植物生态学报 ›› 2019, Vol. 43 ›› Issue (1): 37-45.DOI: 10.17521/cjpe.2018.0261
收稿日期:
2018-10-29
接受日期:
2019-01-09
出版日期:
2019-01-20
发布日期:
2019-04-25
通讯作者:
胥晓
基金资助:
GAO Wen-Tong1,ZHANG Chun-Yan1,2,DONG Ting-Fa1,2,XU Xiao1,2,*()
Received:
2018-10-29
Accepted:
2019-01-09
Online:
2019-01-20
Published:
2019-04-25
Contact:
XU Xiao
Supported by:
摘要:
丛枝菌根真菌(AMF)对雌雄异株植物根系生长, 尤其是对邻近生长的不同雌雄个体的影响还鲜有研究。该研究以泥土:河沙:蛭石体积比为1:1:1的混合物为培养基质, 分别在雄-雄、雌-雌和雄-雌3种组合栽培模式下对青杨(Populus cathayana)雌雄幼苗进行接种和不接种摩西球囊霉(Funneliformis mosseae)处理, 通过比较接种AMF与否雌雄植株根系在侵染率、生物量、形态、碳、氮含量等方面的差异来分析AMF对青杨雌雄幼苗根系生长发育的影响。结果发现: 与对照组相比, 接种AMF对3种栽培模式下青杨雌雄植株的侵染率、根干质量、根系形态(除分枝强度、比表面积)和碳、氮含量影响显著。此外, 不同性别组合模式对青杨雌雄植株的根干质量、根系形态和碳、氮含量影响显著。接种AMF后, 与雌-雌合栽模式下的雌株相比, 雄-雌合栽模式下雌株的根干质量、氮含量都有不同程度的提高, 根系形态发生改变; 而与雄-雄合栽模式下的雄株相比, 雄-雌合栽模式下雄株的相应指标出现降低或轻微增加。该研究表明AMF对不同性别组合模式下青杨植株根系生长具有显著促进作用, 尤其是雄-雌合栽模式下AMF接种最有利于雌株根系的生长发育。
高文童, 张春艳, 董廷发, 胥晓. 丛枝菌根真菌对不同性别组合模式下青杨雌雄植株根系生长的影响. 植物生态学报, 2019, 43(1): 37-45. DOI: 10.17521/cjpe.2018.0261
GAO Wen-Tong, ZHANG Chun-Yan, DONG Ting-Fa, XU Xiao. Effects of arbuscular mycorrhizal fungi on the root growth of male and female Populus cathayana individuals grown under different sexual combination patterns. Chinese Journal of Plant Ecology, 2019, 43(1): 37-45. DOI: 10.17521/cjpe.2018.0261
图2 接种丛枝菌根真菌(AMF)对不同栽培模式下青杨雌雄植株菌根侵染率和根干质量的影响(平均值±标准误差, n = 7)。柱形上方不同小写字母表示相应处理之间差异显著(采用Duncan’s多重比较, p < 0.05)。C, 组合效应; I, 接种效应; C × I, 组合与接种交互效应。ns, 没有显著差异; ***, p < 0.001。MM/M, 性别内组合下的雄株; FF/F, 性别内组合下的雌株; MF/M, 性别间组合下的雄株; MF/F, 性别间组合下的雌株。
Fig. 2 Effects of arbuscular mycorrhizal fungi (AMF) on the colonization rate and root dry mass of male and female Populus cathayana individuals grown under different sexual combination patterns (mean ± SE, n = 7). Different lowercase letters above the columns represent significant differences between corresponding treatments according to Duncan’s multiple range test (p < 0.05). C, combination pattern effect; I, inoculation effect; C × I, combination pattern and inoculation interaction effect. ns, not significant; ***, p < 0.001. MM/M, males in the intra-sexual combination; FF/F, females in the intra-sexual combination; MF/M, males in the inter-sexual combination; MF/F, females in the inter-sexual combination.
