植物生态学报 ›› 2023, Vol. 47 ›› Issue (8): 1159-1170.DOI: 10.17521/cjpe.2022.0173
收稿日期:
2022-04-29
接受日期:
2022-09-28
出版日期:
2023-08-20
发布日期:
2022-09-28
通讯作者:
*刘美华(基金资助:
SHI Meng-Jiao, LI Bin, YI Li-Ta, LIU Mei-Hua*()
Received:
2022-04-29
Accepted:
2022-09-28
Online:
2023-08-20
Published:
2022-09-28
Contact:
*LIU Mei-Hua(Supported by:
摘要:
研究雌雄异株植物在干旱-复水过程中的生长表现和生理机制变化有助于了解不同性别植物对环境的适应以及抗逆能力差异, 可为全球气候变化背景下造林树种的选择提供理论依据。该研究以美洲黑杨(Populus deltoides)为研究对象, 采用盆栽控水实验, 通过测定干旱-复水条件下幼苗的生长、叶片水分参数、光合参数等指标, 分析雌雄植株对不同水分处理的生理响应差异。结果显示: 干旱对雌雄植株生长均产生不利影响, 植株株高和地径生长减缓, 叶片的相对含水量、水势、净光合速率、气孔导度、蒸腾速率、光合电子产量、光化学猝灭系数以及电子传递速率均显著降低。干旱胁迫下, 雄株的生长情况优于雌株, 表现为雄株有更高的株高生长速率、地下生物量分配和水分利用效率。干旱胁迫下, 雌株最大光化学效率与光系统II (PSII)的潜在活性显著降低, 胞间CO2浓度显著增加; 雄株PSII受损伤较小, 但根和叶的线粒体交替氧化酶活性显著升高。复水30天后, 植株的各指标均有不同程度的恢复, 但雌雄株的株高、地径增长率和净光合速率等显著低于未经过干旱胁迫的对照组, 且不存在性别差异。干旱胁迫下, 美洲黑杨雌雄株幼苗的生长均受到不同程度的抑制, 雌株较雄株受影响更大。雄株通过降低叶片相对含水量、光合速率和叶绿素荧光参数, 增加交替氧化酶活性等一系列生理响应来提高植株干旱适应性。因此, 雄株比雌株具有更有效的保护机制, 有利于复水后各生理活动的恢复。
施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异. 植物生态学报, 2023, 47(8): 1159-1170. DOI: 10.17521/cjpe.2022.0173
SHI Meng-Jiao, LI Bin, YI Li-Ta, LIU Mei-Hua. Sexual divergence of Populus deltoides seedlings growth and ecophysiological response to drought and rewatering. Chinese Journal of Plant Ecology, 2023, 47(8): 1159-1170. DOI: 10.17521/cjpe.2022.0173
图1 干旱及复水对美洲黑杨雌雄幼苗生长的影响(平均值±标准误)。FCK, 雌株对照组; FTR, 雌株干旱处理组; MCK, 雄株对照组; MTR, 雄株干旱处理组; TR, 干旱胁迫处理; WR, 复水处理; 后面的数字表示处理时间(d)。S, 性别效应; S × T, 性别与干旱的交互效应; T, 水分处理效应。不同小写字母表示同一时间各处理间差异显著(p < 0.05, 最小显著差异法检验)。
Fig. 1 Effects of drought and re-watering on the growth of male and female seedlings of Populus deltoids (mean ± SE). FCK, control group of female seedlings; FTR, drought treatment group of female seedlings; MCK, control group of male seedlings; MTR, drought treatment group of male seedlings; TR, drought stress treatment; WR, rehydration treatment; the following number represents the processing time (d). S, sex effect; S × T, sex and treatment interaction effect; T, water treatment effect. Different lowercase letters indicate significant difference among treatments at the same time (p < 0.05, least-significant difference test).
图2 干旱胁迫对美洲黑杨幼苗生物量积累与分配的影响(平均值±标准误)。FCK, 雌株对照组; FTR, 雌株干旱处理组; MCK, 雄株对照组; MTR, 雄株干旱处理组。S, 性别效应; S × T, 性别与干旱的交互效应; T, 水分处理效应。不同小写字母表示同一部位各处理间差异显著(p < 0.05, 最小显著差异法检验)。
Fig. 2 Effects of drought stress on biomass accumulation and allocation of Populus deltoids seedlings (mean ± SE). FCK, control group of female seedlings; FTR, drought treatment group of female seedlings; MCK, control group of male seedlings; MTR, drought treatment group of male seedlings. S, sex effect; S × T, sex and treatment interaction effect; T, water treatment effect. Different lowercase letters indicate significant difference among treatments at the same organ (p < 0.05, least-significant difference test).
