植物生态学报 ›› 2020, Vol. 44 ›› Issue (8): 864-874.DOI: 10.17521/cjpe.2020.0089
赵飞飞1,*(), 马煦1,*(
), 邸楠1,2, 王烨3, 刘洋1, 李广德4, 贾黎明1, 席本野1
收稿日期:
2020-03-30
接受日期:
2020-07-10
出版日期:
2020-08-20
发布日期:
2020-08-07
通讯作者:
赵飞飞,马煦,席本野
作者简介:
** benyexi@bjfu.edu.cn* 同等贡献 Contributed equally to this work
基金资助:
ZHAO Fei-Fei1,*(), MA Xu1,*(
), DI Nan1,2, WANG Ye3, LIU Yang1, LI Guang-De4, JIA Li-Ming1, XI Ben-Ye1
Received:
2020-03-30
Accepted:
2020-07-10
Online:
2020-08-20
Published:
2020-08-07
Contact:
ZHAO Fei-Fei,MA Xu,XI Ben-Ye
Supported by:
摘要:
为明确毛白杨(Populus tomentosa)不同方位夜间蒸腾量(Nt)及茎干充水量(Sr)等夜间液流活动的规律, 探究不同方位Nt和Sr的主要影响因子, 该研究使用热扩散的方法监测了宽窄行模式下栽植的毛白杨茎干不同方位夜间液流, 并用图像法区分Nt和Sr。使用自动气象站和机械式张力计监测太阳总辐射(Rs, kW·m-2)、空气温度(Ta, ℃)、空气相对湿度(RH, %)、风速(v, m·s-1)、土壤水势(ψ, kPa)等环境因子。通过比较各方位的Nt和Sr等液流活动的大小情况及其与环境因子之间的相关性得到方位间夜间液流的差异性以及各方位夜间液流的主要影响因子。结果显示: 宽行距位于东侧的样树西方位的Nt和Sr均最大, 其中西方位的Sr显著大于其他3个方位; 北方位的Nt显著小于其他3个方位; 其他方位间的Nt和Sr无显著差异; 各方位夜间茎干充水量占夜间液流量的比例(Sr/Q)无显著差异。宽行距位于西侧的样树西方位的Nt和Sr亦均最大, 其中西方位的Sr显著大于东方位和南方位; 南方位的Nt最小, 显著小于西方位和北方位, 其他方位间的Nt和Sr无显著差异; 南方位的Sr/Q显著大于其他3个方位。各方位的Nt和Sr均与水汽压亏缺(VPD)有显著的正相关关系, 部分方位Nt和Sr与Ta和RH有显著相关关系, 没有任何方位Nt和Sr与v和ψ有显著相关关系。Nt和Sr方位间的差异(NtCV、SrCV)与VPD、Ta、RH、v和ψ均无显著相关关系。此外, Sr受白天的液流活动的影响显著。综上所述, 毛白杨不同方位Nt和Sr等液流活动具有较大的差异, 且西方位是优势方位; VPD是影响各方位Nt和Sr的主要气象因子。
赵飞飞, 马煦, 邸楠, 王烨, 刘洋, 李广德, 贾黎明, 席本野. 毛白杨茎干不同方位夜间液流变化规律及其主要影响因子. 植物生态学报, 2020, 44(8): 864-874. DOI: 10.17521/cjpe.2020.0089
ZHAO Fei-Fei, MA Xu, DI Nan, WANG Ye, LIU Yang, LI Guang-De, JIA Li-Ming, XI Ben-Ye. Azimuthal variation in nighttime sap flow and its mainly influence factors of Populus tomentosa. Chinese Journal of Plant Ecology, 2020, 44(8): 864-874. DOI: 10.17521/cjpe.2020.0089
编号 Number | 胸径 Diameter at breast height (cm) | 液流测量时期 Sap flow measured date | 测量完整天数 Full measured days | 宽行距位置 Wide row position |
---|---|---|---|---|
T1 | 10.32 | 2011-05-16-05-19 | 4 | W |
T2 | 10.56 | 2011-05-21-05-24 | 4 | E |
T3 | 11.04 | 2011-05-26-05-29 | 4 | W |
T4 | 9.80 | 2011-05-31-06-04 | 5 | E |
