植物生态学报 ›› 2010, Vol. 34 ›› Issue (8): 924-937.DOI: 10.3773/j.issn.1005-264x.2010.08.005
王华1,*(), 欧阳志云1,**(
), 郑华1, 王效科1, 倪永明2, 任玉芬1
收稿日期:
2009-06-23
接受日期:
2010-04-21
出版日期:
2010-06-23
发布日期:
2010-09-28
通讯作者:
欧阳志云
作者简介:
** E-mail: zyouyang@rcees.ac.cn
WANG Hua1,*(), OUYANG Zhi-Yun1,**(
), ZHENG Hua1, WANG Xiao-Ke1, NI Yong-Ming2, REN Yu-Fen1
Received:
2009-06-23
Accepted:
2010-04-21
Online:
2010-06-23
Published:
2010-09-28
Contact:
OUYANG Zhi-Yun
摘要:
城市绿化树木具有多重生态效应, 其耗水量不容忽视。在不了解树干液流空间变异的前提下, 将点的测定值推广到整树或者林段尺度会产生很大的误差。为准确地确定整树耗水, 采用热消散探针法研究了夏秋季北京成年常绿树种油松(Pinus tabulaeformis)、雪松(Cedrus deodara)和刺槐(Robinia pseudoacacia)树干液流的空间变异特征及产生原因。各树种树干液流存在方位变异, 受树干靠南的方向受光较多、木材解剖特征和枝下高高度的影响, 油松和雪松液流密度与方位之间的关系较为固定, 而刺槐液流密度与方位之间的关系表现出随机性。不同方位每小时液流密度之间高度相关(p < 0.000 1)。因此, 可以基于这种关系准确地计算其他方位的液流(R2 > 0.91, p < 0.000 1)。油松和雪松树干液流的径向变异显著, 较深处和较浅处树干液流的日变化格局相似, 但是较深处的液流明显滞后于较浅处的树干液流, 且较浅处树干液流对环境因子的响应远高于深处的液流。不同深度树干液流之间密切相关, 因此可以利用较浅处的液流外推其他深度的液流(R2 > 0.89, p < 0.000 1)。然而, 同一棵树不同方位径向剖面特征不同, 雪松南向较深处的液流明显高于其他方位, 且滞后不显著, 这与树冠南向受光较多有关。结合误差分析, 采取北向15 mm和75 mm深处的液流密度均值来估算整树耗水较为准确。
王华, 欧阳志云, 郑华, 王效科, 倪永明, 任玉芬. 北京绿化树种油松、雪松和刺槐树干液流的空间变异特征. 植物生态学报, 2010, 34(8): 924-937. DOI: 10.3773/j.issn.1005-264x.2010.08.005
WANG Hua, OUYANG Zhi-Yun, ZHENG Hua, WANG Xiao-Ke, NI Yong-Ming, REN Yu-Fen. Characteristics of spatial variations in xylem sap flow in urban greening tree species Pinus tabulaeformis, Cedrus deodara and Robinia pseudoacacia in Beijing, China. Chinese Journal of Plant Ecology, 2010, 34(8): 924-937. DOI: 10.3773/j.issn.1005-264x.2010.08.005
树种 Species | 胸径 DBH (cm) | 高度 Height (m) | 冠层投影面 Ac (m2) | 边材面积 As (cm2) | 插针方位 Orientation of sensor | 插针数量和类型 Number and type of sensor |
---|---|---|---|---|---|---|
油松1号 Pinus tabulaeformis No. 1 | 17.00 | 5.90 | 22.02 | 163.56 | 南北 Northsouth | 2TDP30 |
油松2号 P. tabulaeformis No. 2 | 16.20 | 5.70 | 19.97 | 147.52 | 南北 Northsouth | 2TDP30 |
油松3号 P. tabulaeformis No. 3 | 18.70 | 5.80 | 23.31 | 200.60 | 南北 Northsouth | 2TDP30 + 1TDP80 |
雪松1号 Cedrus deodara No. 1 | 23.50 | 7.30 | 37.59 | 300.63 | 东南西北 All aspects | 4TDP30 |
雪松2号 C. deodara No. 2 | 24.20 | 6.40 | 23.22 | 313.50 | 东南西北 All aspects | 4TDP30 |
雪松3号 C. deodara No. 3 | 33.60 | 11.20 | 59.53 | 500.86 | 东南西北 All aspects | 4TDP80 |
刺槐1号 Robinia pseudoacacia No. 1 | 40.40 | 11.50 | 56.71 | 138.80 | 东南西北 All aspects | 4TDP30 |
刺槐2号 R. pseudoacacia No. 2 | 38.60 | 12.30 | 71.00 | 129.57 | 东南西北 All aspects | 4TDP30 |