图3 干旱及复水对美洲黑杨幼苗叶片相对含水量和水势的影响(平均值±标准误)。FCK, 雌株对照组; FTR, 雌株干旱处理组; MCK, 雄株对照组; MTR, 雄株干旱处理组。TR, 干旱胁迫处理; WR, 复水处理; 后面的数字表示处理时间(d)。S, 性别效应; S × T, 性别与干旱的交互效应; T, 水分处理效应。不同小写字母代表同一时间各处理间差异显著(p < 0.05, 最小显著差异法检验)。
Fig. 3 Effects of drought and re-watering on relative water content and water potential of Populus deltoids seedlings (mean ± SE). FCK, control group of female seedlings; FTR, drought treatment group of female seedlings; MCK, control group of male seedlings; MTR, drought treatment group of male seedlings. TR, drought stress treatment; WR, rehydration treatment; the following number represents the processing time (d). S, sex effect; S × T, sex and treatment interaction effect; T, water treatment effect. Different lowercase letters indicate significant difference among treatments at the same time (p < 0.05, least-significant difference test).
图4 干旱及复水对美洲黑杨幼苗气体交换特征的影响(平均值±标准误)。FCK, 雌株对照组; FTR, 雌株干旱处理组; MCK, 雄株对照组; MTR, 雄株干旱处理组; TR, 干旱胁迫处理; WR, 复水处理; 后面的数字表示处理时间(d)。S, 性别效应; S × T, 性别与干旱的交互效应; T, 水分处理效应。不同小写字母表示同一时间各处理间差异显著(p < 0.05, 最小显著差异法检验)。
Fig. 4 Effects of drought and re-watering on the gas exchange of Populus deltoids seedlings (mean ± SE). Ci, intercellular CO2 concentration; Gs, stomatal conductance; Pn, net photosynthetic rate; Tr, transpiration rate; WUE, water use efficiency. FCK, control group of female seedlings; FTR, drought treatment group of female seedlings; MCK, control group of male seedlings; MTR, drought treatment group of male seedlings; TR, drought stress treatment; WR, rehydration treatment; the following number represents the processing time (d). S, sex effect; S × T, sex and treatment interaction effect; T, water treatment effect. Different lowercase letters indicate significant difference between treatments at the same time (p < 0.05, least-significant difference test).
图5 干旱及复水对美洲黑杨幼苗叶绿素荧光参数的影响(平均值±标准误)。PSII, 光系统II。FCK, 雌株对照组; FTR, 雌株干旱处理组; MCK, 雄株对照组; MTR, 雄株干旱处理组; TR, 干旱胁迫处理; WR, 复水处理; 后面的数字表示处理时间(d)。S, 性别效应; S × T, 性别与干旱的交互效应; T, 水分处理效应。不同小写字母表示同一时间各处理间差异显著(p < 0.05, 最小显著差异法检验)。
Fig. 5 Effects of drought and re-watering on the chlorophyll fluorescence of Populus deltoids seedlings (mean ± SE). PSII, photosystem II. Fv/Fo, potential photochemical efficiency of PSII; Y(II), photosynthetic electron yield; Fv/Fm, maximal photochemical efficiency of PSII; qP, photochemical quenching; NPQ, non-photochemical quenching; ETR, electron transport rate. FCK, control group of female seedlings; FTR, drought treatment group of female seedlings; MCK, control group of male seedlings; MTR, drought treatment group of male seedlings; TR, drought stress treatment; WR, rehydration treatment; the following number represents the processing time (d). S, sex effect; S × T, sex and treatment interaction effect; T, water treatment effect. Different lowercase letters indicate significant difference among treatments at the same time (p < 0.05, least-significant difference test).
图6 干旱及复水对美洲黑杨幼苗交替氧化酶活性的影响(平均值±标准误)。FCK, 雌株对照组; FTR, 雌株干旱处理组; MCK, 雄株对照组; MTR, 雄株干旱处理组。S, 性别效应; S × T, 性别与干旱的交互效应; T, 水分处理效应。不同小写字母表示同一时间各处理间差异显著(p < 0.05, 最小显著差异法检验)。
Fig. 6 Effects of drought and re-watering on the alternative oxidase (AOX) activity of Populus deltoids seedlings (mean ± SE). FCK, control group of female seedlings; FTR, drought treatment group of female seedlings; MCK, control group of male seedlings; MTR, drought treatment group of male seedlings. S, sex effect; S × T, sex and water treatment interaction effect; T, water treatment effect. Different lowercase letters indicate significant difference among treatments at the same time (p < 0.05, least-significant difference test).