T5 | 9.90 | 2011-06-06-06-12 | 7 | E |
T6 | 10.65 | 2011-06-17-06-23 | 7 | W |
T7 | 13.30 | 2011-06-25-07-03 | 9 | W |
T8 | 12.72 | 2011-07-05-07-18 | 13 | W |
T9 | 7.47 | 2011-07-19-07-29 | 11 | W |
T10 | 8.35 | 2011-08-02-08-16 | 14 | W |
表1 宽窄行模式种植下毛白杨样树的信息及液流监测时期
Table 1 Characteristics and metrical information of sample trees of Populus tomentosa which planted in wide and narrow rows
编号 Number | 胸径 Diameter at breast height (cm) | 液流测量时期 Sap flow measured date | 测量完整天数 Full measured days | 宽行距位置 Wide row position |
---|---|---|---|---|
T1 | 10.32 | 2011-05-16-05-19 | 4 | W |
T2 | 10.56 | 2011-05-21-05-24 | 4 | E |
T3 | 11.04 | 2011-05-26-05-29 | 4 | W |
T4 | 9.80 | 2011-05-31-06-04 | 5 | E |
T5 | 9.90 | 2011-06-06-06-12 | 7 | E |
T6 | 10.65 | 2011-06-17-06-23 | 7 | W |
T7 | 13.30 | 2011-06-25-07-03 | 9 | W |
T8 | 12.72 | 2011-07-05-07-18 | 13 | W |
T9 | 7.47 | 2011-07-19-07-29 | 11 | W |
T10 | 8.35 | 2011-08-02-08-16 | 14 | W |
图3 宽窄行模式栽植下毛白杨液流研究期内环境因子变化。
Fig. 3 Variation of environmental factors during the sap flow study period of Populus tomentosa which planted in wide and narrow rows.
Ta (℃) | VPD (kPa) | RH (%) | v (m·s-1) | |
---|---|---|---|---|
白天-夜间 Daytime-nighttime | 4.34** | 0.77** | -12.08** | 0.73** |
相关系数 Correlation coefficient | 0.812** | 0.879** | 0.849** | 0.533** |
表2 宽窄行模式栽植下毛白杨液流研究期内昼夜气象因子差异及相关性
Table 2 Differences and correlations between diurnal and nocturnal meteorological factors during the sap flow study period of Populus tomentosa which planted in wide and narrow rows
Ta (℃) | VPD (kPa) | RH (%) | v (m·s-1) | |
---|---|---|---|---|
白天-夜间 Daytime-nighttime | 4.34** | 0.77** | -12.08** | 0.73** |
相关系数 Correlation coefficient | 0.812** | 0.879** | 0.849** | 0.533** |
图4 宽窄行模式种植下毛白杨不同方位的夜间液流量变化。DAY, 开始监测液流的天数。
Fig. 4 Variation of differently azimuthal nocturnal sap flux of Populus tomentosa which planted in wide and narrow rows. DAY, the number of days to start monitoring the sap flow.
