植物生态学报 ›› 2010, Vol. 34 ›› Issue (5): 535-546.DOI: 10.3773/j.issn.1005-264x.2010.05.007
陈立欣1, 张志强1,*(), 李湛东1, 张文娟1, 张晓放2, 董克宇3, 王国玉1
收稿日期:
2009-07-28
接受日期:
2009-10-30
出版日期:
2010-07-28
发布日期:
2010-05-01
通讯作者:
张志强
作者简介:
* E-mail: zhqzhang@bjfu.edu.cn
CHEN Li-Xin1, ZHANG Zhi-Qiang1,*(), LI Zhan-Dong1, ZHANG Wen-Juan1, ZHANG Xiao-Fang2, DONG Ke-Yu3, WANG Guo-Yu1
Received:
2009-07-28
Accepted:
2009-10-30
Online:
2010-07-28
Published:
2010-05-01
Contact:
ZHANG Zhi-Qiang
摘要:
夜间液流有助于树木物质运输及其体内水分的补充(water recharge), 它不仅对植物的生长发育具有重要的生理生态学意义, 而且对大尺度植物蒸腾耗水的估算可能产生重要影响。2008年6月1日至8月31日, 以热扩散探针(thermal dissipation probe, TDP)技术对大连市劳动公园内的雪松(Cedrus deodara)、大叶榉(Zelkova schneideriana)、丝棉木(Euonymus bungeanus)和水杉(Metasequoia glyptostroboides) 4种乔木树种的不同径阶样木树干边材液流进行了测定, 并结合同步土壤水分与小气候观测结果分析了树木夜间(18:00至次日5:00)液流特征。实验结果表明, 树木普遍存在可感夜间液流, 夜间液流总量占观测期液流总量的比例在样木个体间呈现显著差异, 其变化范围为0.44%-75.96%; 观测期雨天夜间液流波动活跃, 显著高于晴天, 其单日夜间液流总量可持平, 甚至高于日间液流。相关分析表明: 水汽压亏缺(vapor pressure deficit, VPD)和风速的变化与夜间蒸腾显著相关, 它们能够较好地解释液流变化(R2 > 0.6); 树木夜间液流主要用于夜间蒸腾和自身水分补充, 夜间液流现象主要发生在前半夜, 后半夜液流平稳且极接近0, 夜间液流量与相应的日间流量(R2 = 0.356, p = 0.00)及胸径(R2Spearman > 0.80)显著相关, 说明植物本身的结构和生理特点也是影响树木夜间液流的重要因子。单株样木夜间液流占全天总蒸腾量的比例低于14.4%, 如不考虑夜间液流的影响, 根据日间液流通过尺度扩展推算的森林生态系统年蒸腾量可能偏低。
陈立欣, 张志强, 李湛东, 张文娟, 张晓放, 董克宇, 王国玉. 大连4种城市绿化乔木树种夜间液流活动特征. 植物生态学报, 2010, 34(5): 535-546. DOI: 10.3773/j.issn.1005-264x.2010.05.007
CHEN Li-Xin, ZHANG Zhi-Qiang, LI Zhan-Dong, ZHANG Wen-Juan, ZHANG Xiao-Fang, DONG Ke-Yu, WANG Guo-Yu. Nocturnal sap flow of four urban greening tree species in Dalian, Liaoning Province, China. Chinese Journal of Plant Ecology, 2010, 34(5): 535-546. DOI: 10.3773/j.issn.1005-264x.2010.05.007
树种 Species | 样木编号 No. of sample trees | 胸径 DBH (cm) | 冠幅 Crown area (m2) | 树高 Tree height (m) | 边材面积 Sapwood area (cm2) |
---|---|---|---|---|---|
雪松 Cedrus deodara | C1 | 13.60 | 10.18 | 6.10 | 26.42 |
C2 | 17.20 | 16.61 | 6.70 | 30.19 | |
C3 | 21.00 | 22.90 | 8.30 | 45.36 | |
大叶榉 Zelkova schneideriana | Z1 | 10.00 | 13.85 | 4.70 | 11.34 |
Z2 | 14.20 | 18.10 | 5.30 | 20.11 | |
Z3 | 17.60 | 24.63 | 5.90 | 25.52 | |
