植物生态学报 ›› 2021, Vol. 45 ›› Issue (9): 942-951.DOI: 10.17521/cjpe.2021.0140
所属专题: 植物功能性状
收稿日期:
2021-04-14
接受日期:
2021-08-09
出版日期:
2021-09-20
发布日期:
2021-11-18
通讯作者:
王林
作者简介:
ORCID: *王林: 0000-0002-1658-4720(lwanger@163.com)
基金资助:
REN Jin-Pei, LI Jun-Peng, WANG Wei-Feng, DAI Yong-Xin, WANG Lin()
Received:
2021-04-14
Accepted:
2021-08-09
Online:
2021-09-20
Published:
2021-11-18
Contact:
WANG Lin
Supported by:
摘要:
树木叶片的水力效率和安全性会对水分条件的改变做出一定的响应, 进而影响树木的生长和分布, 然而叶导水率(Kleaf)和叶水力脆弱性(P50)对不同水分条件的响应模式及其影响因素尚不清楚。该研究选取了晋西北关帝山和黑茶山两种水分条件下的8种树种, 测量其水力性状、叶片导管和形态性状, 比较两地不同树种的Kleaf和P50的变化, 分析叶片水力效率和安全性之间的权衡关系, 并探讨叶片水力性状在不同树种及水分条件下的响应模式及其驱动因素。结果表明: 对同一树种而言, 湿润的关帝山叶最大导水率(Kmax)和P50均高于干旱的黑茶山; 对同一地区而言, 从在高水分条件下生长的树种到在易干旱环境生长的树种, Kmax和P50均逐渐下降。Kmax、P50、膨压丧失点水势(TLP)之间均存在显著相关关系。两地叶片P50与导管密度、导管塌陷预测值((t/b)3)、叶片厚度、比叶质量显著正相关, 与导管直径、叶面积显著负相关, 不同树种的Kleaf和P50与叶导管性状的关系大于叶形态性状。同一树种的关帝山到黑茶山P50变化量(δP50)与比叶质量和叶干物质含量在两地的变化量显著正相关, 同一树种δP50与叶形态性状变化量的关系大于与叶导管性状的。以上结果表明: 随着水分条件变差, 叶片水力效率降低, 水力安全性提高, 不同树种叶片水力效率与安全性之间存在一定的权衡关系, 不同树种叶水力性状的差别受叶导管性状影响的程度大于受叶形态性状的影响, 同一树种叶水力安全性对水分条件变化的响应主要依靠叶形态性状的驱动, 树木在提高自身叶水力安全的同时增加了叶构建的碳投资。
任金培, 李俊鹏, 王卫锋, 代永欣, 王林. 八个树种叶水力性状对水分条件的响应及其驱动因素. 植物生态学报, 2021, 45(9): 942-951. DOI: 10.17521/cjpe.2021.0140
REN Jin-Pei, LI Jun-Peng, WANG Wei-Feng, DAI Yong-Xin, WANG Lin. Responses of leaf hydraulic traits to water conditions in eight tree species and the driving factors. Chinese Journal of Plant Ecology, 2021, 45(9): 942-951. DOI: 10.17521/cjpe.2021.0140
图1 关帝山和黑茶山8个树种的叶水力脆弱性曲线。A, 青杨。B, 蒙古栎。C, 榆树。D, 山杏。E, 山杨。F, 落叶松。G, 油松。H, 云杉。图中竖线为水分输导速率为最大导水率(Kmax)的50%时的水势(P50), G表示关帝山树种, H表示黑茶山树种。
Fig. 1 Leaf hydraulic vulnerability curves for eight tree species in Guandi Mountain and Heicha Mountain. A, Populus cathayana. B, Quercus mongolica. C, Ulmus pumila. D, Armeniaca sibirica. E, Populus davidiana. F, Larix gmelinii. G, Pinus tabuliformis. H, Picea asperata. The vertical lines in each graph indicate the water potential (P50) when the water transport rate is at 50% of the maximum hydraulic conductivity (Kmax). G, trees in Guandi Mountain; H, trees in Heicha Mountain.
图2 关帝山和黑茶山青杨、蒙古栎、榆树、山杏、山杨、落叶松、油松和云杉叶膨压丧失点水势(TLP)的比较(平均值±标准误)。G表示关帝山树种, H表示黑茶山树种。不同大写字母代表同一树种在不同地区的差异显著, 不同小写字母代表不同树种在同一地区的差异显著(p < 0.05)。
Fig. 2 Comparisons of water potential at turgor loss points (TLP) among Populus cathayana (Pc), Quercus mongolica (Qm), Ulmus pumila (Up), Armeniaca sibirica (As), Populus davidiana (Pd), Larix gmelinii (Lg), Pinus tabuliformis (Pt) and Picea asperata (Pa) in Guandi Mountain and Heicha Mountain (mean ± SE). G, trees in Guandi Mountain; H, trees in Heicha Mountain. Different uppercase letters indicate significant differences between the study areas within the same tree species; different lowercase letters indicate significant differences among tree species within the same area (p < 0.05).
图3 关帝山和黑茶山阔叶和针叶树种叶最大导水率(Kmax)、水力脆弱性(P50)和膨压丧失点水势(TLP)的比较(平均值±标准误)。G表示关帝山树种, H表示黑茶山树种。不同大写字母代表同一树种在不同地区的差异显著, 不同小写字母代表不同树种在同一地区的差异显著(p < 0.05)。
Fig. 3 Comparisons of maximum hydraulic conductivity (Kmax), hydraulic vulnerability (P50) and water potential at turgor loss points (TLP) between broadleaved and coniferous species and between Guandi Mountain and Heicha Mountain (mean ± SE). G, trees in Guandi Mountain; H, trees in Heicha Mountain. Different uppercase letters indicate significant differences between study areas within the same tree group; lowercase letters indicate significant differences between tree groups within the same study area (p < 0.05).