方位 Orientation | E-S | E-W | E-N | S-W | S-N | W-N | n | |
---|---|---|---|---|---|---|---|---|
宽行距位于东侧 Wide row in the east | 平均差异 Average difference | -0.005 | -0.027 | 0.021 | -0.022 | 0.026 | 0.049* | 23 |
相关系数 Correlation coefficient | 0.644** | 0.612** | 0.739** | 0.586** | 0.895** | 0.434* | ||
宽行距位于西侧 Wide row in the west | 平均差异 Average difference | 0.029 | -0.11** | -0.035 | -0.14** | -0.063* | 0.075* | 70 |
相关性 Correlation coefficient | 0.621** | 0.471** | 0.675** | 0.609** | 0.445** | 0.344* |
表3 宽窄行模式栽植下的毛白杨不同方位夜间液流配对样本t检验结果
Table 3 The t-test result of differently azimuthal nocturnal sap flux of Populus tomentosa which planted in wide and narrow rows
方位 Orientation | E-S | E-W | E-N | S-W | S-N | W-N | n | |
---|---|---|---|---|---|---|---|---|
宽行距位于东侧 Wide row in the east | 平均差异 Average difference | -0.005 | -0.027 | 0.021 | -0.022 | 0.026 | 0.049* | 23 |
相关系数 Correlation coefficient | 0.644** | 0.612** | 0.739** | 0.586** | 0.895** | 0.434* | ||
宽行距位于西侧 Wide row in the west | 平均差异 Average difference | 0.029 | -0.11** | -0.035 | -0.14** | -0.063* | 0.075* | 70 |
相关性 Correlation coefficient | 0.621** | 0.471** | 0.675** | 0.609** | 0.445** | 0.344* |
图5 毛白杨不同方位夜间蒸腾、茎干充水以及充水所占比例的平均值(平均值±标准偏差)。E、W分别表示宽行位于样树的东侧和西侧。柱状图上的不同字母表示方位间的差异显著。
Fig. 5 Average value (mean ± SD) of nocturnal transpiration, stem refilling, and proportion of stem refilling in different orientations of Populus tomentosa. E and W indicate wide rows are in the east and west of the sample trees, respectively. Different lowercase letters indicate significant difference in different directions.
E-S | E-W | E-N | S-W | S-N | W-N | ||
---|---|---|---|---|---|---|---|
宽行距位于东侧 Wide row in the east | Nt | -0.012 | -0.013 | 0.039** | -0.001 | 0.051** | 0.052** |
Sr | 0.029 | -0.062* | 0.029 | -0.091** | 0.001 | 0.091* | |
Sr/Q | 0.067 | -0.019 | -0.034 | -0.086 | -0.100 | -0.015 | |
宽行距位于西侧 Wide row in the west | Nt | 0.031 | -0.068 | -0.034 | -0.099** | -0.065** | 0.034 |
Sr | -0.005 | -0.072** | -0.046** | -0.070** | -0.041* | 0.026 | |
Sr/Q | -0.096** | 0.009 | -0.024 | 0.110** | 0.073** | -0.033 |
表4 宽窄行模式种植下毛白杨不同方位夜间蒸腾量和茎干充水量配对样本t检验结果
Table 4 The t-test result of nocturnal transpiration and stem refilling of Populus tomentosa which planted in wide and narrow rows
E-S | E-W | E-N | S-W | S-N | W-N | ||
---|---|---|---|---|---|---|---|
宽行距位于东侧 Wide row in the east | Nt | -0.012 | -0.013 | 0.039** | -0.001 | 0.051** | 0.052** |
Sr | 0.029 | -0.062* | 0.029 | -0.091** | 0.001 | 0.091* | |
Sr/Q | 0.067 | -0.019 | -0.034 | -0.086 | -0.100 | -0.015 | |
宽行距位于西侧 Wide row in the west | Nt | 0.031 | -0.068 | -0.034 | -0.099** | -0.065** | 0.034 |
Sr | -0.005 | -0.072** | -0.046** | -0.070** | -0.041* | 0.026 | |
Sr/Q | -0.096** | 0.009 | -0.024 | 0.110** | 0.073** | -0.033 |
E | S | W | N | |
---|---|---|---|---|
Nt | 0.096 | 0.189 | -0.203 | 0.015 |
Sr | 0.436** | 0.377** | 0.471** | 0.250* |
表5 宽窄行模式栽植下毛白杨各方位夜间蒸腾量、茎干充水量与白天液流的相关系数
Table 5 Correlation coefficients between nocturnal transpiration, stem refilling and diurnal sap flux in different orientations of Populus tomentosa which planted in wide and narrow rows