水杉 Metasequoia glyptostroboides | M1 | 14.60 | 2.01 | 10.30 | 16.62 |
M2 | 18.80 | 5.31 | 11.60 | 43.01 | |
M3 | 24.60 | 7.07 | 12.90 | 50.27 | |
丝棉木 Euonymus bungeanus | E1 | 10.40 | 22.90 | 5.20 | 36.32 |
E2 | 13.50 | 34.21 | 5.40 | 51.53 | |
E3 | 16.60 | 47.78 | 6.30 | 66.48 |
表1 样木统计表
Table 1 Statistics of sample trees
树种 Species | 样木编号 No. of sample trees | 胸径 DBH (cm) | 冠幅 Crown area (m2) | 树高 Tree height (m) | 边材面积 Sapwood area (cm2) |
---|---|---|---|---|---|
雪松 Cedrus deodara | C1 | 13.60 | 10.18 | 6.10 | 26.42 |
C2 | 17.20 | 16.61 | 6.70 | 30.19 | |
C3 | 21.00 | 22.90 | 8.30 | 45.36 | |
大叶榉 Zelkova schneideriana | Z1 | 10.00 | 13.85 | 4.70 | 11.34 |
Z2 | 14.20 | 18.10 | 5.30 | 20.11 | |
Z3 | 17.60 | 24.63 | 5.90 | 25.52 | |
水杉 Metasequoia glyptostroboides | M1 | 14.60 | 2.01 | 10.30 | 16.62 |
M2 | 18.80 | 5.31 | 11.60 | 43.01 | |
M3 | 24.60 | 7.07 | 12.90 | 50.27 | |
丝棉木 Euonymus bungeanus | E1 | 10.40 | 22.90 | 5.20 | 36.32 |
E2 | 13.50 | 34.21 | 5.40 | 51.53 | |
E3 | 16.60 | 47.78 | 6.30 | 66.48 |
图1 典型晴天(2008年8月9日)天气条件下植物液流日进程。DBH, 胸径。
Fig. 1 Diurnal sap flow pattern in a typical sunny day (August 9th, 2008). DBH, diameter at breast height; Js, sap flux density.
图2 典型雨天(2008年8月22日)条件下植物液流日进程。DBH, 胸径。
Fig. 2 Diurnal sap flow pattern in a typical rainy day (August 22nd, 2008). DBH, diameter at breast height; Js, sap flux density.
图3 连续典型晴天天气下植物夜间液流变化规律。DBH, 胸径。
Fig. 3 Nocturnal sap flow variation in consecutive typical sunny days. DBH, diameter at breast height; Js, sap flux density.
图4 2008年8月5日至30日样木夜间液流总量与土壤体积含水量关系图。 A, 雪松-大叶榉样地。B, 水杉-丝棉木样地。
Fig. 4 Daily accumulated nocturnal sap flow of sampled trees versus soil volumetric water content from August 5th to 30th, 2008. A, Cedrus deodara-Zelkova schneideriana plot. B, Metasequoia glyptostroboides-Euonymus bungeanus plot.
图5 2008年8月5日至30日样木夜间液流总量与降水的关系。 柱状图代表降水量, 曲线反映夜间液流总量。
Fig. 5 Relationships between precipitation and sum of nocturnal sap flow of sampled trees. Vertical bars represent precipitation, while multiple lines indicate sum of nocturnal sap flow.
