植物生态学报 ›› 2010, Vol. 34 ›› Issue (2): 144-150.DOI: 10.3773/j.issn.1005-264x.2010.02.005
所属专题: 稳定同位素生态学
何茜3,1, 李吉跃3,1,*(), 沈应柏2, 陈晓阳3, 尚富华1, 胡磊1, 张志毅2,*(
)
收稿日期:
2008-11-07
接受日期:
2009-01-25
出版日期:
2010-11-07
发布日期:
2010-02-01
通讯作者:
李吉跃,张志毅
作者简介:
Zhangzy@bjfu.edn.cn
HE Qian3,1, LI Ji-Yue3,1,*(), SHEN Ying-Bai2, CHEN Xiao-Yang3, SHANG Fu-Hua1, HU Lei1, ZHANG Zhi-Yi2,*(
)
Received:
2008-11-07
Accepted:
2009-01-25
Online:
2010-11-07
Published:
2010-02-01
Contact:
LI Ji-Yue,ZHANG Zhi-Yi
摘要:
在苗木生长的不同时期对13个毛白杨(Populus tomentosa)杂种无性系叶片碳同位素δ13C和气体交换参数(净光合速率Pn、蒸腾速率Tr、瞬时水分利用效率WUEi、气孔导度Gs和胞间CO2浓度Ci)的差异进行研究, 分析不同无性系间δ13C与气体交换参数的相互关系, 目的在于探求δ13C在筛选高光合及高水分利用效率毛白杨杂种无性系中的应用价值。结果表明: 不同生长时期和不同无性系间δ13C、Tr、WUEi、Gs和Ci的差异均显著, δ13C和WUEi表现为9月>7月, Tr、Gs和Ci表现为7月>9月, Pn在不同生长时期差异不显著。季节变化是引起毛白杨杂种无性系叶片δ13C差异的主要原因。同一时期, 无性系间δ13C和WUEi表现出较好的一致性, 即WUEi较高的无性系30、42、46、83、BL2和BL5, 其δ13C值也较高, WUEi较低的无性系B331和TG34, 其δ13C值也较低, 且不同时期(7月和9月) δ13C和WUEi呈较强的正相关, 相关系数r分别为0.739 0和0.545 8, 高δ13C可以作为筛选高WUEi毛白杨的有效指标, 且在苗木生长旺盛时期选育能得到更为可靠的结果。对毛白杨而言, 高WUEi的无性系, 一般具有适中或较低的Gs和Ci, 但不一定具有很高的Pn, 气孔调节使得毛白杨在不影响光合作用的同时保持较高的WUE。
何茜, 李吉跃, 沈应柏, 陈晓阳, 尚富华, 胡磊, 张志毅. 毛白杨杂种无性系叶片δ13C差异与气体交换参数. 植物生态学报, 2010, 34(2): 144-150. DOI: 10.3773/j.issn.1005-264x.2010.02.005
HE Qian, LI Ji-Yue, SHEN Ying-Bai, CHEN Xiao-Yang, SHANG Fu-Hua, HU Lei, ZHANG Zhi-Yi. Difference in δ13C and gas exchange parameters among Populus tomentosa clones. Chinese Journal of Plant Ecology, 2010, 34(2): 144-150. DOI: 10.3773/j.issn.1005-264x.2010.02.005
差异源 Source of variance | 平方和 SS | 自由度 df | 均方 MS | F值 F value |
---|---|---|---|---|
时期 Period | 22.13 | 1.00 | 22.13 | 324.63** |
无性系 Clone | 26.08 | 12.00 | 2.17 | 31.88** |
交互 Interaction | 9.14 | 12.00 | 0.76 | 11.18 |
误差 Random error | 3.55 | 52.00 | 0.07 | |
总计 Total | 60.90 | 77.00 |
表1 毛白杨不同时期和无性系间叶片δ13C双因素方差分析
Table 1 Two-way ANOVA of foliar δ13C in Populus tomentosa
差异源 Source of variance | 平方和 SS | 自由度 df | 均方 MS | F值 F value |
---|---|---|---|---|
时期 Period | 22.13 | 1.00 | 22.13 | 324.63** |
无性系 Clone | 26.08 | 12.00 | 2.17 | 31.88** |
交互 Interaction | 9.14 | 12.00 | 0.76 | 11.18 |
误差 Random error | 3.55 | 52.00 | 0.07 | |
