用热比率法的树干液流技术对青海云杉(Picea crassifolia)单木和林分蒸腾量进行了估算和转换, 目的在于通过该研究为不同尺度森林蒸腾量估算提供一个系统的解决方案。研究结果如下: 第一, 青海云杉胸径与边材面积间存在显著指数函数关系, R2 = 0.94, p < 0.000β1; 第二, 热比率法的青海云杉蒸腾量测量中, 理论值与观测值间的比例系数为1.09, 观测值偏小; 第三, 基于单木平均液流速率和林分总边材面积的林分蒸腾量计算中, 不同胸径样树液流速率的异质会导致液流速率被高估或低估近1/3; 第四, 基于单木胸径与液流量间关系的林分液流估算技术能够更合理地对青海云杉蒸腾量进行估算。根据该文研究结果, 基于探针式液流测量技术可以更为科学地对单一树种研究区不同尺度的蒸腾量进行估算。
杨军军, 封建民, 何志斌. 基于热比率法的青海云杉林蒸腾量估算. 植物生态学报, 2018, 42(2): 195-201. DOI: 10.17521/cjpe.2017.0082
YANG Jun-Jun, FENG Jian-Min, HE Zhi-Bin. Estimating whole-tree water use of Picea crassifolia based on heat ratio method. Chinese Journal of Plant Ecology, 2018, 42(2): 195-201. DOI: 10.17521/cjpe.2017.0082
样树编号 Sample tree number | 树高 Tree height | 胸径 Diameter at breast height | 冠幅宽度 Crown width | 冠幅投影面积 Crown projection area | 树皮厚度 Bark depth | 心材半径 Heartwood radius | 边材厚度 Sapwood width | 边材面积 Sapwood area |
---|---|---|---|---|---|---|---|---|
(m) | (cm) | (m) | (m2) | (cm) | (mm) | (mm) | (mm2) | |
1 | 16.1 | 22.2 | 4.24 | 14.07 | 0.6 | 67 | 37.5 | 20β327.0 |
2 | 14.2 | 16.0 | 4.29 | 14.16 | 0.6 | 42 | 32.1 | 11β694.6 |
3 | 13.0 | 15.5 | 3.38 | 10.35 | 0.6 | 40 | 31.7 | 11β090.7 |
4 | 11.3 | 11.4 | 2.68 | 8.13 | 0.6 | 22 | 28.6 | 6β599.9 |
5 | 5.5 | 6.2 | 2.01 | 6.34 | 0.3 | 8 | 20.5 | 2β286.3 |
6 | 5.3 | 5.0 | 1.60 | 5.50 | 0.3 | 8 | 14.5 | 1β343.8 |
7 | 4.2 | 5.1 | 2.26 | 6.91 | 0.3 | 8 | 15.0 | 1β413.7 |
8 | 3.8 | 4.1 | 2.11 | 6.55 | 0.3 | 8 | 10.0 | 785.4 |
表1 青海云杉树干液流测量样木的生物、生理学统计参数
Table 1 Biometric and physiological parameters of sap flow measurements for Picea crassifolia
样树编号 Sample tree number | 树高 Tree height | 胸径 Diameter at breast height | 冠幅宽度 Crown width | 冠幅投影面积 Crown projection area | 树皮厚度 Bark depth | 心材半径 Heartwood radius | 边材厚度 Sapwood width | 边材面积 Sapwood area |
---|---|---|---|---|---|---|---|---|
(m) | (cm) | (m) | (m2) | (cm) | (mm) | (mm) | (mm2) | |
1 | 16.1 | 22.2 | 4.24 | 14.07 | 0.6 | 67 | 37.5 | 20β327.0 |
2 | 14.2 | 16.0 | 4.29 | 14.16 | 0.6 | 42 | 32.1 | 11β694.6 |
3 | 13.0 | 15.5 | 3.38 | 10.35 | 0.6 | 40 | 31.7 | 11β090.7 |
4 | 11.3 | 11.4 | 2.68 | 8.13 | 0.6 | 22 | 28.6 | 6β599.9 |
5 | 5.5 | 6.2 | 2.01 | 6.34 | 0.3 | 8 | 20.5 | 2β286.3 |
6 | 5.3 | 5.0 | 1.60 | 5.50 | 0.3 | 8 | 14.5 | 1β343.8 |
7 | 4.2 | 5.1 | 2.26 | 6.91 | 0.3 | 8 | 15.0 | 1β413.7 |
8 | 3.8 | 4.1 | 2.11 | 6.55 | 0.3 | 8 | 10.0 | 785.4 |
图3 青海云杉边材厚度与总蒸腾量间的变化关系。此处总蒸腾量为2015年7月23日到10月25日之间不同胸径青海云杉的总蒸腾量。
Fig. 3 Sap flow variation patterns of sapwood width for Qinghai spruce. Total transpiration was the transpiration of sample trees between July 23th and October 25th in 2015.