树种 Species | 样木编号 No. of sample trees | Pearson相关系数 Pearson correlation | 显著度(双尾) Sig. (2-tailed) | n |
---|---|---|---|---|
雪松 Cedrus deodara | C1 | 0.68* | 0.043 | 1 872 |
C2 | 0.69 * | 0.029 | 1 872 | |
C3 | 0.71* | 0.018 | 1 872 | |
大叶榉 Zelkova schneideriana | Z1 | 0.65 * | 0.046 | 1 872 |
Z2 | 0.72* | 0.018 | 1 872 | |
Z3 | 0.70* | 0.034 | 1 872 | |
丝棉木 Euonymus bungeanus | E1 | 0.73* | 0.029 | 1 872 |
E2 | 0.61* | 0.033 | 1 872 | |
E3 | 0.59* | 0.042 | 1 872 | |
水杉 Metasequoia glyptostroboides | M1 | 0.71* | 0.019 | 1 872 |
M2 | 0.72* | 0.019 | 1 872 | |
M3 | 0.66* | 0.037 | 1 872 |
表2 树木夜间液流密度30 min平均值与同步水汽压亏缺(VPD)平均值的相关关系
Table 2 Correlation coefficients between 30 min average nighttime sap flow of sampled trees and vapor pressure deficit (VPD)
树种 Species | 样木编号 No. of sample trees | Pearson相关系数 Pearson correlation | 显著度(双尾) Sig. (2-tailed) | n |
---|---|---|---|---|
雪松 Cedrus deodara | C1 | 0.68* | 0.043 | 1 872 |
C2 | 0.69 * | 0.029 | 1 872 | |
C3 | 0.71* | 0.018 | 1 872 | |
大叶榉 Zelkova schneideriana | Z1 | 0.65 * | 0.046 | 1 872 |
Z2 | 0.72* | 0.018 | 1 872 | |
Z3 | 0.70* | 0.034 | 1 872 | |
丝棉木 Euonymus bungeanus | E1 | 0.73* | 0.029 | 1 872 |
E2 | 0.61* | 0.033 | 1 872 | |
E3 | 0.59* | 0.042 | 1 872 | |
水杉 Metasequoia glyptostroboides | M1 | 0.71* | 0.019 | 1 872 |
M2 | 0.72* | 0.019 | 1 872 | |
M3 | 0.66* | 0.037 | 1 872 |
树种 Species | 样木编号 No. of sample trees | Pearson相关系数 Pearson correlation | 显著度(双尾) Sig. (2-tailed) | n |
---|---|---|---|---|
雪松 Cedrus deodara | C1 | 0.58 * | 0.045 | 1 872 |
C2 | 0.73 * | 0.023 | 1 872 | |
C3 | 0.76 * | 0.014 | 1 872 | |
大叶榉 Zelkova schneideriana | Z1 | 0.81 ** | 0.006 | 1 872 |
Z2 | 0.76 * | 0.014 | 1 872 | |
Z3 | 0.73 * | 0.022 | 1 872 | |
丝棉木 Euonymus bungeanus | E1 | 0.72 * | 0.031 | 1 872 |
E2 | 0.41 | 0.099 | 1 872 | |
E3 | 0.69 * | 0.023 | 1 872 | |
水杉 Metasequoia glyptostroboides | M1 | 0.73 * | 0.017 | 1 872 |
M2 | 0.52 * | 0.018 | 1 872 | |
M3 | 0.73 * | 0.017 | 1 872 |
表3 树木夜间液流密度30 min平均值与同步风速均值(0-7 m·s-1)的相关关系
Table 3 Correlation coefficients between 30 min average nighttime sap flow of sampled trees and wind speed (0-7 m·s-1)
树种 Species | 样木编号 No. of sample trees | Pearson相关系数 Pearson correlation | 显著度(双尾) Sig. (2-tailed) | n |
---|---|---|---|---|
雪松 Cedrus deodara | C1 | 0.58 * | 0.045 | 1 872 |
C2 | 0.73 * | 0.023 | 1 872 | |
C3 | 0.76 * | 0.014 | 1 872 | |
大叶榉 Zelkova schneideriana | Z1 | 0.81 ** | 0.006 | 1 872 |
Z2 | 0.76 * | 0.014 | 1 872 | |
Z3 | 0.73 * | 0.022 | 1 872 | |
丝棉木 Euonymus bungeanus | E1 | 0.72 * | 0.031 | 1 872 |
E2 | 0.41 | 0.099 | 1 872 | |
E3 | 0.69 * | 0.023 | 1 872 | |
水杉 Metasequoia glyptostroboides | M1 | 0.73 * | 0.017 | 1 872 |
M2 | 0.52 * | 0.018 | 1 872 | |
M3 | 0.73 * | 0.017 | 1 872 |
树种 Species | 胸径 DBH (cm) | 占日总量的比例均值 Average percentage in daily sums (%) | 占日总量的最大比例 Maximum percentage in daily sums (%) | 占日总量的最小比例 Minimum percentage in daily sums (%) |
---|---|---|---|---|
雪松 | 13.60 | 10.19 | 57.71 | 1.02 |
Cedrus deodara | 17.20 | 5.90 | 39.82 | 0.53 |
21.00 | 9.74 | 34.53 | 0.88 | |
大叶榉 | 14.65 | 7.63 | 31.46 | 1.73 |
Zelkova schneideriana | 21.47 | 14.40 | 44.79 | 6.88 |
