植物生态学报 ›› 2024, Vol. 48 ›› Issue (4): 496-507.DOI: 10.17521/cjpe.2023.0043 cstr: 32100.14.cjpe.2023.0043
杨尚锦1,2,3,*, 范云翔2,3,*, 章毓文2,3, 韩巧玲1, 赵玥1, 段劼2,3, 邸楠4,**(), 席本野2,3
收稿日期:
2023-02-16
接受日期:
2023-06-15
出版日期:
2024-04-20
发布日期:
2024-05-11
通讯作者:
** (基金资助:
YANG Shang-Jin1,2,3,*, FAN Yun-Xiang2,3,*, ZHANG Yu-Wen2,3, HAN Qiao-Ling1, ZHAO Yue1, DUAN Jie2,3, DI Nan4,**(), XI Ben-Ye2,3
Received:
2023-02-16
Accepted:
2023-06-15
Online:
2024-04-20
Published:
2024-05-11
Contact:
** (Supported by:
摘要:
夜间液流可通过叶片气孔流失, 即夜间蒸腾, 也可存储在茎干中, 即茎干充水。从夜间液流中区分夜间蒸腾与夜间茎干充水是一个亟待解决的难题。预测充水法由于其便捷性被广泛应用, 但其准确性备受质疑。为了系统分析现有的不同预测充水法在夜间液流组分划分中的准确性与适用性, 该研究以毛白杨(Populus tomentosa)为实验材料, 利用热扩散探针在高1.3 m处和7.0 m处进行液流测量, 结合高度差法和预测充水法分别在茎干充水和夜间蒸腾上的准确性优势, 分析对比4种传统预测充水法的估算效果。就4种预测充水法对不同高度液流进行分析得出的夜间蒸腾量而言, 仅基于线性衰减模型的预测充水法(Line法)误差不显著, 其他方法均存在较大偏差。采用4种预测充水法估算的茎干充水量与高度差法所得结果相比, 仅基于蒸腾反推的预测充水法(Et法)的预测结果与之存在极显著差异, 其余预测法差异均不显著, 且Line法偏差最小。基于以上结果, 该研究提出“液流高度差预测充水法”作为夜间液流组分划分新方法, 可将夜间液流划分为3个组分, 即茎干充水、冠层充水和夜间蒸腾。新方法通过高度差法提高对冠层以下茎干充水量估算的准确性, 通过误差最小的Line法提高冠层充水组分和叶片蒸腾组分划分的准确性。新方法计算的夜间充水约为76.5%, 较现有研究提高了19.8%-26.5%。划分出的夜间液流组分对环境因子的响应结果表明, 空气水汽压亏缺(VPD)与浅层土壤含水率为夜间充水的主要影响因子, 夜间蒸腾在夜间液流中的占比与VPD呈非线性负相关关系。
杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例. 植物生态学报, 2024, 48(4): 496-507. DOI: 10.17521/cjpe.2023.0043
YANG Shang-Jin, FAN Yun-Xiang, ZHANG Yu-Wen, HAN Qiao-Ling, ZHAO Yue, DUAN Jie, DI Nan, XI Ben-Ye. Comparison of methods for dividing nighttime sap flow components in Populus tomentosa trees. Chinese Journal of Plant Ecology, 2024, 48(4): 496-507. DOI: 10.17521/cjpe.2023.0043
图1 实验设计以及夜间液流组分划分方法示意图。Ah, 高度差法计算的茎干充水量; A1 + B1, 通过1.3 m处预测充水法计算的夜间茎干充水量; B2, 通过7.0 m处预测充水法计算的夜间冠层充水量; C1, 通过1.3 m处预测充水法计算的夜间蒸腾量; C2, 通过7.0 m处预测充水法计算的夜间蒸腾量; F1.3 m, 1.3 m处的液流速率; F7.0 m, 7.0 m处的液流速率; Q1.3 m, 1.3 m处的夜间液流量; Q7.0 m, 7.0 m处的夜间液流量; P1, 夜间液流速率下降由快到慢的拐点; P2, 液流速率下降到趋于稳定前的拐点。Et法, 基于蒸腾反推的预测充水法; Exp法, 基于指数衰减模型的预测充水法; Line法, 基于线性衰减模型的预测充水法; Re法, 基于“时间段”分割的预测充水法。
Fig. 1 Schematic diagram of experimental design and component division of nocturnal sap flow. Ah, nocturnal refilling of stems by height difference method; A1 + B1, nocturnal refilling of stems by prediction methods at 1.3 m; B2, nocturnal canopy refilling by prediction methods at 7.0 m; C1, nocturnal transpiration by prediction methods at 1.3 m; C2, nocturnal transpiration by prediction methods at 7.0 m; F1.3 m, nocturnal sap flow rate at 1.3 m; F7.0 m, nocturnal sap flow rate at 7.0 m; Q1.3 m, nighttime sap flow volume at 1.3 m; Q7.0 m, nighttime sap flow volume at 7.0 m; P1, inflection point where the nighttime sap flow rate decrease changes from rapid to slow; P2, inflection point before the sap flow rate decrease tends to stabilize. Et method, the prediction method based on transpiration inversion; Exp method, the water-refilling prediction method based on Exponential decay model; Line method, the water-refilling prediction method based on linear decay model; Re method, the water-refilling prediction method based on “Time Segment”.