总计 Total | 60.90 | 77.00 |
时期 Period | 无性系 Clone | 净光合速率 Net photosynthetic rate (Pn) (μmol CO2·m-2·s-1) | 蒸腾速率 Transpiration rate (Tr) (mmol·m-2·s-1g H2O·g-1DW) | 瞬时水分利用效率 Instantaneous water use efficiency (WUEi) (μmolCO2·mmolH2O-1) | 气孔导度 Stomatal conductance (Gs) (mmol·m-2·s-1) | 胞间CO2浓度 Intercellular CO2 concentration (Ci) (mmol·mol-1) |
---|---|---|---|---|---|---|
7月 July | 20 | 13.6 ± 1.1c | 4.15 ± 0.05ab | 3.17 ± 0.26ab | 0.32 ± 0.01 | 298 ± 8bc |
26 | 13.4 ± 0.9c | 4.34 ± 0.12ab | 3.09 ± 0.13ab | 0.37 ± 0.02ab | 312 ± 3b | |
28 | 11.7 ± 0.8c | 4.35 ± 0.23ab | 2.69 ± 0.20b | 0.32 ± 0.03ab | 312 ± 7b | |
30 | 16.3 ± 1.5bc | 4.81 ± 0.13a | 3.38 ± 0.22ab | 0.40 ± 0.02a | 298 ± 6bc | |
42 | 11.1 ± 1.0ab | 3.28 ± 0.40b | 3.37 ± 0.26ab | 0.23 ± 0.04b | 289 ± 12c | |
46 | 11.3 ± 0.3a | 3.12 ± 0.70ab | 3.61 ± 0.97a | 0.22 ± 0.06b | 271 ± 35c | |
83 | 13.7 ± 0.7abc | 3.90 ± 0.10ab | 3.50 ± 0.22a | 0.28 ± 0.01ab | 300 ± 6b | |
1316 | 12.3 ± 0.8c | 4.29 ± 0.21ab | 2.86 ± 0.08b | 0.32 ± 0.03ab | 292 ± 2c | |
B331 | 9.0 ± 0.2c | 3.48 ± 0.13ab | 2.61 ± 0.06b | 0.26 ± 0.02ab | 324 ± 3ab | |
BL2 | 12.9 ± 1.3bc | 4.22 ± 0.22ab | 3.04 ± 0.16ab | 0.31 ± 0.03ab | 298 ± 2bc | |
BL5 | 12.8 ± 0.7bc | 4.00 ± 0.45ab | 3.28 ± 0.28ab | 0.30 ± 0.05ab | 297 ± 11bc | |
BT17 | 13.9 ± 0.6c | 4.41 ± 0.17ab | 3.05 ± 0.32ab | 0.32 ± 0.02ab | 303 ± 9bc | |
TG34 | 10.7 ± 0.8c | 3.92 ± 0.22ab | 2.73 ± 0.12b | 0.29 ± 0.03ab | 328 ± 3a | |
平均值 Mean | 12.5 | 4.02 | 3.11 | 0.30 | 302 | |
9月 September | 20 | 13.4 ± 0.57a | 4.09 ± 0.06a | 3.17 ± 0.11ab | 0.25 ± 0.02ab | 253 ± 7ab |
26 | 10.8 ± 1.36ab | 2.99 ± 0.43bc | 3.59 ± 0.37ab | 0.21 ± 0.04ab | 228 ± 15b | |
28 | 13.3 ± 2.38a | 4.05 ± 0.44a | 3.41 ± 0.96ab | 0.26 ± 0.01a | 252 ± 23ab | |
30 | 12.6 ± 1.00a | 3.54 ± 0.10ab | 3.56 ± 0.01ab | 0.19 ± 0.01ab | 229 ± 10b | |
42 | 12.3 ± 2.14a | 3.19 ± 0.25ab | 3.86 ± 0.41ab | 0.21 ± 0.01ab | 246 ± 17ab | |
46 | 11.4 ± 1.53ab | 3.08 ± 0.28ab | 3.71 ± 0.24ab | 0.18 ± 0.03ab | 246 ± 19ab | |
83 | 12.5 ± 0.70a | 3.17 ± 0.07bc | 4.06 ± 0.25a | 0.17 ± 0.07ab | 218 ± 13b | |
1316 | 13.6 ± 1.96a | 3.83 ± 0.41ab | 3.54 ± 0.17ab | 0.24 ± 0.04a | 258 ± 9ab | |