8.30 | 9.02 | 25.24 | 1.68 | |
丝棉木 | 16.60 | 12.00 | 75.69 | 0.53 |
Euonymus bungeanus | 13.50 | 11.65 | 27.71 | 0.44 |
10.40 | 4.97 | 19.88 | 32.59 | |
水杉 | 24.60 | 8.19 | 31.04 | 0.74 |
Metasequoia glyptostroboides | 18.80 | 8.89 | 50.12 | 1.04 |
14.60 | 6.48 | 32.98 | 0.92 |
表4 观测季样木单日夜间液流比例统计
Table 4 Statistics of nighttime sap flow in proportion to the daily total amount
树种 Species | 胸径 DBH (cm) | 占日总量的比例均值 Average percentage in daily sums (%) | 占日总量的最大比例 Maximum percentage in daily sums (%) | 占日总量的最小比例 Minimum percentage in daily sums (%) |
---|---|---|---|---|
雪松 | 13.60 | 10.19 | 57.71 | 1.02 |
Cedrus deodara | 17.20 | 5.90 | 39.82 | 0.53 |
21.00 | 9.74 | 34.53 | 0.88 | |
大叶榉 | 14.65 | 7.63 | 31.46 | 1.73 |
Zelkova schneideriana | 21.47 | 14.40 | 44.79 | 6.88 |
8.30 | 9.02 | 25.24 | 1.68 | |
丝棉木 | 16.60 | 12.00 | 75.69 | 0.53 |
Euonymus bungeanus | 13.50 | 11.65 | 27.71 | 0.44 |
10.40 | 4.97 | 19.88 | 32.59 | |
水杉 | 24.60 | 8.19 | 31.04 | 0.74 |
Metasequoia glyptostroboides | 18.80 | 8.89 | 50.12 | 1.04 |
14.60 | 6.48 | 32.98 | 0.92 |
图7 连续典型晴天(8月6日至9日)天气下植物夜间冠层导度(Gc)变化规律。DBH, 胸径。
Fig. 7 Canopy conductance (Gc) variation in consecutive sunny days in August (6th-9th). DBH, diameter at breast height.
[1] |
Assaf G, Zieslin N (1996). Night water consumption by rose plants. Journal of Horticultural Science, 71, 673-678.
DOI URL |
[2] |
Becker P (1998). Limitation of a compensation heat pulse velocity system at low sap flow: implications for measurements at night and in shaded trees. Tree Physiology, 18, 177-184.
DOI URL PMID |
[3] |
Benyon RG (1999). Nighttime water use in an irrigated Eucalyptus grandis plantation. Tree Physiology, 19, 853-859.
DOI URL PMID |
[4] | Bréda N, Cochard H, Dreyer E, Granier A (1993). Field comparison of transpiration, stomatal conductance and vulnerability to cavitation of Quercus petraea and Quercus robur under water stress. Annals of Forest Science, 50, 571-582. |
[5] |
Bush SE, Pataki DE, Hultine KR, West AG, Sperry JS, Ehleringer JR (2008). Wood anatomy constrains stomatal responses to atmospheric vapor pressure deficit in irrigated, urban trees. Oecologia, 156, 13-20.
DOI URL PMID |
[6] | Campbell GS, Norman JM (1998). An Introduction to Environmental Biophysics 2nd edn. Springer-Verlag, New York. |
[7] |
Canny MJ (1997). Vessel contents during transpiration-embolisms and refilling. American Journal of Botany, 84, 1223-1230.
URL PMID |
[8] |
Daley MJ, Phillips NG (2006). Interspecific variation in nighttime transpiration and stomatal conductance in a mixed new England deciduous forest. Tree Physiology, 26, 411-419.
DOI URL PMID |
[9] |
Donovan LA, West JB, Pappert RA, Alder NN, Richards JH, Grise DJ (1999). Predawn disequilibrium between plant and soil water potentials in two cold-desert shrubs. Oecologia, 120, 209-217.
DOI URL PMID |
[10] | Goldstein G, Andrade JL, Meinzer FC, Holbrook NM, Cavelier J, Jackson P, Celis A (1998). Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant, Cell & Environment, 21, 397-406. |
[11] |
Granier A (1987). Evaluation of transportation in a Douglas-fir stand by means of sap flow measurement. Tree Physiology, 3, 309-320.
