植物生态学报 ›› 2023, Vol. 47 ›› Issue (8): 1144-1158.DOI: 10.17521/cjpe.2022.0300 cstr: 32100.14.cjpe.2022.0300
白雨鑫1, 苑丹阳1, 王兴昌1, 刘玉龙2,3, 王晓春1,*()
收稿日期:
2022-07-20
接受日期:
2022-11-16
出版日期:
2023-08-20
发布日期:
2022-11-16
通讯作者:
*ORCID: 王晓春: 0000-0002-8897-5077,(基金资助:
BAI Yu-Xin1, YUAN Dan-Yang1, WANG Xing-Chang1, LIU Yu-Long2,3, WANG Xiao-Chun1,*()
Received:
2022-07-20
Accepted:
2022-11-16
Online:
2023-08-20
Published:
2022-11-16
Contact:
*WANG Xiao-Chun(Supported by:
摘要:
桦木属(Betula)树种作为北方温带森林的先锋树种, 在次生林恢复中起重要作用。在当前的气候变化背景下, 桦木属不同种类树干木质部解剖特征对气候变化的响应与适应策略还知之甚少。该研究以黑龙江省穆棱市东北红豆杉国家级自然保护区的3种天然桦木: 白桦(B. platyphylla)、黑桦(B. dahurica)和硕桦(B. costata)为研究对象, 运用树轮年代学和树轮解剖学方法, 比较了3种桦木木质部导管特征, 分析了导管特征与季节气候因子关系、时间稳定性及生长对极端气候的抵抗力与恢复力。结果表明: 3种桦木导管数量和密度都与轮宽显著正相关。白桦在3个树种中平均轮宽最宽, 导管小且多。黑桦和硕桦平均轮宽较小, 导管明显大而少, 可能使黑桦和硕桦更容易产生栓塞。3种桦木的径向生长主要受水分因素的限制, 温度限制作用不明显。3种桦木导管数量与各季节降水量正相关, 其中硕桦的正相关关系最强。春季气温上升, 促进白桦导管变多, 非生长季(11月至次年4月)气温升高使黑桦导管变多而硕桦导管数量变少。随着气候变暖, 黑桦导管更趋向于小而多, 硕桦导管更倾向于小而少。3种桦木径向生长对生长季干旱和非生长季高温的抵抗力和恢复力趋势在种间大致相同, 且对非生长季高温的抵抗力和恢复力均较低。黑桦对非生长季高温的响应在个体间变异较大。该研究发现不同桦木木质部导管应对气候变暖的策略不同, 白桦采取较为保守的策略(产生较多且较小导管)应对气候变化; 硕桦则采用大导管提高水分运输效率的策略, 这可能导致其最先衰退, 甚至死亡; 黑桦介于白桦和硕桦之间, 导管数量和面积适中。
白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异. 植物生态学报, 2023, 47(8): 1144-1158. DOI: 10.17521/cjpe.2022.0300
BAI Yu-Xin, YUAN Dan-Yang, WANG Xing-Chang, LIU Yu-Long, WANG Xiao-Chun. Comparison of characteristics of tree trunk xylem vessels among three species of Betula in northeast China and their relationships with climate. Chinese Journal of Plant Ecology, 2023, 47(8): 1144-1158. DOI: 10.17521/cjpe.2022.0300
树种(代码) Tree species (code) | 纬度 Latitude (° N) | 经度 Longitude (° E) | 海拔 Altitude (m) | 切片样本数 Core number | 时间跨度 Time span | 与气象站距离 Distance from weather station (km) |
---|---|---|---|---|---|---|
硕桦(BC) Betula costata (BC) | 44.00 | 130.10 | 735 | 6 | 1971-2019 | 77 |
黑桦(BD) Betula dahurica (BD) | 44.03 | 130.14 | 690 | 6 | 1928-2019 | 76 |
白桦(BP) Betula platyphylla (BP) | 44.00 | 130.14 | 590 | 6 | 1976-2019 | 81 |
表1 穆棱东北红豆杉国家级自然保护区3种桦木树轮采样的基本信息
Table 1 Basic information of tree-ring sampling of three birch species in Taxus cuspidata National Nature Reserve in Muling, Heilongjiang, China
树种(代码) Tree species (code) | 纬度 Latitude (° N) | 经度 Longitude (° E) | 海拔 Altitude (m) | 切片样本数 Core number | 时间跨度 Time span | 与气象站距离 Distance from weather station (km) |
---|---|---|---|---|---|---|
硕桦(BC) Betula costata (BC) | 44.00 | 130.10 | 735 | 6 | 1971-2019 | 77 |
黑桦(BD) Betula dahurica (BD) | 44.03 | 130.14 | 690 | 6 | 1928-2019 | 76 |
白桦(BP) Betula platyphylla (BP) | 44.00 | 130.14 | 590 | 6 | 1976-2019 | 81 |
图1 穆棱东北红豆杉国家级自然保护区3种桦木木质部解剖图片。BC, 硕桦; BD, 黑桦; BP, 白桦。
Fig. 1 Anatomical pictures of xylem of three birch species in Taxus cuspidata National Nature Reserve in Muling, Heilongjiang, China. BC, Betula costata; BD, Betula dahurica; BP, Betula platyphylla.