图2 采用4种预测充水法利用不同树干高度处液流数据估算得到的毛白杨夜间蒸腾量(A)和茎干充水量(B)对比(平均值±标准误)。Ah, 高度差法计算的茎干充水量; A1, 通过预测充水法计算的茎干充水量; C1, 利用树干1.3 m高处液流计算的夜间蒸腾量; C2, 利用7.0 m高处液流计算的夜间蒸腾量; Et, 基于蒸腾反推的预测充水法; Exp, 基于指数衰减模型的预测充水法; Line, 基于线性衰减模型的预测充水法; Re, 基于“时间段”分割的预测充水法。*, p < 0.05; **, p < 0.01。
Fig. 2 Comparison of nocturnal transpiration (A) and nocturnal refilling of stems (B) predicted by four prediction methods using night-time sap flow data in different heights of stem (mean ± SE). Ah, nocturnal refilling of stems by height difference method; A1, nocturnal refilling of stems by four prediction methods; C1, nocturnal transpiration at 1.3 m; C2, night-time transpiration at 7.0 m; Et, the prediction method based on extend transpiration inversion; Exp, the water-refilling prediction method based on Exponential decay model; Line, the water-refilling prediction method based on linear decay model; Re, the water-refilling prediction method based on “Time Segment”. *, p < 0.05; **, p < 0.01.
图3 夜间液流各组分对夜间环境因子的响应。*, p < 0.05; **, p < 0.01。A, 采用Line模型估算的茎干充水量; Bline, 采用Line模型估算的冠层充水量; Cline, 采用Line模型估算的蒸腾量。
Fig. 3 Responses of components of nocturnal sap flow to nighttime environmental factors. *, p < 0.05; **, p < 0.01. A, estimate the stem refilling using the Line Method; Bline, estimate the canopy refilling using the Line Method; Cline, estimate the transpiration using the Line Method.
[1] |
Bovard BD, Curtis PS, Vogel CS, Su H, Schmid HP (2005). Environmental controls on sap flow in a northern hardwood forest. Tree Physiology, 25, 31-38.
DOI PMID |
[2] |
Burgess SSO, Adams MA, Turner NC, Beverly CR, Ong CK, Khan AAH, Bleby TM (2001). An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology, 21, 589-598.
PMID |
[3] | Chen ZSN, Zhang ZQ, Sun G, Chen LX, Xu H, Chen SN (2020). Biophysical controls on nocturnal sap flow in plantation forests in a semi-arid region of northern China. Agricultural and Forest Meteorology, 284, 107904. DOI: 10.1016/j.agrformet.2020.107904. |
[4] |
Cook GD, Dixon JR, Leopold AC (1964). Transpiration: its effects on plant leaf temperature. Science, 144, 546-547.
PMID |
[5] |
Dawson TE, Burgess SSO, Tu K, Oliveira RS, Santiago LS, Fisher JB, Simonin KA, Ambrose AR (2007). Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiology, 27, 561-575.