刺槐3号 R. pseudoacacia No. 3 | 33.50 | 12.10 | 42.96 | 104.59 | 东南西北 All aspects | 4TDP30 |
表1 树干液流测定样木的树形特征
Table 1 Characteristics of tree structures in the sampled trees for sap flow measurements
树种 Species | 胸径 DBH (cm) | 高度 Height (m) | 冠层投影面 Ac (m2) | 边材面积 As (cm2) | 插针方位 Orientation of sensor | 插针数量和类型 Number and type of sensor |
---|---|---|---|---|---|---|
油松1号 Pinus tabulaeformis No. 1 | 17.00 | 5.90 | 22.02 | 163.56 | 南北 Northsouth | 2TDP30 |
油松2号 P. tabulaeformis No. 2 | 16.20 | 5.70 | 19.97 | 147.52 | 南北 Northsouth | 2TDP30 |
油松3号 P. tabulaeformis No. 3 | 18.70 | 5.80 | 23.31 | 200.60 | 南北 Northsouth | 2TDP30 + 1TDP80 |
雪松1号 Cedrus deodara No. 1 | 23.50 | 7.30 | 37.59 | 300.63 | 东南西北 All aspects | 4TDP30 |
雪松2号 C. deodara No. 2 | 24.20 | 6.40 | 23.22 | 313.50 | 东南西北 All aspects | 4TDP30 |
雪松3号 C. deodara No. 3 | 33.60 | 11.20 | 59.53 | 500.86 | 东南西北 All aspects | 4TDP80 |
刺槐1号 Robinia pseudoacacia No. 1 | 40.40 | 11.50 | 56.71 | 138.80 | 东南西北 All aspects | 4TDP30 |
刺槐2号 R. pseudoacacia No. 2 | 38.60 | 12.30 | 71.00 | 129.57 | 东南西北 All aspects | 4TDP30 |
刺槐3号 R. pseudoacacia No. 3 | 33.50 | 12.10 | 42.96 | 104.59 | 东南西北 All aspects | 4TDP30 |
图2 油松不同方位树干液流特征。 A-C, 2008年6月油松每一株测定样树南北向树干液流密度的日变化。E-F, 北向液流密度(x轴)与南向液流密度(y轴)之间的线性关系。
Fig. 2 Characteristics of sap flux density (Js) at south and north aspects in Pinus tabulaeformis. A-C, Diurnal variation in Js at south and north aspects in each of three Pinus tabulaeformis trees on June, 2008. E-F, Linear relationships between Js on north side (x-axis) and Js on south side (y-axis).
图3 雪松东南西北4个方位的树干液流特征。 A-C, 2008年6月雪松每一株测定样树东南西北向树干液流密度的日变化。E-F, 北向液流密度(x轴)与东向、南向、西向液流密度(y轴)之间的线性关系。
Fig. 3 Characteristics of sap flux density (Js) at north, south, east and west aspects in Cedrus deodara trees. A-C, Diurnal variation in Js at four aspects in each of three Cedrus deodara trees in June, 2008. E-F, Linear relationships between Js on north side (x-axis) and Js on east, south and west sides (y-axis).
图4 刺槐东南西北4个方位的树干液流特征。 A-C, 2008年6月刺槐每一株测定样树东南西北向树干液流密度的日变化。E-F, 北向液流密度(x轴)与东、南、西向液流密度(y轴)之间的线性关系。
Fig. 4 Characteristics of sap flux density (Js) at north, south, east and west aspects in Robinia pseudoacacia trees. A-C, Diurnal variation in Js at four aspects in each of three Robinia pseudoacacia trees in June, 2008. E-F, Linear relationships between Js on north side (x-axis) and Js on east, south and west sides (y-axis).