图2 穆棱1951-2019年月平均气温和月降水量(A)、年降水量(B)、年平均气温(C)和年相对湿度(D)变化。P, 月降水量; T, 月平均气温; Tmax, 月平均最高气温; Tmin, 月平均最低气温。k, 趋势线的斜率。
Fig. 2 Variation in monthly mean air temperature and monthly precipitation (A), annual precipitation (B), mean annual temperature (C) and annual relative humidity (D) in Muling 1951-2019. P, monthly precipitation; T, mean monthly air temperature; Tmax, mean monthly maximum air temperature; Tmin, mean monthly minimum air temperature. k, slope of the trend line.
图3 3种桦木年轮宽度(RW)与导管主要特征的差异(平均值±标准差)。Kh, 理论导水率; Ks, 特异性导水率; MVA, 平均导管面积; RCTA, 导管占比; TVA, 导管总面积; VD, 导管密度; VN, 导管数量。树种代码同表1。ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.000 1。
Fig. 3 Difference in tree ring width (RW) and main vessel traits for three birch species (mean ± SD). Kh, theoretical hydraulic conductivity; Ks, specific hydraulic conductivity; MVA, mean vessel area; RCTA, mean percentage of conductive area within xylem; TVA, total vessel area; VD, vessel density; VN, number of vessels. See Table 1 for the codes of tree species. ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.000 1.
图4 3种桦木年轮宽度(RW)与主要导管特征随形成层年龄的变化趋势。Kh, 理论导水率; Ks, 特异性导水率; MVA, 平均导管面积; RCTA, 导管占比; TVA, 导管总面积; VD, 导管密度; VN, 导管数量。树种代码同表1。
Fig. 4 Trends of tree ring width (RW) and the main vessel traits for three birch species. Kh, theoretical hydraulic conductivity; Ks, specific hydraulic conductivity; MVA, mean vessel area; RCTA, mean percentage of conductive area within xylem; TVA, total vessel area; VD, vessel density; VN, number of vessels. See Table 1 for the codes of tree species.
图5 3种桦木年轮宽度(RW)与主要导管特征之间的关系。Kh, 理论导水率; Ks, 特异性导水率; MVA, 平均导管面积; RCTA, 导管占比; TVA, 导管总面积; VD, 导管密度; VN, 导管数量。Corr, 相关系数。树种代码同表1。×, p ≥ 0.05。
Fig. 5 Relationship between ring width (RW) and main vessel characteristics of three birch species. Kh, theoretical hydraulic conductivity; Ks, specific hydraulic conductivity; MVA, mean vessel area; RCTA, mean percentage of conductive area within xylem; TVA, total vessel area; VD, vessel density; VN, number of vessels. Corr, correlation coefficient. See Table 1 for the codes of tree species. ×, p ≥ 0.05.