图7 美洲黑杨雄株(A)和雌株(B)幼苗气体交换参数、叶绿素荧光参数与线粒体交替氧化酶(AOX)活性的相关性分析。数据为Pearson系数; *, p < 0.05; **, p < 0.01。Ci, 胞间CO2浓度; ETR, 电子传递速率; Fv /Fm, PSII最大光化学量子产量; Fv /Fo, PSII的潜在活性; Gs, 气孔导度; L, 叶; NPQ, 非光化学猝灭系数; Pn, 净光合速率; PSII, 光系统II; qP, 光化学猝灭系数; R, 根; S, 茎; Tr, 蒸腾速率; WUE, 瞬时水分利用效率; Y(II), 光合量子产量。
Fig. 7 Correlation coefficients of photosynthetic variables, chlorophyll fluorescence and alternative oxidase (AOX) activity of male (A) and female (B) Populus deltoids seedlings. Data are Pearson correlation coefficients. *, p < 0.05; **, p < 0.01. Ci, intercellular CO2 concentration; ETR, electron transport rate; Fv/Fm, maximal photochemical efficiency of PSII; Fv/Fo, potential photochemical efficiency of PSII; Gs, stomatal conductance; L, leaf; NPQ, non-photochemical quenching; Pn, net photosynthetic rate; PSII, photosystem II; qP, photochemical quenching; R, root; S, stem; Tr, transpiration rate; WUE, water use efficiency; Y(II), photosynthetic electron yield.
[1] | Ali S, Hayat K, Iqbal A, Xie LN (2020). Implications of abscisic acid in the drought stress tolerance of plants. Agronomy, 10, 1323. DOI: 10.3390/agronomy10091323. |
[2] |
Bartoli CG, Gomez F, Gergoff G, Guiamét JJ, Puntarulo S (2005). Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions. Journal of Experimental Botany, 56, 1269-1276.
DOI PMID |
[3] |
Baurain D, Dinant M, Coosemans N, Matagne RF (2003). Regulation of the alternative oxidase Aox1 gene in Chlamydomonas reinhardtii. Role of the nitrogen source on the expression of a reporter gene under the control of the Aox1 promoter. Plant Physiology, 131, 1418-1430.
PMID |
[4] |
Chastain DR, Snider JL, Collins GD, Perry CD, Whitaker J, Byrd SA (2014). Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis. Journal of Plant Physiology, 171, 1576-1585.
DOI PMID |
[5] | Chen J, Dong TF, Duan BL, Korpelainen H, Niinemets Ü, Li CY (2015). Sexual competition and N supply interactively affect the dimorphism and competiveness of opposite sexes in Populus cathayana. Plant, Cell & Environment, 38, 1285-1298. |
[6] |
Chen J, Duan BL, Wang ML, Korpelainen H, Li CY (2014). Intra- and inter-sexual competition of Populus cathayana under different watering regimes. Functional Ecology, 28, 124-136.
DOI URL |
[7] | Chen LH (2011). Differences of Physiological and Ecological Responses of Male and Female Plants of Populus yunnanensis to Environmental Stress. PhD dissertation, University of Chinese Academy of Sciences, Beijing. |
[陈良华 (2011). 滇杨(Populus yunnanensis)雌雄植株对环境胁迫的生理生态响应差异. 博士学位论文, 中国科学院大学, 北京.] | |
[8] |
Dahal K, Vanlerberghe GC (2017). Alternative oxidase respiration maintains both mitochondrial and chloroplast function during drought. New Phytologist, 213, 560-571.
DOI PMID |
[9] | Duan QY, Tian Y, E XW, Qin GZ, Zhang JY (2020). Sexual differences in growth and physiological properties of southern-type poplar clones in response to continuous drought and re-watering. Chinese Journal of Ecology, 39, 2140-2150. |
[段启英, 田野, 鄂晓伟, 秦广震, 张贾宇 (2020). 南方型黑杨生长和生理特性对持续干旱和复水响应的性别差异. 生态学杂志, 39, 2140-2150.] | |
[10] |
Efeoğlu B, Ekmekçi Y, Çiçek N (2009). Physiological responses of three maize cultivars to drought stress and recovery. South African Journal of Botany, 75, 34-42.