物种 Species | 方位 Orientation | 方程 Equation | 解释量 R2 | 显著度 p |
---|---|---|---|---|
油松 P. tabulaeformis | 南和北 South and North | Js-south = 5e - 5 + 1.075Js-north | 0.971 | < 0.000 1 |
雪松 C. deodara | 东和北 East and North | Js-east = 3e - 5 + 0.807Js-north | 0.957 | < 0.000 1 |
南和北 South and North | Js-south = 0.0001 + 1.038Js-north | 0.905 | < 0.000 1 | |
西和北 West and North | Js-west = 1e - 5 + 0.817Js-north | 0.936 | < 0.000 1 | |
刺槐 R. pseudoacacia | 东和北 East and North | Js-east = - 6e - 6 + 0.988Js-north | 0.955 | < 0.000 1 |
南和北 South and North | Js-south = 2.9e - 5 + 0.930Js-north | 0.967 | < 0.000 1 | |
西和北 West and North | Js-west = - 1e - 5 + 1.072Js-north | 0.984 | < 0.000 1 |
表2 2008年6月到11月油松、雪松和刺槐东、南、西方位液流密度与北向液流密度(x轴)之间的曲线拟合结果
Table 2 Curve estimation between sap flux density (Js) on north side (x-axis) and Js on east, south, west side (y-axis) in each of three Pinus tabulaeformis, Cedrus deodara and Robinia pseudoacacia trees from June to November, 2008
物种 Species | 方位 Orientation | 方程 Equation | 解释量 R2 | 显著度 p |
---|---|---|---|---|
油松 P. tabulaeformis | 南和北 South and North | Js-south = 5e - 5 + 1.075Js-north | 0.971 | < 0.000 1 |
雪松 C. deodara | 东和北 East and North | Js-east = 3e - 5 + 0.807Js-north | 0.957 | < 0.000 1 |
南和北 South and North | Js-south = 0.0001 + 1.038Js-north | 0.905 | < 0.000 1 | |
西和北 West and North | Js-west = 1e - 5 + 0.817Js-north | 0.936 | < 0.000 1 | |
刺槐 R. pseudoacacia | 东和北 East and North | Js-east = - 6e - 6 + 0.988Js-north | 0.955 | < 0.000 1 |
南和北 South and North | Js-south = 2.9e - 5 + 0.930Js-north | 0.967 | < 0.000 1 | |
西和北 West and North | Js-west = - 1e - 5 + 1.072Js-north | 0.984 | < 0.000 1 |
树种 Species | 方差同质性检验 Levene’s test for equality of variances | 均值的t检验 t-test for equality of means | ||||
---|---|---|---|---|---|---|
F | 显著度 p | t | 自由度 df | 显著度 p | ||
油松 P. tabulaeformis, | 1.176 | 0.339 | 1.796 | 4 | 0.147 | |
雪松 C. deodara | 0.175 | 0.697 | 0.904 | 4 | 0.417 | |
刺槐 R. pseudoacacia | 7.748 | 0.050 | 2.500 | 4 | 0.067 |
表3 油松、雪松和刺槐东西和南北冠幅差异的独立t检验
Table 3 The t-test for canopy width from south to north and canopy width from east to west of three Pinus tabulaeformis, Cedrus deodara and Robinia pseudoacacia trees
树种 Species | 方差同质性检验 Levene’s test for equality of variances | 均值的t检验 t-test for equality of means | ||||
---|---|---|---|---|---|---|
F | 显著度 p | t | 自由度 df | 显著度 p | ||
油松 P. tabulaeformis, | 1.176 | 0.339 | 1.796 | 4 | 0.147 | |
雪松 C. deodara | 0.175 | 0.697 | 0.904 | 4 | 0.417 | |
刺槐 R. pseudoacacia | 7.748 | 0.050 | 2.500 | 4 | 0.067 |
物种 Species | 方位 Orientation | 环境因子 Environmental factors | 方程 Equation | 解释量 R2 | 显著度 p |
---|---|---|---|---|---|
油松 | 南 | 水汽压亏缺 D (kPa) | Js = 0.0028 + 0.0021lnD | 0.569 | < 0.000 1 |
