植物生态学报 ›› 2013, Vol. 37 ›› Issue (11): 1028-1034.DOI: 10.3724/SP.J.1258.2013.00106
收稿日期:
2013-06-26
接受日期:
2013-09-12
出版日期:
2013-06-26
发布日期:
2013-11-06
通讯作者:
唐明
基金资助:
ZHU Xiao-Qin1,WANG Chun-Yan2,SHENG Min2,CHEN Hui2,TANG Ming2,*()
Received:
2013-06-26
Accepted:
2013-09-12
Online:
2013-06-26
Published:
2013-11-06
Contact:
TANG Ming
摘要:
该试验以根内球囊霉(Glomus intraradices)和地表球囊霉(G. versiforme)为接种剂, 研究了丛枝菌根真菌对刺槐(Robinia pseudoacacia)生物量、热值、含碳量、灰分、能量积累和碳素积累的影响。结果表明, 接种根内球囊霉和地表球囊霉对提高刺槐生物量、热值、能量积累和碳素积累都起到了重要作用。接种根内球囊霉和地表球囊霉后刺槐的总生物量比对照分别增加了89.61%和91.34%, 能量积累分别比对照增加102.20%和94.19%, 碳素积累分别比对照增加93.30%和77.21%; 同时发现刺槐的能量和碳主要分布在根系和叶, 而茎中能量和碳所占的比例较小。接种根内球囊霉提高了刺槐的干重热值, 其根、茎、叶的干重热值分别比对照增加7.72%、8.94%和8.41%; 接种地表球囊霉也显著(p < 0.05)提高了刺槐的干重热值, 但其效果低于根内球囊霉。接种根内球囊霉显著(p < 0.05)提高了刺槐根的含碳量, 对茎和叶的含碳量影响不明显。接种根内球囊霉和地表球囊霉都显著(p < 0.05)提高了刺槐茎和叶的去灰分热值。
朱晓琴,王春燕,盛敏,陈辉,唐明. 丛枝菌根真菌对刺槐热值、碳和灰分含量的影响. 植物生态学报, 2013, 37(11): 1028-1034. DOI: 10.3724/SP.J.1258.2013.00106
ZHU Xiao-Qin,WANG Chun-Yan,SHENG Min,CHEN Hui,TANG Ming. Effects of arbuscular mycorrhizal fungi on calorific value and contents of carbon and ash in Robinia pseudoacacia. Chinese Journal of Plant Ecology, 2013, 37(11): 1028-1034. DOI: 10.3724/SP.J.1258.2013.00106
植物器官 Plant organ | 根内球囊霉 Glomus intraradices | 地表球囊霉 Glomus versiforme | 对照 Control | |
---|---|---|---|---|
菌根侵染率 Rate of AM colonization (%) | 78 ± 3a | 61 ± 4b | 0c | |
苗高 Seedling height (cm) | 34.3 ± 3.2b | 38.6 ± 3.7a | 18.2 ± 1.2c | |
地茎 Basal diameter (mm) | 6.7 ± 0.3a | 7.3 ± 0.4a | 5.5 ± 0.8b | |
根冠比 Root/shoot ratio | 0.73 ± 0.19a | 0.81 ± 0.12a | 0.58 ± 0.25a | |
干重 Dry weight (g·plant-1) | 根 Root | 8.30 ± 1.42a | 8.87 ± 0.86a | 3.66 ± 0.94b |
茎 Stem | 4.23 ± 0.49a | 3.95 ± 0.35a | 1.78 ± 0.64b | |
叶 Leaf | 7.18 ± 0.57a | 7.07 ± 0.47a | 4.95 ± 1.03b | |
整株 Whole plant | 19.72 ± 0.50a | 19.90 ± 0.51a | 10.40 ± 0.76b |
表1 刺槐幼苗丛枝菌根(AM)真菌侵染率、苗高、地茎、根冠比和根、茎、叶干重(平均值±标准偏差)
Table 1 Rate of arbuscular mycorrhizal (AM) fungi colonization, seedling height, basal diameter, root/shoot ratio, and dry weight of root, stem, and leaf in Robinia pseudoacacia seedlings (mean ± SD)
植物器官 Plant organ | 根内球囊霉 Glomus intraradices | 地表球囊霉 Glomus versiforme | 对照 Control | |
---|---|---|---|---|
菌根侵染率 Rate of AM colonization (%) | 78 ± 3a | 61 ± 4b | 0c | |
苗高 Seedling height (cm) | 34.3 ± 3.2b | 38.6 ± 3.7a | 18.2 ± 1.2c | |
地茎 Basal diameter (mm) | 6.7 ± 0.3a | 7.3 ± 0.4a | 5.5 ± 0.8b | |
根冠比 Root/shoot ratio | 0.73 ± 0.19a | 0.81 ± 0.12a | 0.58 ± 0.25a | |
干重 Dry weight (g·plant-1) | 根 Root | 8.30 ± 1.42a | 8.87 ± 0.86a | 3.66 ± 0.94b |
茎 Stem | 4.23 ± 0.49a | 3.95 ± 0.35a | 1.78 ± 0.64b | |
叶 Leaf | 7.18 ± 0.57a | 7.07 ± 0.47a | 4.95 ± 1.03b | |
整株 Whole plant | 19.72 ± 0.50a | 19.90 ± 0.51a | 10.40 ± 0.76b |