B331 | 8.3 ± 3.58b | 2.91 ± 0.26ab | 2.83 ± 0.68ab | 0.18 ± 0.05ab | 267 ± 17a | |
BL2 | 11.9 ± 0.79ab | 2.89 ± 0.17bc | 4.11 ± 0.18a | 0.16 ± 0.02b | 250 ± 6ab | |
BL5 | 11.1 ± 0.19ab | 2.88 ± 0.27bc | 3.91 ± 0.35ab | 0.15 ± 0.04ab | 241 ± 11ab | |
BT17 | 12.0 ± 1.34ab | 3.27 ± 0.38bc | 3.54 ± 0.73ab | 0.19 ± 0.02ab | 265 ± 25a | |
TG34 | 8.2 ± 1.03b | 2.97 ± 0.14c | 2.73 ± 0.30b | 0.23 ± 0.02ab | 260 ± 5a | |
平均值 Mean | 11.7 | 3.30 | 3.56 | 0.20 | 2.48 |
表2 不同时期毛白杨杂种无性系气体交换参数
Table 2 Gas exchange parameters of Populus tomentosa clones in different periods
时期 Period | 无性系 Clone | 净光合速率 Net photosynthetic rate (Pn) (μmol CO2·m-2·s-1) | 蒸腾速率 Transpiration rate (Tr) (mmol·m-2·s-1g H2O·g-1DW) | 瞬时水分利用效率 Instantaneous water use efficiency (WUEi) (μmolCO2·mmolH2O-1) | 气孔导度 Stomatal conductance (Gs) (mmol·m-2·s-1) | 胞间CO2浓度 Intercellular CO2 concentration (Ci) (mmol·mol-1) |
---|---|---|---|---|---|---|
7月 July | 20 | 13.6 ± 1.1c | 4.15 ± 0.05ab | 3.17 ± 0.26ab | 0.32 ± 0.01 | 298 ± 8bc |
26 | 13.4 ± 0.9c | 4.34 ± 0.12ab | 3.09 ± 0.13ab | 0.37 ± 0.02ab | 312 ± 3b | |
28 | 11.7 ± 0.8c | 4.35 ± 0.23ab | 2.69 ± 0.20b | 0.32 ± 0.03ab | 312 ± 7b | |
30 | 16.3 ± 1.5bc | 4.81 ± 0.13a | 3.38 ± 0.22ab | 0.40 ± 0.02a | 298 ± 6bc | |
42 | 11.1 ± 1.0ab | 3.28 ± 0.40b | 3.37 ± 0.26ab | 0.23 ± 0.04b | 289 ± 12c | |
46 | 11.3 ± 0.3a | 3.12 ± 0.70ab | 3.61 ± 0.97a | 0.22 ± 0.06b | 271 ± 35c | |
83 | 13.7 ± 0.7abc | 3.90 ± 0.10ab | 3.50 ± 0.22a | 0.28 ± 0.01ab | 300 ± 6b | |
1316 | 12.3 ± 0.8c | 4.29 ± 0.21ab | 2.86 ± 0.08b | 0.32 ± 0.03ab | 292 ± 2c | |
B331 | 9.0 ± 0.2c | 3.48 ± 0.13ab | 2.61 ± 0.06b | 0.26 ± 0.02ab | 324 ± 3ab | |
BL2 | 12.9 ± 1.3bc | 4.22 ± 0.22ab | 3.04 ± 0.16ab | 0.31 ± 0.03ab | 298 ± 2bc | |
BL5 | 12.8 ± 0.7bc | 4.00 ± 0.45ab | 3.28 ± 0.28ab | 0.30 ± 0.05ab | 297 ± 11bc | |
BT17 | 13.9 ± 0.6c | 4.41 ± 0.17ab | 3.05 ± 0.32ab | 0.32 ± 0.02ab | 303 ± 9bc | |
TG34 | 10.7 ± 0.8c | 3.92 ± 0.22ab | 2.73 ± 0.12b | 0.29 ± 0.03ab | 328 ± 3a | |
平均值 Mean | 12.5 | 4.02 | 3.11 | 0.30 | 302 | |
9月 September | 20 | 13.4 ± 0.57a | 4.09 ± 0.06a | 3.17 ± 0.11ab | 0.25 ± 0.02ab | 253 ± 7ab |