E | S | W | N | |
---|---|---|---|---|
Nt | 0.096 | 0.189 | -0.203 | 0.015 |
Sr | 0.436** | 0.377** | 0.471** | 0.250* |
VPD | Ta | RH | v | ψ | |
---|---|---|---|---|---|
NtE | 0.590** | -0.611* | -0.814** | 0.188 | 0.042 |
NtS | 0.760** | 0.102 | -0.613* | -0.310 | -0.354 |
NtW | 0.577* | -0.334 | -0.602* | -0.026 | -0.178 |
NtN | 0.678** | -0.288 | -0.623* | -0.099 | -0.212 |
NtCV | -0.385 | -0.194 | 0.152 | 0.345 | 0.398 |
SrE | 0.584* | -0.472* | -0.554* | -0.297 | -0.170 |
SrS | 0.555** | 0.068 | -0.411 | -0.514 | -0.276 |
SrW | 0.576* | -0.129 | -0.468* | -0.421 | -0.261 |
SrN | 0.521* | -0.313 | -0.457* | -0.296 | -0.067 |
SrCV | 0.152 | 0.159 | -0.078 | -0.321 | 0.046 |
表6 环境因子与毛白杨各方位夜间蒸腾量和茎干充水量的相关系数
Table 6 Correlation coefficients between environmental factors and nocturnal transpiration, stem refilling in different orientations of Populus tomentosa
VPD | Ta | RH | v | ψ | |
---|---|---|---|---|---|
NtE | 0.590** | -0.611* | -0.814** | 0.188 | 0.042 |
NtS | 0.760** | 0.102 | -0.613* | -0.310 | -0.354 |
NtW | 0.577* | -0.334 | -0.602* | -0.026 | -0.178 |
NtN | 0.678** | -0.288 | -0.623* | -0.099 | -0.212 |
NtCV | -0.385 | -0.194 | 0.152 | 0.345 | 0.398 |
SrE | 0.584* | -0.472* | -0.554* | -0.297 | -0.170 |
SrS | 0.555** | 0.068 | -0.411 | -0.514 | -0.276 |
SrW | 0.576* | -0.129 | -0.468* | -0.421 | -0.261 |
SrN | 0.521* | -0.313 | -0.457* | -0.296 | -0.067 |
SrCV | 0.152 | 0.159 | -0.078 | -0.321 | 0.046 |
图6 毛白杨各方位夜间蒸腾量和茎干充水量与水汽压亏缺的线性关系。
Fig. 6 Linear relationship between nocturnal transpiration, stem refilling in different orientations of Populus tomentosa and vapour pressure deficiency.
[1] | Alvarado-Barrientos MS, Asbjornsen H, Holwerda F (2013). Is nighttime transpiration enhanced after fog events? Acta Horticulturae, 991, 133-139. |
[2] |
Benyon RG (1999). Nighttime water use in an irrigated Eucalyptus grandis plantation. Tree Physiology, 19, 853-859.
DOI URL PMID |
[3] |
Campbell GS, Norman JM (1977). An Introduction to Environmental Biophysics. Springer-Verlag, New York.
URL PMID |
[4] |
Carrasco LO, Bucci SJ, di Francescantonio D, Lezcano OA, Campanello PI, Scholz FG, Rodríguez S, Madanes N, Cristiano PM, Hao GY, Holbrook NM, Goldstein G (2015). Water storage dynamics in the main stem of subtropical tree species differing in wood density, growth rate and life history traits. Tree Physiology, 35, 354-365.
DOI URL PMID |
[5] | Chen LX, Zhang ZQ, Zha TG, Mo KL, Zhang Y, Fang XR (2014). Soil water affects transpiration response to rainfall and vapor pressure deficit in poplar plantation. New Forests, 45, 235-250. |
[6] | Chen ZSN, Zhang ZQ, Sun G, Chen LX, Xu H, Chen SN (2020). Biophysical controls on nocturnal sap flow in plantation forests in a semi-arid region of northern China. Agricultural and Forest Meteorology, 284, 107904. DOI: 10.1016/j.agrformet.2020.107904. |
[7] |
Daley MJ, Phillips NG (2006). Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest. Tree Physiology, 26, 411-419.