组别 Group | 组合 Combination pattern | 分枝强度 Root branching intensity (× 102) | 比表面积 Specific root surface area (× 102) | 比根长 Specific root length (× 103) | 总根长 Total root length (cm × 103) | 根尖数 Root tips number (× 103) |
---|---|---|---|---|---|---|
对照 Control | 雄雄/雄 MM/M | 5.01 ± 0.34b | 3.49 ± 0.49ab | 5.97 ± 0.49b | 25.58 ± 2.23ef | 20.97 ± 1.69cd |
雌雌/雌 FF/F | 4.26 ± 0.37b | 2.99 ± 0.24bc | 4.58 ± 0.34cd | 33.08 ± 2.39de | 19.09 ± 1.84d | |
雄雌/雄 MF/M | 7.81 ± 0.52a | 1.75 ± 0.27d | 3.80 ± 0.28d | 14.81 ± 1.25f | 17.71 ± 1.37d | |
雄雌/雌 MF/F | 7.83 ± 0.29a | 2.70 ± 0.44c | 5.04 ± 0.54bcd | 42.46 ± 4.38cd | 18.33 ± 1.50d | |
AMF | 雄雄/雄 MM/M | 4.46 ± 0.30b | 2.14 ± 0.20cd | 4.09 ± 0.18d | 58.47 ± 4.25c | 25.66 ± 1.27c |
雌雌/雌 FF/F | 4.83 ± 0.34b | 3.28 ± 0.16ab | 5.67 ± 0.48bc | 105.30 ± 9.82b | 38.47 ± 1.75b | |
雄雌/雄 MF/M | 6.70 ± 0.53a | 2.89 ± 0.20bc | 4.99 ± 0.43bcd | 55.88 ± 5.66c | 25.95 ± 1.51c | |
雄雌/雌 MF/F | 6.88 ± 0.31a | 3.99 ± 0.31a | 7.29 ± 0.52a | 137.96 ± 8.17a | 51.88 ± 3.42a | |
p > FI | 0.069ns | 0.126ns | 0.033* | <0.001*** | <0.001*** | |
p > FC | <0.001*** | 0.011* | 0.002** | <0.001*** | <0.001*** | |
p > FC×I | 0.142ns | <0.001*** | <0.001*** | <0.001*** | <0.001*** |
表1 接种丛枝菌根真菌(AMF)对不同栽培模式下青杨雌雄植株根系形态的影响(平均值±标准误差, n = 7)
Table 1 Effects of arbuscular mycorrhizal fungi (AMF) on the root morphology of male and female Populus cathayana individuals grown under different sexual combination patterns (mean ± SE, n = 7)
组别 Group | 组合 Combination pattern | 分枝强度 Root branching intensity (× 102) | 比表面积 Specific root surface area (× 102) | 比根长 Specific root length (× 103) | 总根长 Total root length (cm × 103) | 根尖数 Root tips number (× 103) |
---|---|---|---|---|---|---|
对照 Control | 雄雄/雄 MM/M | 5.01 ± 0.34b | 3.49 ± 0.49ab | 5.97 ± 0.49b | 25.58 ± 2.23ef | 20.97 ± 1.69cd |
雌雌/雌 FF/F | 4.26 ± 0.37b | 2.99 ± 0.24bc | 4.58 ± 0.34cd | 33.08 ± 2.39de | 19.09 ± 1.84d | |
雄雌/雄 MF/M | 7.81 ± 0.52a | 1.75 ± 0.27d | 3.80 ± 0.28d | 14.81 ± 1.25f | 17.71 ± 1.37d | |
雄雌/雌 MF/F | 7.83 ± 0.29a | 2.70 ± 0.44c | 5.04 ± 0.54bcd | 42.46 ± 4.38cd | 18.33 ± 1.50d | |
AMF | 雄雄/雄 MM/M | 4.46 ± 0.30b | 2.14 ± 0.20cd | 4.09 ± 0.18d | 58.47 ± 4.25c | 25.66 ± 1.27c |
雌雌/雌 FF/F | 4.83 ± 0.34b | 3.28 ± 0.16ab | 5.67 ± 0.48bc | 105.30 ± 9.82b | 38.47 ± 1.75b | |
雄雌/雄 MF/M | 6.70 ± 0.53a | 2.89 ± 0.20bc | 4.99 ± 0.43bcd | 55.88 ± 5.66c | 25.95 ± 1.51c | |
雄雌/雌 MF/F | 6.88 ± 0.31a | 3.99 ± 0.31a | 7.29 ± 0.52a | 137.96 ± 8.17a | 51.88 ± 3.42a | |
p > FI | 0.069ns | 0.126ns | 0.033* | <0.001*** | <0.001*** | |
p > FC | <0.001*** | 0.011* | 0.002** | <0.001*** | <0.001*** | |
p > FC×I | 0.142ns | <0.001*** | <0.001*** | <0.001*** | <0.001*** |
图3 接种丛枝菌根真菌(AMF)对不同栽培模式下青杨雌雄植株根系构型的影响。MM/M, 性别内组合下的雄株; FF/F, 性别内组合下的雌株; MF/M, 性别间组合下的雄株; MF/F, 性别间组合下的雌株。