DOI URL PMID |
[12] | Holbrook NM (2004). Stem water storage. In: Gartner BL ed. Plant Stems: Physiology and Functional Morphology. Academic Press, San Diego 151-174. |
[13] |
Köstner BMM, Schulze ED, Kelliher FM, Hollinger DY, Byers JN, Hunt JE, Mcseveny TM, Meserth R, Weir PL (1992). Transpiration and canopy conductance in a pristine broad-leaved forest of Notho fagus: an analysis of xylem sap flow and eddy correlation measurements. Oecologia, 91, 350-359.
DOI URL PMID |
[14] |
Matyssek R, Günthardt-Goerg MS, Maurer S, Keller T (1995). Night-time exposure to ozone reduces whole-plant production in Betula pendula. Tree Physiology, 15, 159-165.
DOI URL PMID |
[15] |
McDonald EP, Erickson JE, Kruger EL (2002). Can decreased transpiration limit plant nitrogen acquisition in elevated CO2 ? Functional Plant Biology, 29, 1115-1120.
DOI URL PMID |
[16] | O’Brien JJ, Oberbauer SF, Clark B (2004). Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest. Plant, Cell & Environment, 27, 551-567. |
[17] | Oren R, Pataki DE (2001). Transpiration in response to variation in microclimate and soil moisture in southeastern deciduous forests. Oecologia, 127, 547-559. |
[18] |
Oren R, Sperry JS, Ewers BE, Pataki DE, Phillips N, Megonigal JP (2001). Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: hydraulic and non-hydraulic effects. Oecologia, 126, 21-29.
DOI URL PMID |
[19] |
Phillips N, Nagchaudhuri A, Oren R, Katul G (1997). Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sap flow. Trees Structure and Function, 11, 412-419.
DOI URL |
[20] |
Phillips NG, Ryan MG, Bond BJ, McDowell NG, Hinckley TM, Cermak J (2003). Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiology, 23, 237-245.
DOI URL PMID |
[21] |
Snyder KA, Richards JH, Donovan LA (2003). Night-time conductance in C3 and C4 species: Do plants lose water at night? Journal of Experimental Botany, 54, 861-865.
DOI URL PMID |
[22] |
Sperry JS, Alder NN, Eastlack SE (1993). The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation. Journal of Experimental Botany, 44, 1075-1082.
DOI URL |
[23] | Sun HZ (孙慧珍), Zhou XF (周晓峰), Kang SZ (康绍忠) (2004). Research advance in application of heat technique in studying stem sap flow. Chinese Journal of Applied Ecology (应用生态学报), 15, 1074-1078. (in Chinese with English abstract) |
[24] |
Toft CA (1995). A 10-year demographic study of rabbitbrush ( Chrysothamnus nauseosus): growth, survival and water limitation. Oecologia, 101, 1-12.
DOI URL PMID |
[25] |
Vilagrosa A, Bellot J, Vallejo VR, Gil-Pelegin E (2003). Cavitation, stomatal conductance and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. Journal of Experimental Botany, 54, 2015-2024.
URL PMID |
[26] | Wang HT (王华田), Ma LY (马履一) (2002). Sap flow fluctuantions of Pinus tabulaeformis and Platycladus orientalis in late autumn. Scientia Silvae Sinicae (林业科学), 38(5), 31-37. (in Chinese with English abstract) |
[27] | Wu WH (武维华) (2003). Plant Physiology (植物生理学). Science Press, Beijing. 47-66. (in Chinese) |
[28] |
Wullschleger SD, Wilson KB, Hanson PJ (2000). Environmental control of whole plant transpiration, canopy conductance and estimates of the decoupling coefficient for large red maple trees. Agricultural and Forest Meteorology, 104, 157-168.
DOI URL |
[1] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[2] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[3] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[4] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[5] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[6] | 范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子[J]. 植物生态学报, 2023, 47(2): 262-274. |
[7] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[8] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[9] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[10] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[11] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[12] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[13] | 黄杰, 李晓玲, 王雪松, 杨进, 黄成名. 三峡库区不同消落带下中华蚊母树群落特征及其与土壤环境因子的关系[J]. 植物生态学报, 2021, 45(8): 844-859. |
[14] | 罗明没, 陈悦, 杨刚, 胡斌, 李玮, 陈槐. 若尔盖退化泥炭地土壤原核微生物群落结构对水位恢复的短期响应[J]. 植物生态学报, 2021, 45(5): 552-561. |
[15] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19