P. tabulaeformis | South | 总辐射Rs (W·m-2) | Js = 0.0007 + 9e - 6Rs | 0.707 | < 0.000 1 |
北 | 水汽压亏缺 D (kPa) | Js = 0.0025 + 0.00019lnD | 0.555 | < 0.000 1 | |
North | 总辐射Rs (W·m-2) | Js = 0.0006 + 8e - 6Rs | 0.682 | < 0.000 1 | |
雪松 | 东 | 水汽压亏缺 D (kPa) | Js = 0.002 + 0.0014lnD | 0.364 | < 0.000 1 |
C. deodara | East | 总辐射Rs (W·m-2) | Js = 0.0008 + 6e - 6Rs | 0.562 | < 0.000 1 |
南 | 水汽压亏缺 D (kPa) | Js = 0.0026 + 0.0019lnD | 0.447 | < 0.000 1 | |
South | 总辐射Rs (W·m-2) | Js = 0.0009 + 8e - 6Rs | 0.655 | < 0.000 1 | |
西 | 水汽压亏缺 D (kPa) | Js = 0.002 + 0.0015lnD | 0.410 | < 0.000 1 | |
West | 总辐射Rs (W·m-2) | Js = 0.0007 + 6e - 6Rs | 0.609 | < 0.000 1 | |
北 | 水汽压亏缺 D (kPa) | Js = 0.0023 + 0.0018lnD | 0.460 | < 0.000 1 | |
North | 总辐射Rs (W·m-2) | Js = 0.0008 + 7e - 6Rs | 0.642 | < 0.000 1 | |
刺槐 | 东 | 水汽压亏缺 D (kPa) | Js = 0.0022 + 0.0014lnD | 0.565 | < 0.000 1 |
R. pseudoacacia | East | 总辐射Rs (W·m-2) | Js = 0.0008 + 6e - 6Rs | 0.679 | < 0.000 1 |
南 | 水汽压亏缺 D (kPa) | Js = 0.0021 + 0.0013lnD | 0.515 | < 0.000 1 | |
South | 总辐射Rs (W·m-2) | Js = 0.0008 + 6e - 6Rs | 0.636 | < 0.000 1 | |
西 | 水汽压亏缺 D (kPa) | Js = 0.0023 + 0.0015lnD | 0.535 | < 0.000 1 | |
West | 总辐射Rs (W·m-2) | Js = 0.0009 + 6e - 6Rs | 0.618 | < 0.000 1 | |
北 | 水汽压亏缺 D (kPa) | Js = 0.0021 + 0.0013lnD | 0.493 | < 0.000 1 | |
North | 总辐射Rs (W·m-2) | Js = 0.0009 + 6e - 6Rs | 0.597 | < 0.000 1 |
表4 2008年6月到11月油松、雪松、刺槐不同方位树干液流与水汽压亏缺、总辐射之间的曲线拟合结果
Table 4 Curve estimation between sap flux density (Js) at four aspects and vapor pressure deficit (D), total radiation (Rs) in Pinus tabulaeformis, Cedrus deodara and Robinia pseudoacacia from June to November, 2008
物种 Species | 方位 Orientation | 环境因子 Environmental factors | 方程 Equation | 解释量 R2 | 显著度 p |
---|---|---|---|---|---|
油松 | 南 | 水汽压亏缺 D (kPa) | Js = 0.0028 + 0.0021lnD | 0.569 | < 0.000 1 |
P. tabulaeformis | South | 总辐射Rs (W·m-2) | Js = 0.0007 + 9e - 6Rs | 0.707 | < 0.000 1 |
北 | 水汽压亏缺 D (kPa) | Js = 0.0025 + 0.00019lnD | 0.555 | < 0.000 1 | |
North | 总辐射Rs (W·m-2) | Js = 0.0006 + 8e - 6Rs | 0.682 | < 0.000 1 | |
雪松 | 东 | 水汽压亏缺 D (kPa) | Js = 0.002 + 0.0014lnD | 0.364 | < 0.000 1 |
C. deodara | East | 总辐射Rs (W·m-2) | Js = 0.0008 + 6e - 6Rs | 0.562 | < 0.000 1 |
南 | 水汽压亏缺 D (kPa) | Js = 0.0026 + 0.0019lnD | 0.447 | < 0.000 1 | |
South | 总辐射Rs (W·m-2) | Js = 0.0009 + 8e - 6Rs | 0.655 | < 0.000 1 | |
西 | 水汽压亏缺 D (kPa) | Js = 0.002 + 0.0015lnD | 0.410 | < 0.000 1 | |
West | 总辐射Rs (W·m-2) | Js = 0.0007 + 6e - 6Rs | 0.609 | < 0.000 1 | |
北 | 水汽压亏缺 D (kPa) | Js = 0.0023 + 0.0018lnD | 0.460 | < 0.000 1 | |
North | 总辐射Rs (W·m-2) | Js = 0.0008 + 7e - 6Rs | 0.642 | < 0.000 1 | |
刺槐 | 东 | 水汽压亏缺 D (kPa) | Js = 0.0022 + 0.0014lnD | 0.565 | < 0.000 1 |
R. pseudoacacia | East | 总辐射Rs (W·m-2) | Js = 0.0008 + 6e - 6Rs | 0.679 | < 0.000 1 |
南 | 水汽压亏缺 D (kPa) | Js = 0.0021 + 0.0013lnD | 0.515 | < 0.000 1 | |