Fig. 3 Effects of arbuscular mycorrhizal fungi (AMF) on the root system architecture of male and female Populus cathayana individuals grown under different sexual combination patterns. MM/M, males in the intra-sexual combination; FF/F, females in the intra-sexual combination; MF/M, males in the inter-sexual combination; MF/F, females in the inter-sexual combination.
图4 接种丛枝菌根真菌(AMF)对不同栽培模式下青杨雌雄植株根系碳和氮的影响(平均值±标准误差, n = 7)。柱形上方不同小写字母表示相应处理之间差异显著(采用Duncan’s多重比较, p < 0.05)。C, 组合效应; I, 接种效应; C × I, 组合与接种交互效应。ns, 没有显著差异; ***, p < 0.001。MM/M, 性别内组合下的雄株; FF/F, 性别内组合下的雌株; MF/M, 性别间组合下的雄株; MF/F, 性别间组合下的雌株。
Fig. 4 Effects of arbuscular mycorrhizal fungi (AMF) on the C content and N content in roots of male and female Populus cathayana individuals grown under different sexual combination patterns (mean ± SE, n = 7). Different lowercase letters above the columns represent significant differences between corresponding treatments according to Duncan’s multiple range test (p < 0.05). C, combination pattern effect; I, inoculation effect; C × I, combination pattern and inoculation interaction effect. ns, not significant; ***, p < 0.001. MM/M, males in the intra-sexual combination; FF/F, females in the intra-sexual combination; MF/M, males in the inter-sexual combination; MF/F, females in the inter-sexual combination.
[1] |
Bonfante P, Genre A ( 2010). Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nature Communications, 1, 48. DOI: 10.1038/ncomms1046.
DOI |
[2] |
Buee M, Rossignol M, Jauneau A, Ranjeva R, Bécard G ( 2000). The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Molecular Plant-Microbe Interactions, 13, 693-698.
DOI URL |
[3] | Chen J, Dong TF, Duan BL, Korpelainen H, Niinemets ü, Li CY ( 2015 a). Sexual competition and N supply interactively affect the dimorphism and competiveness of opposite sexes in Populus cathayana. Plant, Cell & Environment, 38, 1285-1298. |
[4] | Chen J, Duan BL, Wang M, Korpelainen H, Li CY ( 2014). Intra- and inter-sexual competition of Populus cathayana under different watering regimes. Functional Ecology, 28, 124-136. |
[5] | Chen J, Han QQ, Duan BL, Korpelainen H, Li CY ( 2017). Sex-specific competition differently regulates ecophysiological responses and phytoremediation of Populus cathayana under Pb stress. Plant and Soil, 421, 203-218. |
[6] | Chen LH, Hu XW, Yang WQ, Xu ZF, Zhang DJ, Gao S ( 2015 b). The effects of arbuscular mycorrhizal fungi on sex-specific responses to Pb pollution in Populus cathayana. Ecotoxicology and Environmental Safety, 113, 460-468. |
[7] | Chen ZC, Shi ZY, Tian CY, Feng G ( 2008). Effects of arbuscular mycorrhizal fungi inoculation on growth and nutrient uptake of two ephemeral plants. Journal of Plant Ecology (Chinese Version), 32, 648-653. |
[ 陈志超, 石兆勇, 田长彦, 冯固 ( 2008). 接种AM真菌对短命植物生长发育及矿质养分吸收的影响. 植物生态学报, 32, 648-653.] | |
[8] |
Dawson TE, Ehleringer JR ( 1993). Gender-specific physiology, carbon isotope discrimination, and habitat distribution in boxelder,Acer negundo. Ecology, 74, 798-815.