月份 Month | 样树编号 Sample tree number | ||||||
---|---|---|---|---|---|---|---|
1 | 3 | 4 | 5 | 6 | 7 | 8 | |
7月 July | 68.67 ± 6.49 | 29.97 ± 4.19 | 17.89 ± 2.24 | 5.37 ± 0.33 | 7.54 ± 0.87 | 3.81 ± 0.43 | 2.78 ± 0.11 |
8月 August | 44.55 ± 9.09 | 14.77 ± 4.41 | 9.74 ± 2.57 | 2.93 ± 0.89 | 4.36 ± 1.27 | 1.40 ± 0.53 | 1.81 ± 0.42 |
9月 September | 34.83 ± 9.50 | 9.98 ± 3.29 | 6.88 ± 3.01 | 1.72 ± 0.72 | 2.56 ± 1.29 | 0.53 ± 0.09 | 0.97 ± 0.28 |
10月 October | 25.81 ± 6.68 | 6.99 ± 1.43 | 3.16 ± 1.20 | 0.95 ± 0.31 | 1.64 ± 0.68 | 0.41 ± 0.03 | 0.79 ± 0.18 |
表2 观测期青海云杉逐月日均蒸腾量(平均值±标准偏差)(kg·d-1)
Table 2 The daily mean whole-tree water use in each month in the observational period (mean ± SD)(kg·d-1)
月份 Month | 样树编号 Sample tree number | ||||||
---|---|---|---|---|---|---|---|
1 | 3 | 4 | 5 | 6 | 7 | 8 | |
7月 July | 68.67 ± 6.49 | 29.97 ± 4.19 | 17.89 ± 2.24 | 5.37 ± 0.33 | 7.54 ± 0.87 | 3.81 ± 0.43 | 2.78 ± 0.11 |
8月 August | 44.55 ± 9.09 | 14.77 ± 4.41 | 9.74 ± 2.57 | 2.93 ± 0.89 | 4.36 ± 1.27 | 1.40 ± 0.53 | 1.81 ± 0.42 |
9月 September | 34.83 ± 9.50 | 9.98 ± 3.29 | 6.88 ± 3.01 | 1.72 ± 0.72 | 2.56 ± 1.29 | 0.53 ± 0.09 | 0.97 ± 0.28 |
10月 October | 25.81 ± 6.68 | 6.99 ± 1.43 | 3.16 ± 1.20 | 0.95 ± 0.31 | 1.64 ± 0.68 | 0.41 ± 0.03 | 0.79 ± 0.18 |
图4 观测期(7月23日到10月25日)林分蒸腾量与单木蒸腾量间对比关系。
Fig. 4 Stand sap-flow pattern and tree sap-flow patterns on seven measured trees during the observational period (between July 23th and October 25th in 2015).
[1] |
Berdanier AB, Miniat CF, Clark JS (2016). Predictive models for radial sap flux variation in coniferous, diffuse-porous and ring-porous temperate trees.Tree Physiology, 36, 1-10.