26 | 10.8 ± 1.36ab | 2.99 ± 0.43bc | 3.59 ± 0.37ab | 0.21 ± 0.04ab | 228 ± 15b | |
28 | 13.3 ± 2.38a | 4.05 ± 0.44a | 3.41 ± 0.96ab | 0.26 ± 0.01a | 252 ± 23ab | |
30 | 12.6 ± 1.00a | 3.54 ± 0.10ab | 3.56 ± 0.01ab | 0.19 ± 0.01ab | 229 ± 10b | |
42 | 12.3 ± 2.14a | 3.19 ± 0.25ab | 3.86 ± 0.41ab | 0.21 ± 0.01ab | 246 ± 17ab | |
46 | 11.4 ± 1.53ab | 3.08 ± 0.28ab | 3.71 ± 0.24ab | 0.18 ± 0.03ab | 246 ± 19ab | |
83 | 12.5 ± 0.70a | 3.17 ± 0.07bc | 4.06 ± 0.25a | 0.17 ± 0.07ab | 218 ± 13b | |
1316 | 13.6 ± 1.96a | 3.83 ± 0.41ab | 3.54 ± 0.17ab | 0.24 ± 0.04a | 258 ± 9ab | |
B331 | 8.3 ± 3.58b | 2.91 ± 0.26ab | 2.83 ± 0.68ab | 0.18 ± 0.05ab | 267 ± 17a | |
BL2 | 11.9 ± 0.79ab | 2.89 ± 0.17bc | 4.11 ± 0.18a | 0.16 ± 0.02b | 250 ± 6ab | |
BL5 | 11.1 ± 0.19ab | 2.88 ± 0.27bc | 3.91 ± 0.35ab | 0.15 ± 0.04ab | 241 ± 11ab | |
BT17 | 12.0 ± 1.34ab | 3.27 ± 0.38bc | 3.54 ± 0.73ab | 0.19 ± 0.02ab | 265 ± 25a | |
TG34 | 8.2 ± 1.03b | 2.97 ± 0.14c | 2.73 ± 0.30b | 0.23 ± 0.02ab | 260 ± 5a | |
平均值 Mean | 11.7 | 3.30 | 3.56 | 0.20 | 2.48 |
气体交换参数 Gas exchange parameter | 差异源 Source of variance | 平方和 SS | 自由度 df | 均方 MS | F值 F value |
---|---|---|---|---|---|
净光合速率 Net photosynthetic rate (Pn) | 时期 Period | 0.53 | 1 | 0.53 | 0.13 |
无性系 Clones | 250.68 | 12 | 20.89 | 5.25** | |
时期×无性系 Period × Clone | 104.84 | 12 | 8.74 | 2.19 | |
机误 Random error | 207.07 | 52 | 3.98 | ||
总计 Total | 563.11 | 77 | |||
蒸腾速率 Transpiration rate (Tr) | 时期 Period | 9.02 | 1 | 9.02 | 37.86** |
无性系 Clone | 13.83 | 12 | 1.15 | 4.84** | |
时期×无性系 Period × Clone | 10.53 | 12 | 0.88 | 3.68 | |
机误Random error | 12.39 | 52 | 0.24 | ||
总计 Total | 45.77 | 77 | |||
瞬时水分利用效率 Instantaneous water use efficiency (WUEi) | 时期 Period | 2.80 | 1 | 2.80 | 7.62** |
无性系 Clone | 11.04 | 12 | 0.92 | 2.50* | |
时期×无性系 Period × Clone | 7.57 | 12 | 0.63 | 1.72 | |
机误 Random error | 19.10 | 52 | 0.37 | ||
总计 Total | 40.51 | 77 | |||
气孔导度 Stomatal conductance (Gs) | 时期 Period | 0.32 | 1 | 0.32 | 102.31** |
无性系 Clone | 0.13 | 12 | 0.01 | 3.50** | |
时期×无性系 Period × Clone | 0.09 | 12 | 0.01 | 2.46 | |
机误 Random error | 0.16 | 52 | 0.00 | ||
总计 Total | 0.70 | 77 | |||