DOI URL |
[9] |
Dong T, Li J, Liao Y, Liu J, Chen B, Xu X ( 2017). Root-?mediated sex recognition in a dioecious tree. Scientific Reports, 7, 801. DOI: 10.1038/s41598-017-00894-2.
DOI URL |
[10] |
Giovannetti M, Sbrana C, Avio L, Strani P ( 2004). Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytologist, 164, 175-181.
DOI URL |
[11] |
Graham JH, Leonard RT, Menge JA ( 1981). Membrane-?mediated decrease in root exudation responsible for phorphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiology, 68, 548-552.
DOI URL |
[12] | Guo HL, Liu SJ, Xu J, Song SR, Tang JJ, Chen X ( 2017). Effects of arbuscular mycorrhizal fungi on growth and root traits of dicotyledons plants: A meta analysis. Chinese Journal of Ecology, 36, 1855-1864. |
[ 郭晗铃, 刘世俊, 徐静, 宋书锐, 唐建军, 陈欣 ( 2017). 丛枝菌根真菌对双子叶植物生长和根系特征的影响: 整合分析. 生态学杂志, 36, 1855-1864.] | |
[13] | Hawkins TS, Schiff NM, Leininger TD, Gardiner ES, Devall MS, Hamel PB, Wilson AD, Connor KF ( 2009). Growth and intraspecific competitive abilities of the dioecious Lindera melissifolia(Lauraceae) in varied flooding regimes. The Journal of the Torrey Botanical Society, 136, 91-101. |
[14] | He XH, Critchley C, Ng H, Bledsoe CS ( 2004). Reciprocal N ( 15NH4 + or 15NO3 -) transfer between nonN2-fixing Eucalyptus maculata and N2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytologist, 163, 629-640. |
[15] |
Hodge A, Campbell CD, Fitter AH ( 2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413, 297.
DOI |
[16] | Hu XW ( 2016). Effect of Arbuscular Mycorrhizal Fungi on Sex-specific Responses of Physiological and Biochemical Characteristics of Populus cathayana under Pb Pollution. Master degree dissertation, Sichuan Agricultural University, Chengdu. |
[ 胡相伟 ( 2016). 丛枝菌根对受铅胁迫的雌雄青杨(Populus cathayana)生理生化特性的影响. 硕士学位论文, 四川农业大学, 成都.] | |
[17] | Huang KC, Xu X, Li XF, He JD, Yang YX, Huan HH ( 2014). Gender-specific characteristics of tree-ring growth and differential responses to climate change in the dioecious tree Populus cathayana in Xiaowutai Mountains, China. Chinese Journal of Plant Ecology, 38, 270-280. |
[ 黄科朝, 胥晓, 李霄峰, 贺俊东, 杨延霞, 郇慧慧 ( 2014). 小五台山青杨雌雄植株树轮生长特性及其对气候变化的响应差异. 植物生态学报, 38, 270-280.] | |
[18] | Ji CL, Tian MM, Ma JF, Jin HR ( 2010). Advances in the researches on the effects of arbuscular mycorrhizal fungi on plant nutrition metabolism and growth effects. Journal of Zhejiang Normal University (Natural Sciences), 33, 303-309. |
[ 吉春龙, 田萌萌, 马继芳, 金海如 ( 2010). 丛枝菌根真菌对植物营养代谢与生长影响的研究进展. 浙江师范大学学报(自然科学版), 33, 303-309.] | |
[19] | Johansen A, Jensen ES ( 1996). Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biology & Biochemistry, 28, 73-81. |
[20] | Kong PP ( 2011). Effects of Arbuscular Mycorrhizal Fungi on Growth and Temperature Tolerance of Rosa hybrid and Chrysanthemum morifolium. Master degree dissertation, Academy of Agricultural Sciences, Beijing. |
[ 孔佩佩 ( 2011). 丛枝菌根真菌对切花月季和切花菊生长及温度胁迫耐受性的影响. 硕士学位论文, 中国农业科学院, 北京.] | |
[21] | Krishna H, Singh SK, Sharma RR, Khawale RN, Grover M, Patel VB ( 2005). Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular-mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Scientia Horticulturae, 106, 554-567. |
[22] | Lehmann A, Rillig MC ( 2015). Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops—A meta-analysis. Soil Biology & Biochemistry, 81, 147-158. |
[23] |
Leigh J, Hodge A, Fitter AH ( 2009). Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytologist, 181, 199-207.