图6 3种桦木树轮解剖参数主成分(PC)分析。Kh, 理论导水率; Ks, 特异性导水率; MVA, 平均导管面积; RCTA, 导管占比; TVA, 导管总面积; VD, 导管密度; VN, 导管数量; RW, 年轮宽度。cos2, 变量在因子图上的表示质量。树种代码同表1。
Fig. 6 Principal component (PC) analysis of anatomical parameters of the annual rings of three birch species. Kh, theoretical hydraulic conductivity; Ks, specific hydraulic conductivity; RCTA, mean percentage of conductive area within xylem; MVA, mean vessel area; TVA, total vessel area; VD, vessel density; VN, number of vessels; RW, ring width. cos2, the quality of representation for variables on the factor map. See Table 1 for the codes of tree species.
图7 3个桦木属树种树轮解剖参数主成分(PC)与各季节气候因素的相关关系。AN, 全年; AUT, 秋季; GS, 当年生长季; PGS, 上一年生长季; PNG, 上一年非生长季; pWin, 上一年冬季; SPR, 春季; SUM, 夏季。P, 月降水量; Rh, 年相对湿度; SPEI, 标准化降水-蒸散指数; T, 月平均气温; Tmax, 月平均最高气温; Tmin, 月平均最低气温。树种代码同表1。*, p < 0.05。
Fig. 7 Relationship between the principal components (PC) of the anatomical parameters of the tree whorls of three birch species and climatic factors by season. AN, annual; AUT, autumn; GS, growing season; PGS, previous growing season; PNG, previous non-growing season; pWin, previous winter; SPR, spring; SUM, summer. P, monthly precipitation; Rh, annual relative humidity; SPEI, standardized precipitation evapotranspiration index; T, mean monthly air temperature; Tmax, mean monthly maximum air temperature; Tmin, mean monthly minimum air temperature. See Table 1 for the codes of tree species. *, p < 0.05.
图8 3种桦木年轮解剖参数主成分(PC)与主要季节气候因素的滑动相关。GS, 当年生长季; PGS, 上一年生长季; PNG, 上一年非生长季。P, 月降水量; T, 月平均气温; Tmax, 月平均最高气温; Tmin, 月平均最低气温; Rh, 年相对湿度; SPEI, 标准化降水-蒸散指数。r, 相关系数。树种代码同表1。*, p < 0.05。
Fig. 8 Sliding correlations between the principal components (PC) of the anatomical parameters of the annual rings of three birch species and the main seasonal climatic factors. GS, growing season; PGS, previous growing season; PNG, previous non-growing season. P, monthly precipitation; Rh, annual relative humidity; SPEI, standardized precipitation evapotranspiration index; T, mean monthly air temperature; Tmax, mean monthly maximum air temperature; Tmin, mean monthly minimum air temperature. r, correlation coefficient. See Table 1 for the codes of tree species. *, p < 0.05.
图9 3种桦木对2个生长季干旱年平均抵抗力(Rt)和恢复力(Rc)的比较。Kh, 理论导水率; Ks, 特异性导水率; MVA, 平均导管面积; RCTA, 导管占比; RW, 年轮宽度; TVA, 导管总面积; VD, 导管密度; VN, 导管数量。树种代码同表1。ns, p ≥ 0.05。
Fig. 9 Comparison of average resistance (Rt) and recovery (Rc) of three birch species to extreme drought between the two-growing seasons. Kh, theoretical hydraulic conductivity; Ks, specific hydraulic conductivity; RCTA, mean percentage of conductive area within xylem; RW, ring width; MVA, mean vessel area; TVA, total vessel area; VD, vessel density; VN, number of vessels. See Table 1 for the codes of tree species. ns, p ≥ 0.05.
图10 3种桦木对5个非生长季高温年的平均抵抗力(Rt)和恢复力(Rc)的比较。Kh, 理论导水率; Ks, 特异性导水率; MVA, 平均导管面积; RCTA, 导管占比; RW, 年轮宽度; TVA, 导管总面积; VD, 导管密度; VN, 导管数量。树种代码同表1。ns, p ≥ 0.05。
Fig. 10 Comparison of average resistance (Rt) and recovery (Rc) of three birch species to five non-growing season heat years. Kh, theoretical hydraulic conductivity; Ks, specific hydraulic conductivity; RCTA, mean percentage of conductive area within xylem; RW, ring width; MVA, mean vessel area; TVA, total vessel area; VD, vessel density; VN, number of vessels. See Table 1 for the codes of tree species. ns, p ≥ 0.05.