胞间CO2浓度 Intercellular CO2 concentration (Ci) | 时期 Period | 64 538.98 | 1 | 64 538.98 | 134.51** |
无性系 Clone | 13 726.95 | 12 | 1 143.91 | 2.38* | |
时期×无性系 Period × Clone | 8 621.93 | 12 | 718.49 | 1.50 | |
机误 Random error | 24 949.33 | 52 | 479.79 | ||
总计 Total | 111 837.19 | 77 |
表3 不同时期和无性系间气体交换参数双因素方差分析
Table 3 Two-way ANOVA (periods and clones) of the gas exchanges in different research periods
气体交换参数 Gas exchange parameter | 差异源 Source of variance | 平方和 SS | 自由度 df | 均方 MS | F值 F value |
---|---|---|---|---|---|
净光合速率 Net photosynthetic rate (Pn) | 时期 Period | 0.53 | 1 | 0.53 | 0.13 |
无性系 Clones | 250.68 | 12 | 20.89 | 5.25** | |
时期×无性系 Period × Clone | 104.84 | 12 | 8.74 | 2.19 | |
机误 Random error | 207.07 | 52 | 3.98 | ||
总计 Total | 563.11 | 77 | |||
蒸腾速率 Transpiration rate (Tr) | 时期 Period | 9.02 | 1 | 9.02 | 37.86** |
无性系 Clone | 13.83 | 12 | 1.15 | 4.84** | |
时期×无性系 Period × Clone | 10.53 | 12 | 0.88 | 3.68 | |
机误Random error | 12.39 | 52 | 0.24 | ||
总计 Total | 45.77 | 77 | |||
瞬时水分利用效率 Instantaneous water use efficiency (WUEi) | 时期 Period | 2.80 | 1 | 2.80 | 7.62** |
无性系 Clone | 11.04 | 12 | 0.92 | 2.50* | |
时期×无性系 Period × Clone | 7.57 | 12 | 0.63 | 1.72 | |
机误 Random error | 19.10 | 52 | 0.37 | ||
总计 Total | 40.51 | 77 | |||
气孔导度 Stomatal conductance (Gs) | 时期 Period | 0.32 | 1 | 0.32 | 102.31** |
无性系 Clone | 0.13 | 12 | 0.01 | 3.50** | |
时期×无性系 Period × Clone | 0.09 | 12 | 0.01 | 2.46 | |
机误 Random error | 0.16 | 52 | 0.00 | ||
总计 Total | 0.70 | 77 | |||
胞间CO2浓度 Intercellular CO2 concentration (Ci) | 时期 Period | 64 538.98 | 1 | 64 538.98 | 134.51** |
无性系 Clone | 13 726.95 | 12 | 1 143.91 | 2.38* | |
时期×无性系 Period × Clone | 8 621.93 | 12 | 718.49 | 1.50 | |
机误 Random error | 24 949.33 | 52 | 479.79 | ||
总计 Total | 111 837.19 | 77 |
时期 Period | 参数 Parameter | 净光合速率 Net photosynthetic rate (Pn) | 蒸腾速率 Transpiration rate (Tr) | 瞬时水分利用效率 Instantaneous water use efficiency (WUEi) | 气孔导度 Stomatal conductance (Gs) | 胞间CO2浓度 Intercellular CO2 concentration (Ci) |
---|---|---|---|---|---|---|
7月 July | Pn | 1.00 | 0.74 | 0.48 | 0.75 | -0.28 |
Tr | 1.00 | -0.23 | 0.96 | 0.26 | ||