DOI URL |
[24] | Li Z ( 2017). Influence of Arbuscular Mycorrhiza Fungi (AMF) Inoculation on Drought Tolerance of Populus cathayana Rehder Males and Females. PhD dissertation, Northwest A&F University, Yangling, Shaanxi. |
[ 李朕 ( 2017). 丛枝菌根真菌(AMF)提高青杨雌雄株抗旱性的研究. 博士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[25] | Liu T, Tang M ( 2014). Effects of arbuscular mycorrhizal fungi on growth and anatomical properties of stomata andxylem in poplars. Chinese Journal of Plant Ecology, 38, 1001-1007. |
[ 刘婷, 唐明 ( 2014). 丛枝菌根真菌对杨树生长、气孔和木质部微观结构的影响. 植物生态学报, 38, 1001-1007.] | |
[26] | Liu XJ, Zeng M, Du JB, Ren Z ( 2006). Effects of AMF on the growth and mineral nutrition of grape cuttings. Journal of Southwest Agricultural University (Natural Science), 28, 286-289. |
[ 刘晓捷, 曾明, 杜建斌, 任争 ( 2006). AMF对葡萄扦插苗矿质营养及生长的影响. 西南大学学报(自然科学版), 28, 286-289.] | |
[27] | Luo P, Zhou SL ( 2007). Effect of land use on ecological benefit of farm belt in suburbs. Journal of Ecology and Rural Environment, 23(4), 6-10. |
[ 罗培, 周申立 ( 2007). 土地利用变化对城郊农业区生态效益的影响——以四川省南充市高坪区为例. 生态与农村环境学报, 23(4), 6-10.] | |
[28] |
McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA ( 1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist, 115, 495-501.
DOI URL |
[29] |
Renner SS ( 2014). The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany, 101, 1588-1596.
DOI URL |
[30] |
Rogers SR, Eppley SM ( 2012). Testing the interaction between inter-sexual competition and phosphorus availability in a dioecious grass. Botany, 90, 704-710.
DOI URL |
[31] | Sharif M, Claassen N ( 2011). Action mechanisms of arbuscular mycorrhizal fungi in phosphorus uptake by Capsicum annuum L. Pedosphere, 21, 502-511. |
[32] | Smith SE, Read DJ ( 2010). Mycorrhizal Symbiosis. Academic Press, London. |
[33] |
Smith SE, Smith FA, Jakobsen I ( 2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 133, 16-20.
DOI URL |
[34] | Song FQ ( 2002). Ecological and Physiological Research on VA Mycorrhizas of Populus ussuriensis. PhD dissertation, Northeast Forestry University, Harbin. |
[ 宋福强 ( 2002). 大青杨VA菌根生理生态学研究. 博士学位论文, 东北林业大学, 哈尔滨.] | |
[35] |
van der Heijden MGA, Boller T, Wiemken A, Sanders IR ( 1998). Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology, 79, 2082-2091.