DOI URL PMID |
[8] | Dang HZ, Feng JC, Han H (2020). Characteristics of azimuthal variation of sap flux density in Pinus sylvestris var. mongolica grown in sandy land. Scientia Silvae Sinicae, 56(1), 29-37. |
[ 党宏忠, 冯金超, 韩辉 (2020). 沙地樟子松边材液流速率的方位差异特征. 林业科学, 56(1), 29-37.] | |
[9] |
Dawson TE, Burgess SSO, Tu KP, Oliveira RS, Santiago LS, Fisher JB, Simonin KA, Ambrose AR (2007). Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiology, 27, 561-575.
DOI URL PMID |
[10] | Di N, Xi BY, Clothier B, Wang Y, Li GD, Jia LM (2019). Diurnal and nocturnal transpiration behaviors and their responses to groundwater-table fluctuations and meteorological factors of Populus tomentosa in the North China Plain. Forest Ecology and Management, 448, 445-456. |
[11] | Fang WW, Lü N, Fu BJ (2018). Research advances in nighttime sap flow density, its physiological implications, and influencing factors in plants. Acta Ecologica Sinica, 38, 7521-7529. |
[ 方伟伟, 吕楠, 傅伯杰 (2018). 植物夜间液流的发生、生理意义及影响因素研究进展. 生态学报, 38, 7521-7529.] | |
[12] | February EC, Stock WD, Bond WJ, Le Roux DJ (1995). Relationships between water availability and selected vessel characteristics in Eucalyptus grandis and two hybrids. IAWA Journal, 16, 269-276. |
[13] |
Fisher JB, Baldocchi DD, Misson L, Dawson TE, Goldstein AH (2007). What the towers don’t see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California. Tree Physiology, 27, 597-610.
DOI URL PMID |
[14] | Ford CR, Hubbard RM, Kloeppel BD, Vose JM (2007). A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance. Agricultural and Forest Meteorology, 145, 176-185. |
[15] | Granier A (1985). A new method of sap flow measurement in tree stems. Annales des Sciences Forestierès, 42, 193-200. |
[16] | Granier A, Biron P, Bréda N, Pontailler J-Y, Saugier B (1996). Transpiration of trees and forest stands: short and long term monitoring using sapflow methods. Global Change Biology, 2, 265-274. |
[17] | Kang XY, Zhu ZT (2002). Status and role of triploid Populus tomentosa in pulp production in China. Journal of Beijing Forestry University, 24(Suppl.), 51-56. |
[ 康向阳, 朱之悌 (2002). 三倍体毛白杨在我国纸浆生产中的地位与作用. 北京林业大学学报, 24(增刊), 51-56.] | |
[18] | Li GD, Jia LM, Fu FZ, Xi BY, Wang Y (2010). Stem sap flow in different measurement positions of triploid Populus tomentosa. Acta Botanica Boreali-Occidentalia Sinica, 30, 1209-1218. |
[ 李广德, 贾黎明, 富丰珍, 席奔野, 王烨 (2010). 三倍体毛白杨不同方位树干边材液流特性研究. 西北植物学报, 30, 1209-1218.] | |
[19] | Liu Y, Wang Y, Wang F, Di N, Li QM, Yu LX, Deng T, Yu ZB, Xi BY, Li GD, Jia LM (2018). Azimuthal variation in sap flux density of Populus tomentosa under wide and narrow row planting scheme. Journal of Central South University of Forestry & Technology, 38(10), 95-105. |
[ 刘洋, 王烨, 王斐, 邸楠, 李全明, 于凌霄, 邓坦, 于召斌, 席本野, 李广德, 贾黎明 (2018). 宽窄行栽植下毛白杨不同方位树干液流的差异. 中南林业科技大学学报, 38(10), 95-105.] | |
[20] |
Lu P, Müller WJ, Chacko EK (2000). Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions. Tree Physiology, 20, 683-692.