South | 总辐射Rs (W·m-2) | Js = 0.0008 + 6e - 6Rs | 0.636 | < 0.000 1 | |
西 | 水汽压亏缺 D (kPa) | Js = 0.0023 + 0.0015lnD | 0.535 | < 0.000 1 | |
West | 总辐射Rs (W·m-2) | Js = 0.0009 + 6e - 6Rs | 0.618 | < 0.000 1 | |
北 | 水汽压亏缺 D (kPa) | Js = 0.0021 + 0.0013lnD | 0.493 | < 0.000 1 | |
North | 总辐射Rs (W·m-2) | Js = 0.0009 + 6e - 6Rs | 0.597 | < 0.000 1 |
图5 油松3号不同深度的树干液流特征。 A, 2008年8月3日油松3号北向不同深度树干液流密度的日变化。B, 15 mm深处液流密度(x轴)与75 mm深处液流密度(y轴)之间的线性关系, 箭头指向时滞方向。
Fig. 5 Characteristics of sap flux density (Js) at different depths in Pinus tabulaeformis trees. A, Diurnal variation in Js on the north aspect with two depths in Pinus tabulaeformis No. 3 tree on 3th, August, 2008. B, Linear relationships between Js at depth of 15 mm (x-axis) and Js at depth of 75 mm (y-axis). Arrows point to the time lag.
图6 雪松3号不同方向和不同深度的树干液流特征。 A-D, 2008年8月3日雪松3号东南西北向两个深度树干液流密度的日变化。E-H, 15 mm深处液流密度(x轴)与75 mm深处液流密度(y轴)之间的线性关系, 箭头指向时滞方向。
Fig. 6 Characteristics of sap flux density (Js) at different depths at four aspects in Cedrus deodara No. 3. A-D, Diurnal variation in Js at four aspects with two depths in Cedrus deodara No. 3 tree on 3rd, August, 2008. E-H, Linear relationships between Js at depth of 15 mm (x-axis) and Js at depth of 75 mm (y-axis). Arrows point to the time lag.
物种 Species | 深度 Depth | 方程 Equation | 解释量 R2 | 显著度 p |
---|---|---|---|---|
油松 Pinus tabulaeformis | 15 mm vs 75 mm | Js-75mm = 4e - 5 + 0.149Js-15mm | 0.943 | < 0.000 1 |
雪松 Cedrus deodara | 15 mm vs 75 mm | Js-75mm = 2e - 5 + 0.105Js-15mm | 0.889 | < 0.000 1 |
表5 7月到11月油松、雪松15 mm和75 mm深处的树干液流之间的曲线拟合
Table 5 Curve estimation between sap flux density (Js) between Js at depth of 15 mm and Js at depth of 75 mm in Pinus tabulaeformis and Cedrus deodara from July to November
物种 Species | 深度 Depth | 方程 Equation | 解释量 R2 | 显著度 p |
---|---|---|---|---|
油松 Pinus tabulaeformis | 15 mm vs 75 mm | Js-75mm = 4e - 5 + 0.149Js-15mm | 0.943 | < 0.000 1 |
雪松 Cedrus deodara | 15 mm vs 75 mm | Js-75mm = 2e - 5 + 0.105Js-15mm | 0.889 | < 0.000 1 |
物种 Species | 深度 Depth | 环境因子 Environmental factors | 方程 Equation | 解释量 R2 | 显著度 p |
---|---|---|---|---|---|
油松 Pinus tabulaeformis | 15 mm | 水汽压亏缺 D (kPa) | Js-15cm = 0.004 + 0.0029lnD | 0.607 | < 0.000 1 |
总辐射Rs (W·m-2) | Js-15cm = 0.0009 + 1e - 5Rs | 0.664 | < 0.000 1 | ||
75 mm | 水汽压亏缺 D (kPa) | Js-75cm = 0.0006 + 0.0004lnD | 0.541 | < 0.000 1 | |
总辐射Rs (W·m-2) | Js-75cm = 0.0002 + 2e - 6Rs | 0.584 | < 0.000 1 | ||
雪松 Cedrus deodara | 15 mm | 水汽压亏缺 D (kPa) | Js-15cm = 0.003 + 0.002 1lnD | 0.570 | < 0.000 1 |
总辐射Rs (W·m-2) | Js-15cm = 0.0007 + 9e - 6Rs | 0.674 | < 0.000 1 | ||
75 mm | 水汽压亏缺 D (kPa) | Js-75cm = 0.0003 + 0.0002lnD | 0.546 | < 0.000 1 | |
总辐射Rs (W·m-2) | Js-75cm = 1e - 4 + 1e - 6Rs | 0.626 | < 0.000 1 |