DOI URL |
[36] | Vierheilig H, Schweiger P, Brundrett M ( 2010). An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiologia Plantarum, 125, 393-404. |
[37] | Wang ZF, Xu X, Li XF, Yang P, Yuan XL ( 2011). The distribution of male and female Populus cathayana populations along an altitudinal gradient. Acta Ecologica Sinica, 31, 7067-7074. |
[ 王志峰, 胥晓, 李霄峰, 杨鹏, 袁新利 ( 2011). 青杨雌雄群体沿海拔梯度的分布特征. 生态学报, 31, 7067-7074.] | |
[38] | Wu N, Li Z, Liu H, Tang M ( 2015). Influence of arbuscular mycorrhiza on photosynthesis and water status of Populus cathayana Rehder males and females under salt stress. Acta Physiologiae Plantarum, 37, 183. DOI: 10.1007/?s11738-015-1932-6. |
[39] | Wu N, Li Z, Wu F, Tang M ( 2016). Comparative photochemistry activity and antioxidant responses in male and female Populus cathayana cuttings inoculated with arbuscular mycorrhizal fungi under salt. Scientific Reports, 6, 37663. DOI: 10.1038/srep37663. |
[40] | Wu QP, Tang Y, Dong TF, Liao YM, Li DD, He XH, Xu X ( 2018). Additional AM fungi inoculation increase Populus cathayana intersexual competition. Frontiers in Plant Science, 9, 607. DOI: 10.3389/fpls.2018.00607. |
[41] | Wu QS, Yuan FY, Fei YJ, Li L, Huang YM, Liu CY ( 2014). Effects of arbuscular mycorrhizal fungi on root system architecture and sugar contents of white clover. Acta Prataculturae Sinica, 23, 199-204. |
[ 吴强盛, 袁芳英, 费永俊, 李莉, 黄咏明, 刘春艳 ( 2014). 丛枝菌根真菌对白三叶根系构型和糖含量的影响. 草业学报, 23, 199-204.] | |
[42] | Xu X ( 2016). Research advances in root recognition in plants. Journal of China West Normal University (Natural Sciences), 37, 365-369. |
[ 胥晓 ( 2016). 植物根系识别研究. 西华师范大学学报(自然科学版), 37, 365-369.] | |
[43] | Xu X, Peng G, Wu C, Korpelainen H, Li CY ( 2008). Drought inhibits photosynthetic capacity more in females than in males of Populus cathayana. Tree Physiology, 28, 1751-1759. |
[44] | Yang P, Xu X ( 2012). Effects of waterlogging stress on the growth and physiological characteristics of male and female Populus cathayana seedlings. Chinese Journal of Plant Ecology, 36, 81-87. |
[ 杨鹏, 胥晓 ( 2012). 淹水胁迫对青杨雌雄幼苗生理特性和生长的影响. 植物生态学报, 36, 81-87.] | |
[45] | Zeng Z ( 2016). Effect of Opposite Sexual Neighbor on the Root Growth, Component of Root Exudates of Female and Male Populus cathayana Rehd. Seedlings. Master degree dissertation, China West Normal University, Nanchong, Sichuan. |
[ 曾贞 ( 2016). 异性邻株对青杨雌雄植株根的生长及其分泌物成分的影响. 硕士学位论文, 西华师范大学, 四川南充.] | |
[46] | Zhang YM, Ma KM, Qu LY ( 2017). Inoculation with arbuscular mycorrhizal fungi enhances the root system of Bauhinia faberi var. microphylla seedlings under drought stress conditions. Acta Ecologica Sinica, 37, 2611-2619. |
[ 张亚敏, 马克明, 曲来叶 ( 2017). 干旱条件下接种AM真菌对小马鞍羊蹄甲幼苗根系的影响. 生态学报, 37, 2611-2619.] | |