DOI URL |
[11] |
Fang YJ, Xiong LZ (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72, 673-689.
DOI PMID |
[12] |
Finnegan PM, Umbach AL, Wilce JA (2003). Prokaryotic origins for the mitochondrial alternative oxidase and plastid terminal oxidase nuclear genes. FEBS Letters, 555, 425-430.
PMID |
[13] | Fu YY (2018). Stomatal and non-stomatal limitation of photosynthesis in plant leaves under water stress. Science and Technology & Innovation, (8), 57-58. |
[符玉英 (2018). 水分胁迫下植物叶片光合的气孔和非气孔限制. 科技与创新, (8), 57-58.] | |
[14] |
Galvez DA, Landhäusser SM, Tyree MT (2011). Root carbon reserve dynamics in aspen seedlings: Does simulated drought induce reserve limitation? Tree Physiology, 31, 250-257.
DOI PMID |
[15] | Gao TH, Shang JZ, Song LT, Wang WF (2021). Responses of leaf photosynthetic and anatomical characteristics in Populus simonii cuttings to drought and re-watering. Science of Soil and Water Conservation, 19(6), 18-26. |
[高钿惠, 尚佳州, 宋立婷, 王卫锋 (2021). 小叶杨叶片光合特性与解剖结构对干旱及复水的响应. 中国水土保持科学, 19(6), 18-26.] | |
[16] |
Hultine KR, Grady KC, Wood TE, Shuster SM, Stella JC, Whitham TG (2016). Climate change perils for dioecious plant species. Nature Plants, 2, 16109. DOI: 10.1038/nplants.2016.109.
PMID |
[17] | Jing X, Wang JD, Wang JH, Huang WJ, Liu LY (2008). Classifying forest vegetation using sub-region classification based on multi-temporal remote sensing images. Remote Sensing Technology and Application, 23, 394-397. |
[竞霞, 王锦地, 王纪华, 黄文江, 刘良云 (2008). 基于分区和多时相遥感数据的山区植被分类研究. 遥感技术与应用, 23, 394-397.] | |
[18] |
Lei YB, Yin CY, Li CY (2006). Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiologia Plantarum, 127, 182-191.
DOI URL |
[19] |
Leigh A, Nicotra AB (2003). Sexual dimorphism in reproductive allocation and water use efficiency in Maireana pyramidata (Chenopodiaceae), a dioecious, semi-arid shrub. Australian Journal of Botany, 51, 509-514.
DOI URL |
[20] |
Li CY, Yin CY, Liu SR (2004). Different responses of two contrasting Populus davidiana populations to exogenous abscisic acid application. Environmental and Experimental Botany, 51, 237-246.
DOI URL |
[21] | Li JW, Wang JX, Zhang ML, Ji ZB, Xue S (2009). Effect of drought and rewater on leaf water potential of Robinia pseudoacacia. Journal of Northwest Forestry University, 24(3), 33-36. |
[李继文, 王进鑫, 张慕黎, 吉增宝, 薛设 (2009). 干旱及复水对刺槐叶水势的影响. 西北林学院学报, 24(3), 33-36.] | |
[22] | Li L, Li XY, Lin LS, Wang YJ, Xue W (2011). Photosystem II characteristics of nine Gramineae species in southern Taklamakan Desert. Chinese Journal of Applied Ecology, 22, 2599-2603. |
[李磊, 李向义, 林丽莎, 王迎菊, 薛伟 (2011). 塔克拉玛干沙漠南缘9种禾本科牧草光系统II特性. 应用生态学报, 22, 2599-2603.] | |
[23] |
Liao T, Wang Y, Xu CP, Li Y, Kang XY (2018). Adaptive photosynthetic and physiological responses to drought and rewatering in triploid Populus populations. Photosynthetica, 56, 578-590.