表6 7月到11月油松、雪松15 mm、75 mm深度树干液流与水汽压亏缺、总辐射之间的曲线拟合
Table 6 Curve estimation between sap flux density (Js) at depth of 15 mm, 75 mm and vapor pressure deficit (D), total radiation (Rs) in Pinus tabulaeformis and in Cedrus deodara from July to November
物种 Species | 深度 Depth | 环境因子 Environmental factors | 方程 Equation | 解释量 R2 | 显著度 p |
---|---|---|---|---|---|
油松 Pinus tabulaeformis | 15 mm | 水汽压亏缺 D (kPa) | Js-15cm = 0.004 + 0.0029lnD | 0.607 | < 0.000 1 |
总辐射Rs (W·m-2) | Js-15cm = 0.0009 + 1e - 5Rs | 0.664 | < 0.000 1 | ||
75 mm | 水汽压亏缺 D (kPa) | Js-75cm = 0.0006 + 0.0004lnD | 0.541 | < 0.000 1 | |
总辐射Rs (W·m-2) | Js-75cm = 0.0002 + 2e - 6Rs | 0.584 | < 0.000 1 | ||
雪松 Cedrus deodara | 15 mm | 水汽压亏缺 D (kPa) | Js-15cm = 0.003 + 0.002 1lnD | 0.570 | < 0.000 1 |
总辐射Rs (W·m-2) | Js-15cm = 0.0007 + 9e - 6Rs | 0.674 | < 0.000 1 | ||
75 mm | 水汽压亏缺 D (kPa) | Js-75cm = 0.0003 + 0.0002lnD | 0.546 | < 0.000 1 | |
总辐射Rs (W·m-2) | Js-75cm = 1e - 4 + 1e - 6Rs | 0.626 | < 0.000 1 |
图7 液流的空间变异对整树蒸腾造成的误差。 A, 油松、雪松和刺槐树干液流的方位变异对整树蒸腾造成的误差。B, 油松或者雪松树干液流的径向变异对整树蒸腾造成的误差。
Fig. 7 Error to whole-tree transpiration caused by spatial variation. A, Error to whole-tree transpiration caused by axial variation of sap flux density (Js) on different orientation in Pinus tabulaeformis, Cedrus deodara and Robinia pseudoacacia. B, Error to whole-tree transpiration caused by radial variation of Js at different depth in Pinus tabulaeformis, Cedrus deodara and Robinia pseudoacacia.
图8 DOY210到DOY213期间雪松3号东南西北向15 mm和75 mm深度树干液流密度的日变化。 A, 雪松3号东南西北向15 mm深处树干液流密度的日变化。B, 雪松3号东南西北向75 mm深处树干液流密度的日变化。
Fig. 8 Diurnal variation in sap flux density (Js) at four aspects with two depths in Cedrus deodara No. 3 from DOY210 to DOY213. A, Diurnal variation in Js at four aspects at the depth of 15 mm in Cedrus deodara No. 3. B, Diurnal variation in Js at four aspects at the depth of 75 mm in Cedrus deodara No. 3.
[1] | Campbell GS, Norman JM (1998). An Introduction to Environmental Biophysics 2nd. Springer-Verlag, New York. 40-45. |
[2] |
Delzon S, Sartore M, Granier A, Loustau D (2004). Radial profiles of sap flow with increasing tree size in maritime pine. Tree Physiology, 24, 1285-1293.
DOI URL PMID |
[3] | Fan M (樊敏), Ma LY (马履一), Wang RH (王瑞辉) (2008). Variation of stem sap flow of Robinia pseudoacacia in spring and summer. Scientia Silvae Sinicae (林业科学), 44(1), 41-45. (in Chinese with English abstract) |
[4] |
Ford CR, Goranson CE, Mitchell RJ, Will RE, Teskey RO (2004a). Diurnal and seasonal variability in the radial distribution of sap flow: predicting total stem flow in Pinus taeda trees. Tree Physiology, 24, 941-950.
URL PMID |
[5] |
Ford CR, McGuire MA, Mitchell RJ, Teskey RO (2004b). Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use. Tree Physiology, 24, 241-249.