[1] |
Babst F, Alexander MR, Szejner P, Szejner P, Bouriaud O, Klesse S, Roden J, Ciais P, Poulter B, Frank D, Moore DJP, Trouet V (2014). A tree-ring perspective on the terrestrial carbon cycle. Oecologia, 176, 307-322.
DOI PMID |
[2] | Bai TJ, Deng WP, Kuang YW, Liu YQ, Ye Q, Niu JH, Wen LS, Huang R (2020). Response of tree ring width in Cryptomeria japonica to climatic factors at different elevations in Lushan Mountain. Chinese Journal of Ecology, 39, 57-66. |
[白天军, 邓文平, 旷远文, 刘苑秋, 叶清, 牛杰慧, 温林生, 黄榕 (2020). 庐山不同海拔日本柳杉年轮宽度对气候因子的响应. 生态学杂志, 39, 57-66.] | |
[3] |
Bourque CPA, Cox RM, Allen DJ, Arp PA, Meng FR (2005). Spatial extent of winter thaw events in eastern North America: historical weather records in relation to yellow birch decline. Global Change Biology, 11, 1477-1492.
DOI URL |
[4] | Buttó V, Millan M, Rossi S, Delagrange S (2021). Contrasting carbon allocation strategies of ring-porous and diffuse- porous species converge toward similar growth responses to drought. Frontiers in Plant Science, 12, 760859. DOI: 10.3389/fpls.2021.760859. |
[5] |
Chen WZ, Zhu D, Huang CJ, Ciais P, Yao YT, Friedlingstein P, Sitch S, Haverd V, Jain AK, Kato E, Kautz M, Lienert S, Lombardozzi D, Poulter B, Tian HQ, et al. (2019). Negative extreme events in gross primary productivity and their drivers in China during the past three decades. Agricultural and Forest Meteorology, 275, 47-58.
DOI URL |
[6] | Christensen-Dalsgaard KK, Tyree MT (2014). Frost fatigue and spring recovery of xylem vessels in three diffuse-porous trees in situ. Plant, Cell & Environment, 37, 1074-1085. |
[7] | Coble AP, Vadeboncoeur MA, Berry ZC, Jennings KA, McIntire CD, Campbell JL, Rustad LE, Templer PH, Asbjornsen H (2017). Are northeastern US forests vulnerable to extreme drought? Ecological Processes, 6, 34. DOI: 10.1186/s13717-017-0100-x. |
[8] |
Dai YX, Wang L, Wan XC (2020). Frost fatigue and its spring recovery of xylem conduits in ring-porous, diffuse-porous, and coniferous species in situ. Plant Physiology and Biochemistry, 146, 177-186.
DOI URL |
[9] | Du X, Dong X, Zheng Y, Dong L, Chen BW (2019). Several important Betula Linn. biomes climatic ecological niches and potential distribution areas. Journal of Arid Land Resources and Environment, 33(8), 179-185. |
[杜昕, 董雪, 郑颖, 董雷, 陈博伟 (2019). 中国五类重要桦木属植物群系气候生态位. 干旱区资源与环境, 33(8), 179-185.] | |
[10] | Fichot R, Barigah TS, Chamaillard S, Le Thiec D, Laurans F, Cochard H, Brignolas F (2010). Common trade-offs between xylem resistance to cavitation and other physiological traits do not hold among unrelated Populus deltoides × Populus nigra hybrids. Plant, Cell & Environment, 33, 1553-1568. |
[11] |
Gärtner H, Lucchinetti S, Schweingruber FH (2014). New perspectives for wood anatomical analysis in dendrosciences: the GSL1-microtome. Dendrochronologia, 32, 47-51.