PMID |
[6] | Di N, Xi B, Clothier B, Wang Y, Li G, Jia L (2019). Diurnal and nocturnal transpiration behaviors and their responses to groundwater-table fluctuations and meteorological factors of Populus tomentosa in the North China Plain. Forest Ecology and Management, 448, 445-456. |
[7] | Di N, Yang S, Liu Y, Fan Y, Duan J, Nadezhdina N, Li X, Xi BY (2022). Soil-moisture-dependent nocturnal water use strategy and its responses to meteorological factors in a seasonal-arid poplar plantation. Agricultural Water Management, 274, 207984. DOI: 10.1016/j.agwat.2022.107984. |
[8] | Fan YX, Di N, Liu Y, Zhang YW, Duan J, Li X, Wang HH, Xi BY (2023). Spatiotemporal dynamics of nocturnal sap flow of Populus tomentosa and environmental impact factors. Chinese Journal of Plant Ecology, 47, 262-274. |
[范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野 (2023). 毛白杨茎干夜间液流时空动态及其环境影响因子. 植物生态学报, 47, 262-274.]
DOI |
|
[9] | Fang WW, Lü Nan, Fu BJ (2018). Research advances in nighttime sap flow density, its physiological implications, and influencing factors in plants. Acta Ecologica Sinica, 38, 7521-7529. |
[方伟伟, 吕楠, 傅伯杰 (2018). 植物夜间液流的发生、生理意义及影响因素研究进展. 生态学报, 38, 7521-7529.] | |
[10] | Fisher JB, Baldocchi DD, Misson L, Dawson TE, Goldstein AH (2007). What the towers don’t see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California. Tree Physiology, 27, 597-610. |
[11] |
Granier A (1987). Evaluationof transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309-320.
DOI PMID |
[12] | Green SR, Mcnaughton KG, Clothier BE (1989). Observations of night-time water use in kiwifruit vines and apple trees. Agricultural and Forest Meterology, 48, 251-261. |
[13] | Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, et al. (2020). Array programming with NumPy. Nature, 585, 357-362. |
[14] |
Hogg EH, Hurdle PA (1997). Sap flow in trembling aspen: implications for stomatal responses to vapor pressure deficit. Tree Physiology, 17, 501-509.
PMID |
[15] | Huang C, Domec JC, Ward EJ, Duman T, Manoli G, Parolari AJ, Katul GG (2017). The effect of plant water storage on water fluxes within the coupled soil-plant system. New Phytologist, 213, 1093-1106. |
[16] | Lin HA, Chen YJ, Zhang HL, Fu PL, Fan ZX (2017). Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Functional Ecology, 31, 2202-2211. |
[17] | Liu Y, Nadezhdina N, Di N, Ma X, Liu J, Zou S, Xi B, Clothier B (2021a). An undiscovered facet of hydraulic redistribution driven by evaporation—A study from a Populus tomentosa plantation. Plant Physiology, 186, 361-372. |
[18] | Liu ZQ, Liu QQ, Wei ZJ, Yu XX, Jia GD, Jiang J (2021b). Partitioning tree water usage into storage and transpiration in a mixed forest. Forest Ecosystems, 8, 961-973. |
[19] |
Marks CO, Lechowicz MJ (2007). The ecological and functional correlates of nocturnal transpiration. Tree Physiology, 27, 577-584.
PMID |
[20] |
Phillips NG, Lewis JD, Logan BA, Tissue DT (2010). Inter- and intra-specific variation in nocturnal water transport in Eucalyptus. Tree Physiology, 30, 586-596.
DOI PMID |
[21] | Ritchie JT (1974). Atmospheric and soil water influences on the plant water balance. Agricultural Meteorology, 14, 183-198. |
[22] | Satopaa V, Albrecht J, Irwin D, Raghavan B (2011). Finding a “kneedle” in a haystack: detecting knee points in system behavior. [2023-02-15]. https://ieeexplore.ieee.org/document/5961514. |
[23] | Shen Q, Gao GY, Fu BJ, Lü YH (2015). Responses of shelterbelt stand transpiration to drought and groundwater variations in an arid inland river basin of Northwest China. Journal of Hydrology, 531, 738-748. |
[24] | Si JH, Feng Q, Yu TF, Zhao CY (2014). Research progress on plant nighttime transpiration and its ecohydrological effects. Advances in Water Science, 25, 907-914. |
[司建华, 冯起, 鱼腾飞, 赵春彦 (2014). 植物夜间蒸腾及其生态水文效应研究进展. 水科学进展, 25, 907-914.] | |
[25] | Siddiq Z, Cao K (2018). Nocturnal transpiration in 18 broadleaf timber species under a tropical seasonal climate. Forest Ecology and Management, 418, 47-54. |
[26] |
Snyder KA, Richards JH, Donovan LA (2003). Night-time conductance in C3 and C4 species: Do plants lose water at night? Journal of Experimental Botany, 54, 861-865.