植物器官 Plant organ | 根内球囊霉 Glomus intraradices | 地表球囊霉 Glomus versiforme | 对照 Control | |
---|---|---|---|---|
干重热值 Gross calorific value (kJ·g-1) | 根 Root | 14.50 ± 0.24a | 13.33 ± 0.29b | 13.46 ± 0.24b |
茎 Stem | 16.80 ± 0.13a | 16.32 ± 0.24b | 15.42 ± 0.12c | |
叶 Leaf | 17.65 ± 0.16a | 17.37 ± 0.84a | 16.28 ± 0.76b | |
去灰分热值 Ash-free calorific value (kJ·g-1) | 根 Root | 16.52 ± 0.40a | 15.33 ± 0.47b | 15.27 ± 0.51b |
茎 Stem | 18.46 ± 0.21a | 18.05 ± 0.29a | 17.03 ± 0.24b | |
叶 Leaf | 20.26 ± 0.23a | 19.82 ± 0.07a | 18.74 ± 0.30b |
表2 丛枝菌根真菌对刺槐幼苗干重热值和去灰分热值的影响(平均值±标准偏差)
Table 2 Effects of arbuscular mycorrhizal fungi on gross calorific value and ash-free calorific value in Robinia pseudoacacia seedlings (mean ± SD)
植物器官 Plant organ | 根内球囊霉 Glomus intraradices | 地表球囊霉 Glomus versiforme | 对照 Control | |
---|---|---|---|---|
干重热值 Gross calorific value (kJ·g-1) | 根 Root | 14.50 ± 0.24a | 13.33 ± 0.29b | 13.46 ± 0.24b |
茎 Stem | 16.80 ± 0.13a | 16.32 ± 0.24b | 15.42 ± 0.12c | |
叶 Leaf | 17.65 ± 0.16a | 17.37 ± 0.84a | 16.28 ± 0.76b | |
去灰分热值 Ash-free calorific value (kJ·g-1) | 根 Root | 16.52 ± 0.40a | 15.33 ± 0.47b | 15.27 ± 0.51b |
茎 Stem | 18.46 ± 0.21a | 18.05 ± 0.29a | 17.03 ± 0.24b | |
叶 Leaf | 20.26 ± 0.23a | 19.82 ± 0.07a | 18.74 ± 0.30b |
植物器官 Plant organ | 根内球囊霉 Glomus intraradices | 地表球囊霉 Glomus versiforme | 对照 Control | |
---|---|---|---|---|
含碳量 Carbon content (%) | 根 Root | 29.63 ± 1.34a | 23.45 ± 1.62c | 26.04 ± 0.23b |
茎 Stem | 42.09 ± 1.86a | 39.16 ± 0.64a | 40.94 ± 1.59a | |
叶 Leaf | 47.81 ± 1.51a | 44.62 ± 5.77a | 42.76 ± 3.98a | |
灰分含量 Ash content (%) | 根 Root | 12.22 ± 0.74a | 13.06 ± 0.85a | 11.81 ± 1.38a |
茎 Stem | 8.96 ± 3.30b | 9.60 ± 0.56a | 9.47 ± 0.66a | |
叶 Leaf | 12.90 ± 0.31a | 12.36 ± 0.45a | 13.11 ± 0.87a |
表3 丛枝菌根真菌对刺槐幼苗碳和灰分含量的影响(平均值±标准偏差)
Table 3 Effects of arbuscular mycorrhizal fungi on carbon and ash contents in Robinia pseudoacacia seedlings (mean ± SD)
植物器官 Plant organ | 根内球囊霉 Glomus intraradices | 地表球囊霉 Glomus versiforme | 对照 Control | |
---|---|---|---|---|
含碳量 Carbon content (%) | 根 Root | 29.63 ± 1.34a | 23.45 ± 1.62c | 26.04 ± 0.23b |
茎 Stem | 42.09 ± 1.86a | 39.16 ± 0.64a | 40.94 ± 1.59a | |
叶 Leaf | 47.81 ± 1.51a | 44.62 ± 5.77a | 42.76 ± 3.98a | |
灰分含量 Ash content (%) | 根 Root | 12.22 ± 0.74a | 13.06 ± 0.85a | 11.81 ± 1.38a |
茎 Stem | 8.96 ± 3.30b | 9.60 ± 0.56a | 9.47 ± 0.66a | |
叶 Leaf | 12.90 ± 0.31a | 12.36 ± 0.45a | 13.11 ± 0.87a |
图1 丛枝菌根真菌对刺槐幼苗能量积累(A)和碳素积累(B)的影响。不同小写字母表示差异显著(p < 0.05)。
Fig. 1 Effects of arbuscular mycorrhizal fungi on accumulation of energy (A) and carbon (B) in Robinia pseudoacacia seedlings. Different lower-case letters mean significant difference (p < 0.05).