DOI URL |
[12] | Geng WL, Li YY, Sun DQ, Li B, Zhang PY, Chang H, Rong TQ, Liu Y, Shao JW, Liu ZY, Zhu HR, Lou YY, Wang QQ, Zhang JB (2022). Prediction of the potential geographical distribution of Betula platyphylla Suk. in China under climate change scenarios. PLoS ONE, 17, e0262540. DOI: 10.1371/journal.pone.0262540. |
[13] | Gong R, Xu X, Tian XY, Jiang HL, Li X, Guan MX (2018). Hydraulic architecture characteristics and drought adaption strategies for three Caragana genus species. Acta Ecologica Sinica, 38, 4984-4993. |
[龚容, 徐霞, 田晓宇, 江红蕾, 李霞, 关梦茜 (2018). 三种锦鸡儿属植物水力结构特征及其干旱适应策略. 生态学报, 38, 4984-4993.] | |
[14] |
Gradel A, Haensch C, Ganbaatar B, Dovdondemberel B, Nadaldorj O, Günther B (2017). Response of white birch (Betula platyphylla Sukaczev) to temperature and precipitation in the mountain forest steppe and taiga of northern Mongolia. Dendrochronologia, 41, 24-33.
DOI URL |
[15] |
He JS, Zhang QB, Bazzaz FA (2005). Differential drought responses between saplings and adult trees in four co-occurring species of New England. Trees, 19, 442-450.
DOI URL |
[16] |
Hollesen J, Buchwal A, Rachlewicz G, Hansen BU, Hansen MO, Stecher O, Elberling B (2015). Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century. Global Change Biology, 21, 2410-2423.
DOI PMID |
[17] | IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[18] |
Islam M, Rahman M, Bräuning A (2018). Long-term hydraulic adjustment of three tropical moist forest tree species to changing climate. Frontiers in Plant Science, 9, 1761. DOI: 10.1016/j.agrformet.2018.11.037.
PMID |
[19] | Jiang JM (1990). The study of the geographical distribution of the Betula in China. Forest Research, 3(1), 55-62. |
[姜景民 (1990). 中国桦木属植物地理分布的研究. 林业科学研究, 3(1), 55-62.] | |
[20] | Jiang YG, Liu C, Zhang JH, Han SJ, Coombs CEO, Wang XG, Wang JW, Hao L, Dong SZ (2021). Tree ring width-based January-March mean minimum temperature reconstruction from Larix gmelinii in the Greater Khingan Mountains, China since AD 1765. International Journal of Climatology, 41, E842-E854. |
[21] | Kannenberg SA, Maxwell JT, Pederson N, D’Orangeville L, Ficklin DL, Phillips RP (2019). Drought legacies are dependent on water table depth, wood anatomy and drought timing across the eastern US. Ecology Letters, 22, 119-127. |
[22] |
Kharuk VI, Ranson KJ, Oskorbin PA, Im ST, Dvinskaya ML (2013). Climate induced birch mortality in Trans-Baikal Lake region, Siberia. Forest Ecology and Management, 289, 385-392.
DOI URL |
[23] |
Li X, Bounthong P, Kang WH, Ji XD, Zhang HJ, Xue ZG, Zhang ZQ (2022). Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China. Chinese Journal of Plant Ecology, 46, 919-931.
DOI URL |
[李肖, Bounthong P, 康文辉, 冀晓东, 张海江, 薛治国, 张志强 (2022). 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应. 植物生态学报, 46, 919-931.]
DOI |
|
[24] | Li XX, Rossi S, Sigdel SR, Dawadi B, Liang EY (2021). Warming menaces high-altitude Himalayan birch forests: evidence from cambial phenology and wood anatomy. Agricultural and Forest Meteorology, 308, 108577. DOI: 10.1016/j.agrformet.2021.108577. |
[25] | Liu WG (2021). Regional Vegetation Response to Climate Change and Its Modelling of Regional Climate Feedbacks in China. PhD dissertation, Nanjing University of Information Science and Technology, Nanjing. |
[刘伟光 (2021). 中国区域植被对气候变化的响应及其对区域气候反馈的模拟研究. 博士学位论文, 南京信息工程大学, 南京.] | |
[26] |
Lloret F, Keeling EG, Sala AN (2011). Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 120, 1909-1920.