[47] | Zhao QH, Sun LT, Wang Y, Ding ZT, Li M ( 2014). Effects of arbuscular mycorrhizal fungi and nitrogen regimes on plant growth, nutrient uptake and tea quality in Camellia sinensis(L.) O. Kuntze. Plant Physiology Journal, 50, 164-170. |
[ 赵青华, 孙立涛, 王玉, 丁兆堂, 李敏 ( 2014). 丛枝菌根真菌和施氮量对茶树生长、矿质元素吸收与茶叶品质的影响. 植物生理学报, 50, 164-170.] | |
[48] | Zhao X, Yan XF ( 2006). Effects of arbuscular mycorrhizal fungi on the growth and absorption of nitrogen and phosphorus in Camptotheca acuminata seedlings. Journal of Plant Ecology (Chinese Version), 30, 947-953. |
[ 赵昕, 阎秀峰 ( 2006). 丛枝菌根对喜树幼苗生长和氮、磷吸收的影响. 植物生态学报, 30, 947-953.] | |
[49] | Zhu J, Liu G, Xiao J, Zhu SH, Zeng Z, Xu X, Dong TF ( 2016). Biomass of mulberry under planting modes of different gender combinations. Chinese Journal of Ecology, 35, 2336-2340. |
[ 朱娟, 刘刚, 肖娟, 竺诗慧, 曾贞, 胥晓, 董廷发 ( 2016). 桑树不同性别组合种植模式下的生物量. 生态学杂志, 35, 2336-2340.] | |
[50] | Zhu SH, Dong TF, Liu G, Xiao J, Zhu J, Zeng Z, Chen DF, Xu X ( 2016). Effects of root exudates on the growth and development of male and female Morus alba seedlings. Plant Physiology Journal, 52, 134-140. |
[ 竺诗慧, 董廷发, 刘刚, 肖娟, 朱娟, 曾贞, 陈德甫, 胥晓 ( 2016). 桑树(Morus alba)幼苗根系分泌物对雌雄植株生长发育的影响. 植物生理学报, 52, 134-140.] | |
[51] | Zou YN, Wu QS, Li Y, Huang YM ( 2014). Effects of arbuscular mycorrhizal fungi on root system morphology and sucrose and glucose contents of Poncirus trifoliata. Chinese Journal of Applied Ecology, 25, 1125-1129. |
[ 邹英宁, 吴强盛, 李艳, 黄咏明 ( 2014). 丛枝菌根真菌对枳根系形态和蔗糖、葡萄糖含量的影响. 应用生态学报, 25, 1125-1129.] |
[1] | 王艺彤, 叶尔江·拜克吐尔汉, 廖丹, 王娟. 雌雄异株植物髭脉槭不同生长阶段叶片元素计量特征与性二态间的相互关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[3] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[4] | 陈保冬, 付伟, 伍松林, 朱永官. 菌根真菌在陆地生态系统碳循环中的作用[J]. 植物生态学报, 2024, 48(1): 1-20. |
[5] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[6] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[7] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[8] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[9] | 张琦, 叶尔江·拜克吐尔汉, 王娟. 雌雄异株树种东北鼠李营养资源需求性别二态性[J]. 植物生态学报, 2023, 47(12): 1708-1717. |
[10] | 谢伟, 郝志鹏, 张莘, 陈保冬. 丛枝菌根网络介导的植物间信号交流研究进展及展望[J]. 植物生态学报, 2022, 46(5): 493-515. |
[11] | 林夏珍, 刘林, 董婷婷, 方琦博, 郭庆学. 非结构性碳水化合物与氮分配对美洲黑杨和青杨耐盐能力的影响[J]. 植物生态学报, 2021, 45(9): 961-971. |
[12] | 马炬峰, 辛敏, 徐陈超, 祝琬莹, 毛传澡, 陈欣, 程磊. 丛枝菌根真菌与氮添加对不同根形态基因型水稻氮吸收的影响[J]. 植物生态学报, 2021, 45(7): 728-737. |
[13] | 庞芳, 夏维康, 何敏, 祁珊珊, 戴志聪, 杜道林. 固氮菌缓解氮限制环境中丛枝菌根真菌对加拿大一枝黄花的营养竞争[J]. 植物生态学报, 2020, 44(7): 782-790. |
[14] | 崔利, 郭峰, 张佳蕾, 杨莎, 王建国, 孟静静, 耿耘, 李新国, 万书波. 摩西斗管囊霉改善连作花生根际土壤的微环境[J]. 植物生态学报, 2019, 43(8): 718-728. |
[15] | 徐丽娇, 郝志鹏, 谢伟, 李芳, 陈保冬. 丛枝菌根真菌根外菌丝跨膜H +和Ca 2+流对干旱胁迫的响应[J]. 植物生态学报, 2018, 42(7): 764-773. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19