[1] | Balat M (2010). Bio-oil production from pyrolysis of black locust (Robinia pseudoacacia) wood. Energy, Exploration & Exploitation, 28, 173-186. |
[2] | Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd edn. China Agriculture Press, Beijing. 258-260. (in Chinese) |
[ 鲍士旦 (2000). 土壤农化分析. 第三版. 中国农业出版社, 北京. 258-260.] | |
[3] | Chen HJ, Zhang ZW, Ning ZL, Yang H, Sun GP (2009). Effects of fertilization on the caloric value and morphological properties of Miscanthus floridulus. Pratacultural Science, 26, 63-67. (in Chinese with English abstract) |
[ 陈慧娟, 张卓文, 宁祖林, 扬鸿, 孙贵平 (2009). 施肥对五节芒热值和表型性状的影响. 草业科学, 26, 63-67.] | |
[4] | Cheng TR, Feng J, Ma QY, Wang YT, Kang FF, Feng ZK, Zhang YL, Deng XR (2008). Carbon pool and allocation of forest vegetations in Xiaolong Mountains, Gansu Province. Acta Ecologica Sinica, 28, 33-44. (in Chinese with English abstract) |
[ 程堂仁, 冯菁, 马钦彦, 王玉涛, 康峰峰, 冯仲科, 张彦林, 邓向瑞 (2008). 甘肃小陇山森林植被碳库及其分配特征. 生态学报, 28, 33-44.] | |
[5] | Fu SQ, Qu QQ, Tang M, Yang Y, Li C (2011). Effects of nitrogen and AM fungi on the growth and nutrition metabolism of Robinia pseudoacacia. Scientia Silvae Sinicae, 47(1), 95-100. (in Chinese with English abstract) |
[ 付淑清, 屈庆秋, 唐明, 杨艳, 李翠 (2011). 施氮和接种AM真菌对刺槐生长及营养代谢的影响. 林业科学, 47(1), 95-100.] | |
[6] | Gao K, Zhu TX, Wang QB (2012). Effects of nitrogen fertilization on biomass, caloric value and ash content of Helianthus tuberosus L. Plant Nutrition and Fertilizer Science, 18, 512-517. (in Chinese with English abstract) |
[ 高凯, 朱铁霞, 王其兵 (2012). 氮肥对菊芋生物量、热值和灰分含量的影响. 植物营养和肥料学报, 18, 512-517.] | |
[7] | Ghimire SR, Charlton ND, Craven KD (2009). The mycorrhizal fungus, Sebacina vermifera, enhances seed germination and biomass production in switchgrass(Panicum virgatum L.). Bioenergy Research, 2, 51-58. |
[8] | Gong MQ, Chen YL, Zhong CL (1997). Mycorrhizal Research and Application. China Forestry Publishing House, Beijing. 137-141. |
[ 弓明钦, 陈应龙, 仲崇禄 (1997). 菌根研究及应用. 中国林业出版社, 北京. 137-141.] | |
[9] | González-García S, Gasol CM, Moreira MT, Gabarrell X, Rieradevall J, Feijoo G (2011). Environmental assessment of black locust (Robinia pseudoacacia L.)-based ethanol as potential transport fuel. International Journal Life Cycle Assessment, 16, 465-477. |
[10] | González-García S, Moreira MT, Feijoo G, Murphy RJ (2012). Comparative life cycle assessment of ethanol production from fast-growing wood crops (black locust, eucalyptus and poplar). Biomass and Bioenergy, 39, 378-388. |
[11] | Grünewald H, Böhm C, Quinkenstein A, Grundmann P, Eberts J, von Wühlisch G (2009). Robinia pseudoacacia L.: a lesser known tree species for biomass production. Bioenergy Research, 2, 123-133. |
[12] | Guan LL, Zhou XY, Luo Y (2005). A review on the study of plant caloric value in China. Chinese Journal of Ecology, 24, 452-457. |
[ 官丽莉, 周小勇, 罗艳 (2005). 我国植物热值研究综述. 生态学杂志, 24, 452-457.] | |
[13] | Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009). Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biology & Biochemistry, 41, 1233-1244. |
[14] |
Kumar R, Pandey KK, Chandrashekar N, Mohan S (2011). Study of age and height wise variability on calorific value and other fuel properties of Eucalyptus hybrid, Acacia auriculaeformis and Casuarina equisetifolia. Biomass and Bioenergy, 35, 1339-1344.