WUEi | 1.00 | -0.16 | -0.78 | |||
Gs | 1.00 | 0.27 | ||||
Ci | 1.00 | |||||
9月 September | Pn | 1.00 | 0.72 | 0.57 | 0.29 | -0.28 |
Tr | 1.00 | -0.15 | 0.76 | 0.11 | ||
WUEi | 1.00 | -0.49 | -0.57 | |||
Gs | 1.00 | 0.30 | ||||
Ci | 1.00 |
表4 不同时期气体交换参数的相关系数(r)
Table 4 Correlation coefficient (r) between two of all gas exchange parameters in different periods
时期 Period | 参数 Parameter | 净光合速率 Net photosynthetic rate (Pn) | 蒸腾速率 Transpiration rate (Tr) | 瞬时水分利用效率 Instantaneous water use efficiency (WUEi) | 气孔导度 Stomatal conductance (Gs) | 胞间CO2浓度 Intercellular CO2 concentration (Ci) |
---|---|---|---|---|---|---|
7月 July | Pn | 1.00 | 0.74 | 0.48 | 0.75 | -0.28 |
Tr | 1.00 | -0.23 | 0.96 | 0.26 | ||
WUEi | 1.00 | -0.16 | -0.78 | |||
Gs | 1.00 | 0.27 | ||||
Ci | 1.00 | |||||
9月 September | Pn | 1.00 | 0.72 | 0.57 | 0.29 | -0.28 |
Tr | 1.00 | -0.15 | 0.76 | 0.11 | ||
WUEi | 1.00 | -0.49 | -0.57 | |||
Gs | 1.00 | 0.30 | ||||
Ci | 1.00 |
净光合速率 Net photosynthetic rate (Pn) | 蒸腾速率 Transpiration rate (Tr) | 瞬时水分利用效率 Instantaneous water use efficiency (WUEi) | 气孔导度 Stomatal conductance (Gs) | 胞间CO2浓度 Intercellular CO2 concentration (Ci) | |
---|---|---|---|---|---|
7月 July | -0.10 | -0.62 | 0.73 | -0.58 | -0.69 |
9月 September | 0.30 | -0.10 | 0.54 | -0.48 | -0.62 |
表5 不同时期δ13C与气体交换参数的相关系数(r)
Table 5 Correlation coefficients between δ13C and Pn, Tr, WUEi, Gs and Ci in different periods
净光合速率 Net photosynthetic rate (Pn) | 蒸腾速率 Transpiration rate (Tr) | 瞬时水分利用效率 Instantaneous water use efficiency (WUEi) | 气孔导度 Stomatal conductance (Gs) | 胞间CO2浓度 Intercellular CO2 concentration (Ci) | |
---|---|---|---|---|---|
7月 July | -0.10 | -0.62 | 0.73 | -0.58 | -0.69 |
9月 September | 0.30 | -0.10 | 0.54 | -0.48 | -0.62 |
[1] | Anyia AO, Slaski JJ, Nyachiro JM, Archambault DJ, Juskiw P (2007). Relationship of carbon isotope discrimination to water use efficiency and productivity of barley under field and greenhouse conditions. Journal of Agronomy and Crop Science, 193, 313-323. |
[2] |
Condon AG, Richards RA, Rebetzke GJ (2002). Improving intrinsic water-use efficiency and crop yield. Crop Science, 42, 122-131.