DOI URL PMID |
[2] |
Burgess SSO, Adams MA, Turner NC, Beverly CR, Ong CK, Khan AAH, Bleby TM (2001). An improved heat pulse method to measure low and reverse rates of sap flow in woody plants.Tree Physiology, 21, 589-598.
DOI URL PMID |
[3] | Chang XX, Zhao WZ, He ZB (2014a). Radial pattern of sap flow and response to microclimate and soil moisture in Qinghai spruce (Picea crassifolia) in the upper Heihe River Basin of arid northwestern China.Agricultural and Forest Meteorology, 187, 14-21. |
[4] |
Chang XX, Zhao WZ, Liu H, Wei X, Liu B, He ZB (2014b). Qinghai spruce (Picea crassifolia) forest transpiration and canopy conductance in the upper Heihe River Basin of arid northwestern China. Agricultural and Forest Meteorology, 198, 209-220.
DOI URL |
[5] |
Chen XL, Ju X, Lin KL (2014). Development status, issues and countermeasures of China’s plantation.World Forestry Research, 27, 54-59.
DOI URL |
[陈幸良, 巨茜, 林昆仑 (2014). 中国人工林发展现状、问题与对策. 世界林业研究, 27, 54-59. ]
DOI URL |
|
[6] |
de Dios VR, Roy J, Ferrio JP, Alday JG, Landais D, Milcu A, Gessler A (2015). Processes driving nocturnal transpiration and implications for estimating land evapotranspiration.Scientific Reports, 5, 10975. DOI: 10.1038/srep10975.
DOI URL PMID |
[7] |
Fiora A, Cescatti A (2008). Vertical foliage distribution determines the radial pattern of sap flux density in Picea abies. Tree Physiology, 28, 1317-1323.
DOI URL PMID |
[8] |
Gebauer T, Horna V, Leuschner C (2008). Variability in radial sap flux density patterns and sapwood area among seven co-occurring temperate broad-leaved tree species.Tree Physiology, 28, 1821-1830.
DOI URL PMID |
[9] |
He ZB, Zhao WZ, Liu H, Tang ZX (2012). Effect of forest on annual water yield in the mountains of an arid inland river basin: A case study in the Pailugou catchment on northwestern China’s Qilian Mountains.Hydrological Processes, 26, 613-621.
DOI URL |
[10] |
Hentschel R, Bittner S, Janott M, Biernath C, Holst J, Ferrio JP, Gessler A, Priesack E (2013). Simulation of stand transpiration based on a xylem water flow model for individual trees. Agricultural and Forest Meteorology, 182-183, 31-42.
DOI URL |
[11] |
Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ (2013). Terrestrial water fluxes dominated by transpiration.Nature, 496, 347-350.
DOI URL PMID |
[12] |
Kume T, Otsuki K, Du S, Yamanaka N, Wang YL, Liu GB (2012). Spatial variation in sap flow velocity in semiarid region trees: Its impact on stand-scale transpiration estimates.Hydrological Processes, 26, 1161-1168.
DOI URL |
[13] |
McJannet D, Fitch P, Disher M, Wallace J (2007). Measurements of transpiration in four tropical rainforest types of north Queensland, Australia.Hydrological Processes, 21, 3549-3564.
DOI URL |
[14] |
Pataki DE, Oren R (2003). Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest.Advances in Water Resources, 26, 1267-1278.
DOI URL |
[15] |
Schlaepfer DR, Ewers BE, Shuman BN, Williams DG, Frank JM, Massman WJ, Lauenroth WK (2014). Terrestrial water fluxes dominated by transpiration: Comment. Ecosphere, 5, 1-9.
DOI URL |
[16] |
Shinohara Y, Tsuruta K, Ogura A, Noto F, Komatsu H, Otsuki K, Maruyama T (2013). Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest.Tree Physiology, 33, 550-558.