DOI URL |
[24] | Limousin JM, Bickford CP, Dickman LT, Pangle RE, Hudson PJ, Boutz AL, Gehres N, Osuna JL, Pockman WT, McDowell NG (2013). Regulation and acclimation of leaf gas exchange in a piñon-juniper woodland exposed to three different precipitation regimes. Plant, Cell & Environment, 36, 1812-1825. |
[25] | Liu CG, Wang YJ, Pan KW, Wang QW, Liang J, Jin YQ, Tariq A (2017). The synergistic responses of different photoprotective pathways in dwarf bamboo (Fargesia rufa) to drought and subsequent rewatering. Frontiers in Plant Science, 8, 489. DOI: 10.3389/fpls.2017.00489. |
[26] | Liu KQ, Liu WH, Jia ZF, Ma X, Liang GL (2020). Effects of water stress on organ growth and water use efficiency of Avena sativa ‘Qingyan No. 1’. Acta Agrestia Sinica, 28, 1552-1562. |
[刘凯强, 刘文辉, 贾志锋, 马祥, 梁国玲 (2020). 干旱胁迫对‘青燕1号’燕麦器官生长及水分利用效率的影响. 草地学报, 28, 1552-1562.]
DOI |
|
[27] |
Liu M, Zhao Y, Wang YT, Korpelainen H, Li CY (2022). Stem xylem traits and wood formation affect sex-specific responses to drought and rewatering in Populus cathayana. Tree Physiology, 42, 1350-1363.
DOI URL |
[28] |
Mathobo R, Marais D, Steyn JM (2017). The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agricultural Water Management, 180, 118-125.
DOI URL |
[29] |
Mu Q, Dong MQ, Xu J, Cao YX, Ding YB, Sun SK, Cai HJ (2022). Photosynthesis of winter wheat effectively reflected multiple physiological responses under short-term drought-rewatering conditions. Journal of the Science of Food and Agriculture, 102, 2472-2483.
DOI URL |
[30] |
Nakamura K, Sakamoto K, Kido Y, Fujimoto Y, Suzuki T, Suzuki M, Yabu Y, Ohta N, Tsuda A, Onuma M, Kita K (2005). Mutational analysis of the Trypanosoma vivax alternative oxidase: the E(X)6Y motif is conserved in both mitochondrial alternative oxidase and plastid terminal oxidase and is indispensable for enzyme activity. Biochemical and Biophysical Research Communications, 334, 593-600.
DOI PMID |
[31] | Ni SL, Li XM, Wang YC, Ren GS (2018). Physiological development and water use efficiency of winter wheat after re-watering following drought stresses at different growth stages. Journal of Irrigation and Drainage, 37(11), 20-25. |
[倪胜利, 李兴茂, 王亚翠, 任根深 (2018). 旱后复水对冬小麦生长发育及水分利用效率的影响. 灌溉排水学报, 37(11), 20-25.] | |
[32] |
Peng SM, Jiang H, Zhang S, Chen LH, Li XG, Korpelainen H, Li CY (2012). Transcriptional profiling reveals sexual differences of the leaf transcriptomes in response to drought stress in Populus yunnanensis. Tree Physiology, 32, 1541-1555.
DOI URL |
[33] |
Renner SS (2014). The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany, 101, 1588-1596.
DOI PMID |
[34] |
Rubin RL, van Groenigen KJ, Hungate BA (2017). Plant growth promoting rhizobacteria are more effective under drought: a meta-analysis. Plant and Soil, 416, 309-323.
DOI URL |
[35] | Song XY, Zhou GS, He QJ (2021). Critical leaf water content for maize photosynthesis under drought stress and its response to rewatering. Sustainability, 13, 7218. DOI: 10.3390/su13137218. |
[36] |
Tardieu F, Tuberosa R (2010). Dissection and modelling of abiotic stress tolerance in plants. Current Opinion in Plant Biology, 13, 206-212.
DOI PMID |
[37] |
Tian K, Wang Y, Chen D, Cao M, Luo J (2022). Influence of drought stress and post-drought rewatering on phytoremediation effect of Arabidopsis thaliana. Bulletin of Environmental Contamination and Toxicology, 108, 594-599.
DOI |
[38] |
Wang J, Vanlerberghe GC (2013). A lack of mitochondrial alternative oxidase compromises capacity to recover from severe drought stress. Physiologia Plantarum, 149, 461-473.