URL PMID |
[21] | Ma JY, Liu JM, Li SK, Liang H, Jiang CY, Wang BZ (2007). Study on the features of the photosynthetic active radiation (PAR) with experimentations and measurements. Journal of Natural Resources, 22, 673-682. |
[ 马金玉, 刘晶淼, 李世奎, 梁宏, 姜朝阳, 王炳忠 (2007). 基于试验观测的光合有效辐射特征分析. 自然资源学报, 22, 673-682.] | |
[22] |
Manuel IJ, Mauchamp A, Fernández-Alés R, Richard J, Serge R (2001). Within-tree variation in transpiration in isolated evergreen oak trees: evidence in support of the pipe model theory. Tree Physiology, 21, 409-414.
DOI URL PMID |
[23] |
Marks CO, Lechowicz MJ (2007). The ecological and functional correlates of nocturnal transpiration. Tree Physiology, 27, 577-584.
DOI URL PMID |
[24] |
McDonald EP, Erickson JE, Kruger EL (2002). Can decreased transpiration limit plant nitrogen acquisition in elevated CO2? Functional Plant Biology, 29, 1115-1120.
DOI URL PMID |
[25] | Meidner H, Mansfield TA (1965). Stomatal responses to illumination. Biological Reviews, 40, 483-508. |
[26] |
Peraudeau S, Lafarge T, Roques S, Quiñones CO, Anne CV, Ouwerkerk PBF, Rie JV, Fabre D, Jagadish KSV, Dingkuhn M (2015). Effect of carbohydrates and night temperature on night respiration in rice. Journal of Experimental Botany, 66, 3931-3944.
DOI URL PMID |
[27] |
Poyatos R, Čermák J, Llorens P (2007). Variation in the radial patterns of sap flux density in pubescent oak (Quercus pubescens) and its implications for tree and stand transpiration measurements. Tree Physiology, 27, 537-548.
DOI URL PMID |
[28] |
Ritchie JT (1974). Atmospheric and soil water influences on the plant water balance. Agricultural Meteorology, 14, 183-198.
DOI URL |
[29] |
Snyder KA (2003). Night-time conductance in C3 and C4 species: Do plants lose water at night? Journal of Experimental Botany, 54, 861-865.
DOI URL PMID |
[30] |
Sun SJ, Gu RZ, Cong RC, Che SC, Gao JP (2006). Change of trunk sap flow of Ginkgo biloba and its response to inhibiting transpiration. Scientia Silvae Sinicae, 42(5), 22-28.
DOI URL |
[ 孙守家, 古润泽, 丛日晨, 车少臣, 高俊平 (2006). 银杏树干茎流变化及其对抑制蒸腾措施的响应. 林业科学, 42(5), 22-28.] | |
[31] | Tateishi M, Kumagai T, Utsumi Y, Umebayashi T, Shiiba Y, Inoue K, Kaji K, Cho K, Otsuki K (2008). Spatial variations in xylem sap flux density in evergreen oak trees with radial-porous wood: comparisons with anatomical observations. Trees, 22, 23-30. |
[32] | Tomonori K, Kyoichi O, Sheng D, Norikazu Y, Wang YL, Liu GB (2012). Spatial variation in sap flow velocity in semiarid region trees: its impact on stand-scale transpiration estimates. Hydrological Processes, 26, 1161-1168. |
[33] | Tsuruta K, Kume T, Komatsu H, Higashi N, Umebayashi T, Kumagai T, Otsuki K (2010). Azimuthal variations of sap flux density within Japanese cypress xylem trunks and their effects on tree transpiration estimates. Journal of Forest Research, 15, 398-403. |
[34] | Waisel Y, Liphschitz N, Kuller Z (1972). Patterns of water movement in trees and shrubs. Ecology, 53, 520-523. |
[35] | Wang H, Zhao P, Hölscher D, Wang Q, Lu P, Cai X, Zeng XP (2012). Nighttime sap flow of Acacia mangium and its implications for nighttime transpiration and stem water storage. Journal of Plant Ecology, 5, 294-304. |
[36] | Wang HT, Zhao WF, Ma LY (2006). Spatial variation of sap flow of Platycladus orientalis and its affecting factors. Scientia Silvae Sinicae, 42(7), 21-27. |
[ 王华田, 赵文飞, 马履一 (2006). 侧柏树干边材液流的空间变化规律及其相关因子. 林业科学, 42(7), 21-27.] | |
[37] | Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi DD, Wullschleger SD (2001). A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology, 106, 153-168. |
[38] | Xi BY, Di N, Wang Y, Duan J, Jia LM (2017). Modeling stand water use response to soil water availability and groundwater level for a mature Populus tomentosa plantation located on the North China Plain. Forest Ecology and Management, 391, 63-74. |
[39] |
Zeppel MJB, Lewis JD, Phillips NG, Tissue DT (2014). Consequences of nocturnal water loss: a synthesis of regulating factors and implications for capacitance, embolism and use in models. Tree Physiology, 34, 1047-1055.