DOI URL |
[27] |
Michelot A, Simard S, Rathgeber C, Dufrêne E, Damesin C (2012). Comparing the intra-annual wood formation of three European species (Fagus sylvatica, Quercus petraea and Pinus sylvestris) as related to leaf phenology and non-structural carbohydrate dynamics. Tree Physiology, 32, 1033-1045.
DOI PMID |
[28] | Ning ZY, Xiang YY, Huang L (2014). Simulation of the stand volume growth curves in regional carbon sequestration study—With five primary forests in China as an example. Forest Resources Management, (2), 73-82. |
[宁镇亚, 相莹莹, 黄麟 (2014). 区域尺度碳蓄积研究中的林分蓄积生长模拟——以我国五类主要树种为例. 林业资源管理, (2), 73-82.] | |
[29] |
Ogasa M, Miki N, Yoshikawa K (2010). Changes of hydraulic conductivity during dehydration and rehydration in Quercus serrata Thunb. and Betula platyphylla var. japonica Hara: the effect of xylem structures. Tree Physiology, 30, 608-617.
DOI URL |
[30] |
Pandey S, Carrer M, Castagneri D, Petit G (2018). Xylem anatomical responses to climate variability in Himalayan birch trees at one of the world’s highest forest limit. Perspectives in Plant Ecology, Evolution and Systematics, 33, 34-41.
DOI URL |
[31] |
Pfautsch S, Harbusch M, Wesolowski A, Smith R, Macfarlane C, Tjoelker MG, Reich PB, Adams MA (2016). Climate determines vascular traits in the ecologically diverse genus Eucalyptus. Ecology Letters, 19, 240-248.
DOI URL |
[32] |
Pritzkow C, Williamson V, Szota C, Trouvé R, Arndt SK (2020). Phenotypic plasticity and genetic adaptation of functional traits influences intra-specific variation in hydraulic efficiency and safety. Tree Physiology, 40, 215-229.
DOI PMID |
[33] | Secchi F, Pagliarani C, Zwieniecki MA (2017). The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. Plant, Cell & Environment, 40, 858-871. |
[34] | Shen GQ, Zheng HF, Lei ZF (2017). Applicability analysis of SPEI for drought research in Northeast China. Acta Ecologica Sinica, 37, 3787-3795. |
[沈国强, 郑海峰, 雷振锋 (2017). SPEI指数在中国东北地区干旱研究中的适用性分析. 生态学报, 37, 3787-3795.] | |
[35] |
Steppe K, Lemeur R (2007). Effects of ring-porous and diffuse-porous stem wood anatomy on the hydraulic parameters used in a water flow and storage model. Tree Physiology, 27, 43-52.
PMID |
[36] |
Stott P (2016). How climate change affects extreme weather events. Science, 352, 1517-1518.
DOI URL |
[37] | Tang S, Sun ZB, Ma CM (2018). Radial variation of anatomical properties of Betula platyphylla wood in different slope directions of northern Hebei Province. Journal of Southwest Forestry University (Natural Sciences), 38(3), 157-165. |
[唐爽, 孙照斌, 马长明 (2018). 冀北山区不同坡向白桦木材解剖特性径向变异研究. 西南林业大学学报(自然科学), 38(3), 157-165.] | |
[38] | Tang S, Sun ZB, Ma CM, Li YN, Cao YJ (2019). Radial variations of anatomical properties of natural Betula davurica wood in northern Hebei mountainous areas. Journal of Northwest Forestry University, 34(3), 174-179. |
[唐爽, 孙照斌, 马长明, 李永宁, 曹亚静 (2019). 冀北山区天然林黑桦木材解剖特性的径向变异. 西北林学院学报, 34(3), 174-179.] | |
[39] | Tomasella M, Petrussa E, Petruzzellis F, Nardini A, Casolo V (2019). The possible role of non-structural carbohydrates in the regulation of tree hydraulics. International Journal of Molecular Sciences, 21, 144. DOI: 10.3390/ijms21010144. |
[40] |
Utsumi Y, Sano Y, Fujikawa S, Funada R, Ohtani J (1998). Visualization of cavitated vessels in winter and refilled vessels in spring in diffuse-porous trees by cryo-scanning electron microscopy. Plant Physiology, 117, 1463-1471.