URL PMID |
[6] |
Granier A (1987). Evaluation of transpiration in a Douglas- firstand by means of sap flow measurements. Tree Physiology, 3, 309-320.
DOI URL PMID |
[7] |
Granier A, Anfodillo T, Sabatti M, Cochard H, Dreyer E, Tomasi M, Valentini R, Breda N (1994). Axial and radial water flow in the trunks of oak trees: a quantitative and qualitative analysis. Tree Physiology, 14, 1383-1396.
URL PMID |
[8] | Guo MH (郭明辉), Chen GS (陈广胜), Wang JM (王金满), Chen XW (陈祥伟), Liu Q (刘强) (2000). The relationships between anatomical characteristics of wood and meteorological factors of plantation. Journal of Northeast Forestry University (东北林业大学学报), 28(4), 30-35. (in Chinese with English abstract) |
[9] |
Hatton TJ, Catchpole EA, Vertessy RA (1990). Integration of sapflux density to estimate plant water use. Tree Physiology, 6, 201-209.
URL PMID |
[10] |
Infante JM, Mauchamp A, Fernández-Alés R, Joffre R, Rambal S (2001). Within-tree variation in transpiration in isolated evergreen oak trees, evidence in support of the pipe model theory. Tree Physiology, 21, 409-414.
DOI URL PMID |
[11] | Kumagai T, Aoki S, Nagasawa H, Mabuchi T, Kubota K, Inoue S, Utsumi Y, Otsuki K (2005). Effects of tree-to-tree and radial variations on sap flow estimates of transpiration in Japanese cedar. Agricultural and Forest Meteorology, 135, 110-116. |
[12] | Luttschwager D, Remus R (2007). Radial distribution of sap flux density in trunks of a mature beech stand. Annals of Forest Science, 64, 431-438. |
[13] | Lu P, Chacko EK (1998). Evaluation of Granier’s sap flow meter in mango (Mangifera indica L.) trees. Agronomie, 18, 461-471. |
[14] |
Lu P, Muller WJ, Chacko EK (2000). Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions. Tree Physiology, 20, 683-692.
DOI URL PMID |
[15] | Ma L (马玲), Zhao P (赵平), Rao XQ (饶兴权), Cai XA (蔡锡安), Zeng XP (曾小平), Lu P (陆平) (2005). Effects of environmental factors on sap flow in Acacia mangium. Acta Ecologica Sinica (生态学报), 25, 2145-2151. (in Chinese with English abstract) |
[16] | Ma LY (马履一), Wang HT (王华田) (2002). Spatial and chronic fluctuation of sapwood flow and its relevant variables of Pinus tabulaeformis. Journal of Beijing Forestry University (北京林业大学学报), 24(3), 23-27. (in Chinese with English abstract) |
[17] |
Nadezhdina N, Cerma’k J, Ceulemans R (2002). Radial patterns of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors. Tree Physiology, 22, 907-918.
URL PMID |
[18] | Nowak DJ, Dwyer JF (2007). Understanding the benefits and costs of urban forest ecosystems. In: Kuser JE ed. Understanding the Benefits and Costs of Urban Forest Ecosystems Springer Netherlands Press, Amsterdam. 25-46. |
[19] | Phillips N, Oren R, Zimmermann R (1996). Radial patterns of xylem sap flow in non-, diffuse- and ring-porous tree species. Plant, Cell & Environment, 19, 983-990. |
[20] |
Poyatos R, Cermák J, Llorens P (2007). Variation in the radial patterns of sap flux density in pubescent oak (Quercus pubescens) and its implications for tree and stand transpiration measurements. Tree Physiology, 27, 537-548.