DOI URL PMID |
[3] |
Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004). Breeding for high water-use efficiency. Journal of Experimental Botany, 55, 2447-2460.
DOI URL PMID |
[4] |
Cowan IR, Lange OL, Green TGA (1992). Carbon dioxide exchange in lichens: determination of transport and carboxylation characteristics. Planta, 187, 282-294.
DOI URL PMID |
[5] | Ehleringer JR, Hall AE, Farquhar GD (1993). Stable Isotopes and Plant Carbon-Water Relations. Academic Press, New York. 247-267. |
[6] | Farquhar GD, Richards RA (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology, 11, 539-552. |
[7] |
Farquhar GD, Sharkey TD (1982). Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33, 317-345.
DOI URL |
[8] |
Flanagan LB, Johnsen KH (1995). Genetic variations in carbon isotope discrimination and its relationship to growth under field conditions in full-sib families of Picea mariana. Canadian Journal of Forest Research, 25, 39-47.
DOI URL |
[9] | Hubick KT, Farquhar GD (1989). Genetic variation of transpiration efficiency among barley genotypes is negatively correlated with carbon isotope discrimination. Plant, Cell and Environment, 24, 92-99. |
[10] | Hubick KT, Farquhar GD, Shorter R (1986). Correlation between water-use efficiency and carbon isotope discrimination in diverse peanut ( Arachis) germplasm. Australian Journal of Plant Physiology, 13, 803-816. |
[11] | James EG (2003). Growth and Physiology of Loblolly Pine (Pinus taeda L.) Seedlings as Affected by Genetics of the Root System. PhD dissertation, Institute of Philosophy, North Carolina State University, USA. |
[12] | Jordi V, Luis S, Montsrrat H, Jesus P (2006). Carbon isotope discrimination, gas exchange and stem growth of four Euramerican hybrid poplars under different watering regimes. New Forests, 31, 435-451. |
[13] | Li SK (李少昆), Ma FY (马富裕), Li MC (李蒙春), Wang KR (王克如), Zhang WF (张旺峰) (1997). Studies on water use efficiency of cotton leaves and its relations with environment factors. Acta Gossypii Sinica (棉花学报), 9, 314-317. (in Chinese with English abstract) |
[14] | Liu GX (刘光琇), Chen T (陈拓), An LZ (安黎哲), Wang XL (王勋陵), Feng HY (冯虎元) (2004). The environmental significance of stable carbon isotope composition of modern plant leaves in the northern part of the Tibetan Plateau. Advances in Earth Science (地球科学进展), 19, 749-753. (in Chinese with English abstract) |
[15] | Morgan JA, Lecain DR (1991). Leaf gas exchange and related leaf traits among 15 winter wheat genotypes. Crop Science, 31, 443-448. |
[16] | Neil CT, Jairo AP, Renuka S, Christiane L, Kadambot HMS, David WT (2007). Carbon isotope discrimination is not correlated with transpiration efficiency in three cool-season Grain Legumes ( Pulses). Journal of Integrative Plant Biology, 49, 1478-1483. |
[17] | Picon C, Guehl JM, Ferhi A (1996). Leaf gas exchange and carbon isotope composition responses to drought in a drought-avoiding (Pinus pinaster) and a drought-tolerant (Quercus petraea) species under present and elevated atmospheric CO2 concentrations. Plant, Cell and Environment, 19, 182-190. |
[18] |
Schuster WSF, Sandquist DR, Phillips SL, Ehleringer JR (1992). Comparisons of carbon isotope discrimination in populations of aridland plant species differing in lifespan. Oecologia, 91, 332-337.