PMID |
[41] | Wang LH, Sun ML (2009). Caloric values and carbon contents of dominant trees in Xiaoxing’anling forest region. Acta Ecologica Sinica, 29, 953-959. |
[王立海, 孙墨珑 (2009). 小兴安岭主要树种热值与碳含量. 生态学报, 29, 953-959.] | |
[42] | Wang ML, Han Y, Tang S, Meng QX, Sun ZB (2021). Correlation between wood properties and growth characteristics of natural Betula dahurica in mountainous area of northern Hebei. Journal of Northwest Forestry University, 36(3), 237-243. |
[王梦蕾, 韩煜, 唐爽, 孟庆星, 孙照斌 (2021). 冀北山区天然林黑桦材性与生长特性相关性研究. 西北林学院学报, 36(3), 237-243.] | |
[43] |
Widagdo FRA, Li FR, Xie LF, Dong LH (2021). Intra- and inter-species variations in carbon content of 14 major tree species in Northeast China. Journal of Forestry Research, 32, 2545-2556.
DOI |
[44] |
Xu K, Wang XP, Liang PH, An HL, Sun H, Han W, Li QY (2017). Tree-ring widths are good proxies of annual variation in forest productivity in temperate forests. Scientific Reports, 7, 1945. DOI: 10.1038/s41598-017-02022-6.
PMID |
[45] | Yan XY, Li Q, Deng Y, Gao LL, Gou XH (2021). Warming- induced radial growth reduction in Betula albosinensis, eastern Qilian Mountains, China. Ecological Indicators, 120, 106956. DOI: 10.1016/j.ecolind.2020.106956. |
[46] | Yu JJ (2015). Effects of Climate Change on Tree-ring Width and Vessel Features in Betula platyphylla. Master degree dissertation, Henan University of Science and Technology, Luoyang. |
[余建基 (2015). 气候变化对白桦年轮宽度和导管特征的影响. 硕士学位论文, 河南科技大学, 河南洛阳.] | |
[47] | Yuan DY, Zhu LJ, Cherubini P, Li ZS, Zhang YD, Wang XC (2021). Species-specific indication of 13 tree species growth on climate warming in temperate forest community of northeast China. Ecological Indicators, 133, 108389. DOI: 10.1016/j.ecolind.2021.108389. |
[48] | Zhang DW (2004). Comparative Anatomy of Northeast Betulaceae. PhD dissertation, Northeast Forestry University, Harbin. |
[张大维 (2004). 东北桦木科植物比较解剖学研究. 博士学位论文, 东北林业大学, 哈尔滨.] | |
[49] | Zhang DW, Shi FC (2004). Morphological anatomical studies on Betulaceae vessel element from Heilongjiang Province, China. Bulletin of Botanical Research, 24, 158-161. |
[张大维, 石福臣 (2004). 黑龙江桦木科植物导管分子解剖学研究. 植物研究, 24, 158-161.] | |
[50] | Zhang TW, Yuan YJ, Wei WS, Zhang RB, Yu SL, Chen F, Shang HM, Qin L (2015). Development of the tree-ring width chronology of Betula tianschanica for the Kaiduhe River watershed and its climate response. Acta Ecologica Sinica, 35, 3034-3042. |
[张同文, 袁玉江, 魏文寿, 张瑞波, 喻树龙, 陈峰, 尚华明, 秦莉 (2015). 开都河流域天山桦树轮宽度年表的建立及其气候响应. 生态学报, 35, 3034-3042.] | |
[51] |
Zhao HW, Yang SC, Guo XD, Peng CJ, Gu XX, Deng CY, Chen LZ (2018). Anatomical explanations for acute depressions in radial pattern of axial sap flow in two diffuse-porous mangrove species: implications for water use. Tree Physiology, 38, 276-286.