DOI URL PMID |
[17] |
Su L, Xu WT, Zhao CM, Xie ZQ, Ju H (2016). Inter- and intra-?specific variation in stemflow for evergreen species and deciduous tree species in a subtropical forest.Journal of Hydrology, 537, 1-9.
DOI URL |
[18] |
Sus O, Poyatos R, Barba J, Carvalhais N, Llorens P, Williams M, Vilalta JM (2014). Time variable hydraulic parameters improve the performance of a mechanistic stand transpiration model. A case study of Mediterranean Scots pine sap flow data assimilation.Agricultural and Forest Meteorology, 198, 168-180.
DOI URL |
[19] | Tian FX (2011). Study on Eco-hydrological Processes of Qinghai Spruce (Picea crassifolia) Forest in the Qilian Mountains. PhD dissertation, Lanzhou University, Lanzhou. |
[田风霞 (2011).祁连山区青海云杉林生态水文过程研究. 博士学位论文, 兰州大学, 兰州.] | |
[20] |
Ungar ED, Rotenberg E, Raz-Yaseef N, Cohen S, Yakir D, Schiller G (2013). Transpiration and annual water balance of Aleppo pine in a semiarid region: Implications for forest management.Forest Ecology and Management, 298, 39-51.
DOI URL |
[21] |
van de Wal BAE, Guyot A, Lovelock CE, Lockington DA, Steppe K (2015). Influence of temporospatial variation in sap flux density on estimates of whole-tree water use inAvicennia marina. Trees, 29, 215-222.
DOI URL |
[22] |
Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi DD, Wullschleger SD (2001). A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance.Agricultural and Forest Meteorology, 106, 153-168.
DOI URL |
[1] | 赵长兴, 赵维俊, 张兴林, 刘思敏, 牟文博, 刘金荣. 祁连山排露沟流域青海云杉种群种内竞争与促进作用分析[J]. 植物生态学报, 2022, 46(9): 1027-1037. |
[2] | 秦慧君, 焦亮, 周怡, 薛儒鸿, 柒常亮, 杜达石. 祁连山优势树木碳水化合物资源分配的海拔和树种效应[J]. 植物生态学报, 2022, 46(2): 208-219. |
[3] | 杜军, 王文, 何志斌, 陈龙飞, 蔺鹏飞, 朱喜, 田全彦. 祁连山青海云杉物候表型的空间分异及其内在机制[J]. 植物生态学报, 2021, 45(8): 834-843. |
[4] | 拓锋, 刘贤德, 刘润红, 赵维俊, 敬文茂, 马剑, 武秀荣, 赵晶忠, 马雪娥. 祁连山大野口流域青海云杉种群空间格局及其 关联性[J]. 植物生态学报, 2020, 44(11): 1172-1183. |
[5] | 唐海萍, 薛海丽, 房飞. 叶片和群落尺度净光合速率关系的探讨[J]. 植物生态学报, 2015, 39(9): 924-931. |
[6] | 彭守璋, 赵传燕, 许仲林, 王超, 柳逸月. 黑河上游祁连山区青海云杉生长状况及其潜在分布区的模拟[J]. 植物生态学报, 2011, 35(6): 605-614. |
[7] | 张鹏, 王刚, 张涛, 陈年来. 祁连山两种优势乔木叶片δ13C的海拔响应及其机理[J]. 植物生态学报, 2010, 34(2): 125-133. |
[8] | 赵传燕, 沈卫华, 彭焕华. 祁连山区青海云杉林冠层叶面积指数的反演方法[J]. 植物生态学报, 2009, 33(5): 860-869. |
[9] | 张涛, 安黎哲, 陈拓, 代春艳, 陈年来. 不同海拔青海云杉与祁连圆柏叶片抗氧化系统[J]. 植物生态学报, 2009, 33(4): 802-811. |
[10] | 王娅丽, 李毅. 祁连山青海云杉天然群体的种实性状表型多样性[J]. 植物生态学报, 2008, 32(2): 355-362. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19