PMID |
[27] |
Wang H, Zhao P, Hölscher D, Wang Q, Lu P, Cai XA, Zeng XP (2012). Nighttime sap flow of Acacia mangium and its implications for nighttime transpiration and stem water storage. Journal of Plant Ecology, 5, 294-304.
DOI |
[28] | Wang H, Zhao P, Wang Q, Cai XA, Ma L, Rao XQ, Zeng XP (2007). Characteristics of nighttime sap flow and water recharge in Acacia mangium trunk. Chinese Journal of Ecology, 26, 476-482. |
[王华, 赵平, 王权, 蔡锡安, 马玲, 饶兴权, 曾小平 (2007). 马占相思夜间树干液流特征和水分补充现象的分析. 生态学杂志, 26, 476-482.] | |
[29] | Wang YB, De YJ, Xiong W, Wang YH, Li ZH, Liu Q (2013). The characteristics of nocturnal sap flow and stem water recharge pattern in growing season for a Larix principis- rupprechtii plantation. Acta Ecologica Sinica, 33, 1375-1385. |
[王艳兵, 德永军, 熊伟, 王彦辉, 李振华, 刘千 (2013). 华北落叶松夜间树干液流特征及生长季补水格局. 生态学报, 33, 1375-1385.] | |
[30] |
Wright KE, Barton NL (1955). Transpiration and the absorption and distribution of radioactive phosphorus in plants. Plant Physiology, 30, 386-388.
DOI PMID |
[31] | Wu J, Liu H, Zhu J, Gong L, Xu L, Jin G, Li J, Hauer R, Xu C (2020). Nocturnal sap flow is mainly caused by stem refilling rather than nocturnal transpiration for Acer truncatum in urban environment. Urban Forestry & Urban Greening, 56, 126800. DOI: 10.1016/j.ufug.2020.126800. |
[32] | Yan CH, Wang B, Zou ZD, Yu LY, Huang WB, Qiu GY (2020). Characteristics of nighttime sap flow and its partition in a mixed forest in Jiuzhaigou Valley. Acta Scientiarum Naturalium Universitatis Pekinensis, 56, 732-738. |
[鄢春华, 王蓓, 邹振东, 余雷雨, 黄婉彬, 邱国玉 (2020). 九寨沟针阔混交林的夜间液流及其分配特征研究. 北京大学学报(自然科学版), 56, 732-738.] | |
[33] | Yu T, Feng Q, Si J, Mitchell PJ, Forster MA, Zhang X, Zhao CY (2018). Depressed hydraulic redistribution of roots more by stem refilling than by nocturnal transpiration for Populus euphratica Oliv. in situ measurement. Ecology and Evolution, 8, 2607-2616. |
[34] |
Zeppel M, Tissue D, Taylor D, Macinnis-Ng C, Eamus D (2010). Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies. Tree Physiology, 30, 988-1000.
DOI PMID |
[35] |
Zeppel MJB, Lewis JD, Phillips NG, Tissue DT (2014). Consequences of nocturnal water loss: a synthesis of regulating factors and implications for capacitance, embolism and use in models. Tree Physiology, 34, 1047-1055.