DOI PMID |
[52] | Zhao XP, Guo PP, Zhang ZL, Liu SY, Wang XC, Wang MK, Zhou SS, Nan YP (2019). Regional variation of non-structural carbohydrates in xylem of Betula costata branches and roots. Journal of Northwest Forestry University, 34(1), 224-228. |
[赵西平, 郭平平, 张昭林, 刘势语, 王兴昌, 王孟珂, 周爽爽, 南亚培 (2019). 枫桦树枝和树根木质部非结构性碳水化合物的地区差异. 西北林学院学报, 34(1), 224-228.] | |
[53] |
Zhu LJ, Li ZS, Wang XC (2017). Anatomical characteristics of xylem in tree rings and its relationship with environments. Chinese Journal of Plant Ecology, 41, 238-251.
DOI URL |
[朱良军, 李宗善, 王晓春 (2017). 树轮木质部解剖特征及其与环境变化的关系. 植物生态学报, 41, 238-251.]
DOI |
[1] | 童郁强, 吴梦鸽, 王玲, 赵实, 韩叙, 张彤, 刘静, 秦胜金, 董英豪, 魏亚伟, 周永斌. 基于液流径向变化的樟子松蒸腾耗水量估算及影响因素[J]. 植物生态学报, 2024, 48(9): 1118-1127. |
[2] | 董云焘, 贾恒锋, 杨晶, 李佩轩, 方欧娅. 祁连山中部祁连圆柏林干扰历史重建[J]. 植物生态学报, 2024, 48(8): 967-976. |
[3] | 马琳, 巢林, 何雨莎, 李忠国, 王爱华, 刘晟源, 胡宝清, 刘艳艳. 热带喀斯特季节性雨林12个树种木质部栓塞抗性与其解剖结构及相关性状间的关系[J]. 植物生态学报, 2024, 48(7): 888-902. |
[4] | 王小林, 周维, 赵梅, 丁钰桐, 杨冬梅, 张吟霜, 尹梦琪, 庄悦, 彭国全. 雷竹和青皮竹导管结构的轴向变化[J]. 植物生态学报, 2024, 48(7): 915-929. |
[5] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[6] | 张学渊 任海燕 汤靖磊 朱毅 高翠萍 韩国栋. 内蒙古荒漠草原土壤CH4和CO2通量在不同冻融阶段对增温和氮添加的响应[J]. 植物生态学报, 2024, 48(10): 1-0. |
[7] | 余海霞, 曲鲁平, 汤行昊, 刘南, 张子雷, 王浩, 王艺璇, 邵长亮, 董刚, 胡亚林. 闽楠和木荷非结构性碳水化合物对不同模式热浪的差异性响应[J]. 植物生态学报, 2023, 47(2): 249-261. |
[8] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
[9] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[10] | 韩旭丽, 赵明水, 王忠媛, 叶琳峰, 陆世通, 陈森, 李彦, 谢江波. 三种裸子植物木质部结构与功能对不同生境的适应[J]. 植物生态学报, 2022, 46(4): 440-450. |
[11] | 于海英, 杨莉琳, 付素静, 张志敏, 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应[J]. 植物生态学报, 2022, 46(12): 1573-1584. |
[12] | 任金培, 李俊鹏, 王卫锋, 代永欣, 王林. 八个树种叶水力性状对水分条件的响应及其驱动因素[J]. 植物生态学报, 2021, 45(9): 942-951. |
[13] | 郑景明, 刘洪妤. 采用Strauss-Hardcore模型研究不同导管构型被子植物的导管空间分布特征[J]. 植物生态学报, 2021, 45(9): 1024-1032. |
[14] | 方菁, 叶琳峰, 陈森, 陆世通, 潘天天, 谢江波, 李彦, 王忠媛. 自然和人工生境被子植物枝木质部结构与功能差异[J]. 植物生态学报, 2021, 45(6): 650-658. |
[15] | 倪铭, 张曦月, 姜超, 王鹤松. 中国西南部地区植被对极端气候事件的响应[J]. 植物生态学报, 2021, 45(6): 626-640. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19