DOI URL PMID |
[40] | Zhang J, Cai YM, Chen LX, Chen ZSN, Zhang ZQ (2019). Influencing factors and characteristics of nighttime sap flow of Acer truncatum in Beijing mountainous area. Acta Ecologica Sinica, 39, 3210-3223. |
[ 张婕, 蔡永茂, 陈立欣, 陈左司南, 张志强 (2019). 北京山区元宝枫夜间液流活动特征及影响因素. 生态学报, 39, 3210-3223.] |
[1] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[2] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[3] | 范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274. |
[4] | 刘洋, 马煦, 邸楠, 曾子航, 付海曼, 李新, 席本野. 毛白杨根系液流与水力再分配特征[J]. 植物生态学报, 2023, 47(1): 123-133. |
[5] | 高思涵, 葛珏希, 周李奕, 朱宝琳, 葛星宇, 李凯, 倪健. 测定森林树木叶面积的最适叶片数是多少?[J]. 植物生态学报, 2018, 42(9): 917-925. |
[6] | 李豆豆, 席本野, 王斐, 贾素苹, 赵洪林, 贺曰林, 刘洋, 贾黎明. 毛白杨叶片膨压变化规律及其对环境因子的响应[J]. 植物生态学报, 2018, 42(7): 741-751. |
[7] | 邸楠,席本野,Jeremiah R.PINTO,王烨,李广德,贾黎明. 宽窄行栽植下三倍体毛白杨根系生物量分布及其对土壤养分因子的响应[J]. 植物生态学报, 2013, 37(10): 961-971. |
[8] | 王华, 欧阳志云, 郑华, 王效科, 倪永明, 任玉芬. 北京绿化树种油松、雪松和刺槐树干液流的空间变异特征[J]. 植物生态学报, 2010, 34(8): 924-937. |
[9] | 何春霞, 李吉跃, 张燕香, 郑泉水, 谢博, 丁昳婷. 5种绿化树种叶片比叶重、光合色素含量和δ13C的开度与方位差异[J]. 植物生态学报, 2010, 34(2): 134-143. |
[10] | 何茜, 李吉跃, 沈应柏, 陈晓阳, 尚富华, 胡磊, 张志毅. 毛白杨杂种无性系叶片δ13C差异与气体交换参数[J]. 植物生态学报, 2010, 34(2): 144-150. |
[11] | 王华, 赵平, 蔡锡安, 王权, 马玲, 饶兴权, 曾小平. 马占相思夜间树干液流的分配及其对整树蒸腾估算的影响[J]. 植物生态学报, 2007, 31(5): 777-786. |
[12] | 胡进耀, 苏智先, 何晓英. 利用红外光谱分析珙桐幼树氮素状况的边缘效应[J]. 植物生态学报, 2003, 27(5): 650-654. |
[13] | 渠春梅, 韩兴国, 苏波, 黄建辉, 蒋高明. 西双版纳片断化热带雨林常绿乔木幼树水分利用效率的边缘效应研究[J]. 植物生态学报, 2001, 25(1): 1-5. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1728
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 877
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La