DOI URL |
[15] |
Lamlom SH, Savidge RA (2003). A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass and Bioenergy, 25, 381-388.
DOI URL |
[16] | Liu RJ (2001). Research and utilization of mycorrhizal fertilizer. Chinese Agriculture Science Bulletin, 17, 40-45. (in Chinese) |
[ 刘润进 (2001). 菌根真菌生物肥料研究开发前景. 中国农学通报, 17, 40-45.] | |
[17] | Liu RJ, Chen YL (2007). Mycorrhizology. Science Press, Beijing. 152, 289-319. (in Chinese) |
[ 刘润进, 陈应龙 (2007). 菌根学. 科学出版社, 北京. 152, 289-319.] | |
[18] |
Luo ZB, Polle A (2009). Wood composition and energy content in a poplar short rotation plantation on fertilized agricultural land in a future CO2 atmosphere. Global Change Biology, 15, 38-47.
DOI URL |
[19] |
Olesniewicz KS, Thomas RB (1999). Effects of mycorrhizal colonization on biomass production and nitrogen fixation of black locust (Robinia pseudoacacia L.) seedlings grown under elevated atmospheric carbon dioxide. New Phytologist, 142, 133-140.
DOI URL |
[20] |
Phillips JM, Hayman DS (1970). Improved procedures for clearing roots and staining parasitic and vesicular- arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 158-161.
DOI URL |
[21] | Ren H, Peng SL, Liu HX, Cao HL, Huang ZL (1999). The caloric value of main plant species at Dinghushan, Guangdong, China. Acta Phytoecologica Sinica, 23, 148-154. (in Chinese with English abstract) |
[ 任海, 彭少麟, 刘鸿先, 曹洪麟, 黄忠良 (1999). 鼎湖山植物群落以及主要植物的热值研究. 植物生态学报, 23, 148-154.] | |
[22] |
Sheng M, Tang M, Chen H, Yang BW, Zhang FF, Huang YH (2008). Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18, 287-296.
URL PMID |
[23] |
Smith SE, Smith FA (2011). Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 62, 227-250.
URL PMID |
[24] |
Tian CJ, He XY, Zhong Y, Chen JK (2003). Effect of inoculation with ecto- and arbuscular mycorrhizae and Rhizobium on the growth and nitrogen fixation by black locust, Robinia pseudoacacia. New Forests, 25, 125-131.
DOI URL |
[25] |
Wu QS, Zou YN, Huang YM, Li Y, He XH (2013). Arbuscular mycorrhizal fungi induce sucrose cleavage for carbon supply of arbuscular mycorrhizas in citrus genotypes. Scientia Horticulturae, 160, 320-325.
DOI URL |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[3] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[4] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[5] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[6] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[7] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[8] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
[9] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
[10] | 庞芳, 夏维康, 何敏, 祁珊珊, 戴志聪, 杜道林. 固氮菌缓解氮限制环境中丛枝菌根真菌对加拿大一枝黄花的营养竞争[J]. 植物生态学报, 2020, 44(7): 782-790. |
[11] | 崔利, 郭峰, 张佳蕾, 杨莎, 王建国, 孟静静, 耿耘, 李新国, 万书波. 摩西斗管囊霉改善连作花生根际土壤的微环境[J]. 植物生态学报, 2019, 43(8): 718-728. |
[12] | 高文童, 张春艳, 董廷发, 胥晓. 丛枝菌根真菌对不同性别组合模式下青杨雌雄植株根系生长的影响[J]. 植物生态学报, 2019, 43(1): 37-45. |
[13] | 徐丽娇, 郝志鹏, 谢伟, 李芳, 陈保冬. 丛枝菌根真菌根外菌丝跨膜H +和Ca 2+流对干旱胁迫的响应[J]. 植物生态学报, 2018, 42(7): 764-773. |
[14] | 何秋月, 闫美杰, 张建国, 杜盛. 黄土高原半湿润区刺槐树干液流对人工截留降雨输入及环境因子的响应[J]. 植物生态学报, 2018, 42(4): 466-474. |
[15] | 刘海跃, 李欣玫, 张琳琳, 王姣姣, 贺学礼. 西北荒漠带花棒根际丛枝菌根真菌生态地理分布[J]. 植物生态学报, 2018, 42(2): 252-260. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19