DOI URL |
[39] | Wang YL, Sun JW, Xun SH, Zang DK, Fang XX, Zhang T (2017). Effects of drought stress on photosynthetic characteristics, fluorescence parameters and relative water content of ‘Dong Yue Hong’ leaves. Shandong Agricultural Sciences, 49(4), 46-50. |
[王玉丽, 孙居文, 荀守华, 臧德奎, 方晓晓, 张涛 (2017). 干旱胁迫对东岳红光合特性、叶绿素荧光参数及叶片相对含水量的影响. 山东农业科学, 49(4), 46-50.] | |
[40] | Xu X, Yang F, Xiao XW, Zhang S, Korpelainen H, Li CY (2008). Sex-specific responses of Populus cathayana to drought and elevated temperatures. Plant, Cell & Environment, 31, 850-860. |
[41] | Xu XY, Sun S, Jin LQ, Liu MJ, Gao HY (2015). Up-regulation of the mitochondrial alternative oxidase pathway enhances photoprotection in Malus hupehensis leaves under drought stress. Plant Physiology Journal, 51, 2119-2125. |
[徐秀玉, 孙山, 金立桥, 刘美君, 高辉远 (2015). 干旱胁迫下平邑甜茶叶片交替呼吸途径上调对光破坏的防御作用. 植物生理学报, 51, 2119-2125.] | |
[42] | Yang B, Liu ZZ, Peng FR, Cao F, Chen T, Deng QJ, Chen WJ (2017). Growth and photosynthetic characteristics for pecan cultivars during drought stress and recovery. Journal of Zhejiang A&F University, 34, 991-998. |
[杨标, 刘壮壮, 彭方仁, 曹凡, 陈涛, 邓秋菊, 陈文静 (2017). 干旱胁迫和复水下不同薄壳山核桃品种的生长和光合特性. 浙江农林大学学报, 34, 991-998.] | |
[43] | Yu SY, Zhou YF, Huang W, Wang X, Gao XQ, Fu BZ (2021). Effects of drought, salt, and drought-salt combined stress on photosynthetic and physiological characteristics of Agropyron mongolicum. Acta Agrestia Sinica, 29, 2399-2406. |
[余淑艳, 周燕飞, 黄薇, 王星, 高雪芹, 伏兵哲 (2021). 干旱、盐及旱盐复合胁迫对沙芦草光合和生理特性的影响. 草地学报, 29, 2399-2406.]
DOI |
|
[44] |
Zhang S, Chen FG, Peng SM, Ma WJ, Korpelainen H, Li CY (2010). Comparative physiological, ultrastructural and proteomic analyses reveal sexual differences in the responses of Populus cathayana under drought stress. Proteomics, 10, 2661-2677.
DOI URL |
[45] |
Zhang S, Chen LH, Duan BL, Korpelainen H, Li CY (2012). Populus cathayana males exhibit more efficient protective mechanisms than females under drought stress. Forest Ecology and Management, 275, 68-78.
DOI URL |
[46] |
Zhang ZH, Cao BL, Gao S, Xu K (2019). Grafting improves tomato drought tolerance through enhancing photosynthetic capacity and reducing ROS accumulation. Protoplasma, 256, 1013-1024.
DOI PMID |
[47] | Zhao WH, Liu LZ, Shen Q, Yang JH, Han XY, Tian F, Wu JJ (2020). Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water, 12, 2127. DOI: 10.3390/w12082127. |
[48] | Zhao YQ, Gao MQ, Li T, Wang WF (2020). Effects of water stress on leaf gas exchange and biomass allocation of Populus × popularis ‘35-44’ cuttings. Acta Ecologica Sinica, 40, 1683-1689. |
[赵瑜琦, 高苗琴, 李涛, 王卫锋 (2020). 干旱胁迫对群众杨光合特性与器官干物质分配的影响. 生态学报, 40, 1683-1689.] |
[1] | 王艺彤, 叶尔江·拜克吐尔汉, 廖丹, 王娟. 雌雄异株植物髭脉槭不同生长阶段叶片元素计量特征与性二态间的相互关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[3] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[4] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[5] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[6] | 韩聪, 母艳梅, 查天山, 秦树高, 刘鹏, 田赟, 贾昕. 2012-2016年宁夏盐池毛乌素沙地黑沙蒿灌丛生态系统通量观测数据集[J]. 植物生态学报, 2023, 47(9): 1322-1332. |
[7] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[8] | 张琦, 叶尔江·拜克吐尔汉, 王娟. 雌雄异株树种东北鼠李营养资源需求性别二态性[J]. 植物生态学报, 2023, 47(12): 1708-1717. |
[9] | 余俊瑞, 万春燕, 朱师丹. 热带亚热带喀斯特森林木本植物的水力脆弱性分割[J]. 植物生态学报, 2023, 47(11): 1576-1584. |
[10] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[11] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[12] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[13] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[14] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[15] | 黄樱, 陈挚, 石喆, 熊博文, 鄢春华, 邱国玉. 蒸散发广义互补原理中关键参数αe的时空变化特征及计算方法分析[J]. 植物生态学报, 2022, 46(3): 300-310. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19