DOI URL PMID |
[21] | Qi QQ (祁庆钦) (2008). Studies on Forecast of Radial Anatomy Specific in Chinese Pine Plantation Based on Neural Network (基于神经网络的人工林油松木材径向解剖特性预测研究) Master Dissertation, Inner Mongolia Agriculture University, Huhhot. 32-35. (in Chinese) |
[22] | Sun PS (孙鹏森), Ma LY (马履一), Wang XP (王小平), Zhai MP (翟明普) (2000). Temporal and spatial variation sap flow of Chinese pine (Pinus tabulaeformis). Journal of Beijing Forestry University (北京林业大学学报), 22(5), 1-6. (in Chinese with English abstract) |
[23] | Tateishi M, Kumagai T, Utsumi Y, Umebayasi T, Shiiba Y, Inoue K, Kaji K, Cho K, Otsuki K (2008). Spatial variations in xylem sap flux density in evergreen oak trees with radial-porous wood: comparisons with anatomical observations. Trees-Structure and Function, 22, 23-30. |
[24] | Wang RH (王瑞辉) (2006). Research on Water Consumption and Irrigation Regime of Main Landscape Tree Species in Beijing City (北京主要园林树种耗水性及节水灌溉制度研究) PhD Dissertation, Beijing Forestry University, Beijing. 22. (in Chinese) |
[25] | Wu LP (吴丽萍), Wang XD (王学东), Yu QE (尉全恩), Shi F (史福), Chen ZX (陈正新), Zhu ZH (朱智宏), Zhang YE (张云娥) (2003). Study on spatial and temporal variability for stem-sap flow of Pinus sylvestris var. mongolica. Research of Soil and Water Conservation (水土保持研究), 10(4), 66-68. (in Chinese with English abstract) |
[26] | Wei YC (魏彦昌), Miao H (苗鸿), Ouyang ZY (欧阳志云), Shi JT (史俊通), Wang XK (王效科) (2003). Application and assessment of ecological water demand of urbans. Urban Environment & Urban Ecology (城市环境与城市生态), 16(Suppl.), 18-20. (in Chinese with English abstract) |
[27] | Zhang WJ (张文娟), Zhang ZQ (张志强), Li SD (李湛东), Zhang XF (张晓放), Dong KY (董克宇), Chen LX (陈立欣), Wang GY (王国玉) (2009). Transpiration of four tree species under an urban environment. Acta Ecologica Sinica (生态学报), 29, 5942-5952. (in Chinese with English abstract) |
[1] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[2] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[3] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[4] | 何秋月, 闫美杰, 张建国, 杜盛. 黄土高原半湿润区刺槐树干液流对人工截留降雨输入及环境因子的响应[J]. 植物生态学报, 2018, 42(4): 466-474. |
[5] | 李理渊, 李俊, 同小娟, 孟平, 张劲松, 张静茹. 黄河小浪底栓皮栎、刺槐叶片电子传递速率-光响应的模拟[J]. 植物生态学报, 2018, 42(10): 1009-1021. |
[6] | 肖迪, 王晓洁, 张凯, 何念鹏, 侯继华. 氮添加对山西太岳山天然油松林主要植物叶片性状的影响[J]. 植物生态学报, 2016, 40(7): 686-701. |
[7] | 段贝贝, 赵成章, 徐婷, 郑慧玲, 冯威, 韩玲. 兰州北山不同坡向刺槐叶脉密度与气孔性状的关联性分析[J]. 植物生态学报, 2016, 40(12): 1289-1297. |
[8] | 史元春, 赵成章, 宋清华, 杜晶, 陈静, 王继伟. 兰州北山刺槐枝叶性状的坡向差异性[J]. 植物生态学报, 2015, 39(4): 362-370. |
[9] | 吴旭, 陈云明, 唐亚坤. 黄土丘陵区刺槐和侧柏人工林树干液流特征及其对降水的响应[J]. 植物生态学报, 2015, 39(12): 1176-1187. |
[10] | 张维康, 李贺, 王国宏. 北京西北部山地两个垂直样带内主要植被类型的群落特征[J]. 植物生态学报, 2013, 37(6): 566-570. |
[11] | 王林, 冯锦霞, 万贤崇. 土层厚度对刺槐旱季水分状况和生长的影响[J]. 植物生态学报, 2013, 37(3): 248-255. |
[12] | 梁冬, 毛建丰, 赵伟, 周先清, 袁虎威, 王黎明, 邢芳倩, 王晓茹, 李悦. 高山松及其亲本种群在油松生境下的苗期性状[J]. 植物生态学报, 2013, 37(2): 150-163. |
[13] | 朱晓琴,王春燕,盛敏,陈辉,唐明. 丛枝菌根真菌对刺槐热值、碳和灰分含量的影响[J]. 植物生态学报, 2013, 37(11): 1028-1034. |
[14] | 李善家, 张有福, 陈拓. 西北油松叶片δ13C特征与环境因子和叶片矿质元素的关系[J]. 植物生态学报, 2011, 35(6): 596-604. |
[15] | 国红, 雷相东, Veronique LETORT, 陆元昌. 基于GreenLab原理构建油松成年树的结构-功能 模型[J]. 植物生态学报, 2011, 35(4): 422-430. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19