DOI URL PMID |
[19] | Wright GC, Hubick KT, Farquhar GD, Nageswara RC (1993). Genetic and environmental variation in transpiration efficiency and its correlation with carbon isotope discrimination and specific leaf area in peanut. In: Ehleringer JR, Hall AE, Farquhar GD, Saugier B eds. Stable Isotopes and Plant Carbon-Water Relation. Academic Press, San Diego, New York 247-267. |
[20] | Yin SP (殷树鹏), Zhang CJ (张成君), Guo FQ (郭方琴), Li XL (李晓丽), Zhang Y (张云) (2008). Effect of environmental factors on stable carbon isotopic composition of plants and application in water use efficiency. Journal of Isotope (同位素), 21(1), 46-53. (in Chinese with English abstract) |
[21] | Zhang ZB (张正斌), Shan L (山仑) (1997). Comparative study on leaf water use efficiency of wheat. Chinese Science Bulletin (科学通报), 42, 1876-1881. (in Chinese with English abstract) |
[22] | Zhao FJ (赵凤君), Gao RF (高荣孚), Shen YB (沈应柏), Su XH (苏晓华), Zhang BY (张冰玉) (2005). A study on foliar carbon isotope composition (d13C) and water use efficiency of different Populus deltoides clones under water stress. Scientia Silvae Sinicae (林业科学), 41(1), 36-41. (in Chinese with English abstract) |
[23] | Zhao M (赵明), Li SK (李少昆), Wang MY (王美云) (1997). Studies on the factors effecting leaf water use efficiency of maize. Journal of China Agricultural University (中国农业大学学报), 2(1), 89-94. |
[24] | Zhou P (周平), Li JY (李吉跃), Zhao LY (招礼军) (2002). Characteristics of seedlings water consumption by transpiration of main afforestation tree species in north China. Journal of Beijing Forestry University (北京林业大学学报), 24(5/6), 50-54. (in Chinese with English abstract) |
[1] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[2] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[3] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[4] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[5] | 刘洋, 马煦, 邸楠, 曾子航, 付海曼, 李新, 席本野. 毛白杨根系液流与水力再分配特征[J]. 植物生态学报, 2023, 47(1): 123-133. |
[6] | 王晶苑, 魏杰, 温学发. 土壤CO2通量梯度观测技术和方法的理论、假设与应用进展[J]. 植物生态学报, 2022, 46(12): 1523-1536. |
[7] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[8] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[9] | 赵飞飞, 马煦, 邸楠, 王烨, 刘洋, 李广德, 贾黎明, 席本野. 毛白杨茎干不同方位夜间液流变化规律及其主要影响因子[J]. 植物生态学报, 2020, 44(8): 864-874. |
[10] | 周雄, 孙鹏森, 张明芳, 刘世荣. 西南高山亚高山区植被水分利用效率时空特征及其与气候因子的关系[J]. 植物生态学报, 2020, 44(6): 628-641. |
[11] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
[12] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[13] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[14] | 李豆豆, 席本野, 王斐, 贾素苹, 赵洪林, 贺曰林, 刘洋, 贾黎明. 毛白杨叶片膨压变化规律及其对环境因子的响应[J]. 植物生态学报, 2018, 42(7): 741-751. |
[15] | 冯朝阳, 王鹤松, 孙建新. 中国北方植被水分利用效率的时间变化特征及其影响因子[J]. 植物生态学报, 2018, 42(4): 453-465. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19