DOI PMID |
[36] | Zhang J, Cai YM, Chen LX, Chen ZSN, Zhang ZQ (2019). Influencing factors and characteristics of nighttime sap flow of Acer truncatum in Beijing mountainous area. Acta Ecologica Sinica, 39, 3210-3223. |
[张婕, 蔡永茂, 陈立欣, 陈左司南, 张志强 (2019). 北京山区元宝枫夜间液流活动特征及影响因素. 生态学报, 39, 3210-3223.] | |
[37] | Zhang RN (2019). Research on Leaf Hydraulic Traits in Different Canopy Layers of Populus tomentosa Under Different Water Treatments. Master degree dissertation, Beijing Forestry University, Beijing. |
[张瑞娜 (2019). 不同浅土层水分条件下毛白杨不同冠层高度叶片水力特性研究. 硕士学位论文, 北京林业大学, 北京.] | |
[38] | Zhao CY, Si JH, Feng Q, Yu TF, Li PD (2017). Comparative study of daytime and nighttime sap flow of Populus euphratica. Plant Growth Regulation, 82, 353-362. |
[39] | Zhao CY, Si JH, Feng Q, Yu TF, Li PD, Forster MA (2019). Nighttime transpiration of Populus euphratica during different phenophases. Journal of Forestry Research, 30, 435-444. |
[40] | Zhao FF, Ma X, Di N, Wang Y, Liu Y, Li GD, Jia LM, Xi BY (2020). Azimuthal variation in nighttime sap flow and its mainly influence factors of Populus tomentosa. Chinese Journal of Plant Ecology, 44, 864-874. |
[赵飞飞, 马煦, 邸楠, 王烨, 刘洋, 李广德, 贾黎明, 席本野 (2020). 毛白杨茎干不同方位夜间液流变化规律及其主要影响因子. 植物生态学报, 44, 864-874.] | |
[41] | Zhao XN, Tian XN, Li X, Li GD, Guo YZ, Jia LM, Duan J, Xi BY (2023). Analysis of the applicability of Granier’s original equation for calculating the stem sap flux density—Take Populus tomentosa as an example. Chinese Journal of Plant Ecology, 47, 404-417. |
[赵小宁, 田晓楠, 李新, 李广德, 郭有正, 贾黎明, 段劼, 席本野 (2023). Granier原始公式计算树干液流速率的适用性分析——以毛白杨为例. 植物生态学报, 47, 404-417.]
DOI |
|
[42] | Zhao XW, Zhao P, Zhu LW (2022). Differentiating refilling and transpiration from night-time sap flux based on time series modelling. Trees, 36, 1621-163. |
[1] | 付照琦 胡旭 田沁瑞 葛艳灵 周红娟 吴小云 陈立欣. 晋西黄土区2种典型森林树种夜间液流特征及对环境因子的响应[J]. 植物生态学报, 2024, 48(9): 0-0. |
[2] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[3] | 范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274. |
[4] | 赵飞飞, 马煦, 邸楠, 王烨, 刘洋, 李广德, 贾黎明, 席本野. 毛白杨茎干不同方位夜间液流变化规律及其主要影响因子[J]. 植物生态学报, 2020, 44(8): 864-874. |
[5] | 何秋月, 闫美杰, 张建国, 杜盛. 黄土高原半湿润区刺槐树干液流对人工截留降雨输入及环境因子的响应[J]. 植物生态学报, 2018, 42(4): 466-474. |
[6] | 赵晓伟, 赵平, 朱丽薇, 倪广艳, 曾小平, 牛俊峰. 木荷树干夜间水分补充的季节动态及其与树形特征和叶片生物量的关系[J]. 植物生态学报, 2013, 37(3): 239-247. |
[7] | 陈立欣, 张志强, 李湛东, 张文娟, 张晓放, 董克宇, 王国玉. 大连4种城市绿化乔木树种夜间液流活动特征[J]. 植物生态学报, 2010, 34(5): 535-546. |
[8] | 刘晨峰, 张志强, 孙阁, 查同刚, 朱金兆, 申李华, 陈军, 方显瑞, 陈吉泉. 基于涡度相关法和树干液流法评价杨树人工林 生态系统蒸发散及其环境响应[J]. 植物生态学报, 2009, 33(4): 706-718. |
[9] | 臧春鑫, 杨劼, 袁劼, 刘鑫, 宋炳煜. 毛乌素沙地中间锦鸡儿整株丛的蒸腾特征[J]. 植物生态学报, 2009, 33(4): 719-727. |
[10] | 王华, 赵平, 蔡锡安, 王权, 马玲, 饶兴权, 曾小平. 马占相思夜间树干液流的分配及其对整树蒸腾估算的影响[J]. 植物生态学报, 2007, 31(5): 777-786. |
[11] | 刘世荣. 沙棘对中国亚湿润干旱区的杨树人工林生长与生产力的影响(英文)[J]. 植物生态学报, 2000, 24(2): 169-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19