图4 关帝山和黑茶山树种叶最大导水率(Kmax)、水力脆弱性(P50)和膨压丧失点水势(TLP)的关系(平均值±标准误)。G表示关帝山树种, H表示黑茶山树种。**, p < 0.01。
Fig. 4 Relationships among maximum hydraulic conductivity (Kmax), hydraulic vulnerability (P50) and water potential at turgor loss points (TLP) in Guandi Mountain and Heicha Mountain (mean ± SE). G, trees in Guandi Mountain; H, trees in Heicha Mountain. **, p < 0.01.
N (No.·mm-2) | D (μm) | (t/b)3 | LT (μm) | LA (cm2) | LMA (g·m-2) | LDMC (g·g-1) | ||
---|---|---|---|---|---|---|---|---|
G | P50 | 0.866** | -0.945** | 0.714* | 0.775* | -0.921** | 0.776* | 0.453 |
Kmax | -0.749* | 0.895** | -0.563 | -0.617 | 0.813* | -0.613 | -0.392 | |
H | P50 | 0.927** | -0.898** | 0.734* | 0.920** | -0.810* | 0.915** | 0.711* |
Kmax | -0.724* | 0.942** | -0.597 | -0.594 | 0.900** | -0.597 | -0.327 |
表1 关帝山(G)和黑茶山(H)叶水力性状与叶导管形态性状的关系
Table 1 Relationships between leaf hydraulic traits and leaf vessel morphological traits in Guandi Mountain (G) and Heicha Mountain (H)
N (No.·mm-2) | D (μm) | (t/b)3 | LT (μm) | LA (cm2) | LMA (g·m-2) | LDMC (g·g-1) | ||
---|---|---|---|---|---|---|---|---|
G | P50 | 0.866** | -0.945** | 0.714* | 0.775* | -0.921** | 0.776* | 0.453 |
Kmax | -0.749* | 0.895** | -0.563 | -0.617 | 0.813* | -0.613 | -0.392 | |
H | P50 | 0.927** | -0.898** | 0.734* | 0.920** | -0.810* | 0.915** | 0.711* |
Kmax | -0.724* | 0.942** | -0.597 | -0.594 | 0.900** | -0.597 | -0.327 |
图5 关帝山和黑茶山两地间比叶质量变化量(δLMA)、叶干物质含量变化量(δLDMC)与水力脆弱性变化量(δP50)的关系(平均值±标准误)。*, p < 0.05。
Fig. 5 Relationships of the changes in leaf mass per unit area (δLMA) and the changes in leaf dry mass content (δLDMC) with changes in hydraulic vulnerability (δP50) between Guandi Mountain and Heicha Mountain (mean ± SE). *, p < 0.05.
因子 Parameter | P50 | Kmax | ||||
---|---|---|---|---|---|---|
系数 Coefficient | t | p | 系数 Coefficient | t | p | |
VT | 0.680 | 3.875 | 0.002 | -1.034 | -3.003 | 0.010 |
MT | 0.299 | 1.704 | 0.112 | 0.263 | 0.763 | 0.459 |
表2 关帝山和黑茶山导管性状(VT)和形态性状(MT)对水力脆弱性(P50)和最大导水率(Kmax)的影响
Table 2 Level of significance in the effects of vessel traits (VT) and morphological traits (MT) on hydraulic vulnerability (P50) and maximum hydraulic conductivity (Kmax) in Guandi Mountain and Heicha Mountain
因子 Parameter | P50 | Kmax | ||||
---|---|---|---|---|---|---|
系数 Coefficient | t | p | 系数 Coefficient | t | p | |
VT | 0.680 | 3.875 | 0.002 | -1.034 | -3.003 | 0.010 |
MT | 0.299 | 1.704 | 0.112 | 0.263 | 0.763 | 0.459 |
因子 Parameter | δP50 | δKmax | ||||
---|---|---|---|---|---|---|
系数 Coefficient | t | p | 系数 Coefficient | t | p | |
δVT | -0.981 | -2.314 | 0.069 | -0.650 | -1.019 | 0.355 |
δMT | 1.594 | 3.761 | 0.013 | -0.069 | -0.108 | 0.918 |
表3 关帝山和黑茶山两地间导管性状变化量(δVT)和形态性状变化量(δMT)对水力脆弱性变化量(δP50)和最大导水率变化量(δKmax)的影响
Table 3 Significance of vessel traits variation (δVT) and morphological traits variation (δMT) to hydraulic vulnerability variation (δP50) and maximum hydraulic conductivity variation (δKmax) from Guandi Mountain to Heicha Mountain
因子 Parameter | δP50 | δKmax | ||||
---|---|---|---|---|---|---|
系数 Coefficient | t | p | 系数 Coefficient | t | p | |
δVT | -0.981 | -2.314 | 0.069 | -0.650 | -1.019 | 0.355 |
δMT | 1.594 | 3.761 | 0.013 | -0.069 | -0.108 | 0.918 |
[1] |
Brodribb TJ, Holbrook NM (2003). Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiology, 132, 2166-2173.
PMID |
[2] |
Brodribb TJ, Holbrook NM (2005). Water stress deforms tracheids peripheral to the leaf vein of a tropical conifer. Plant Physiology, 137, 1139-1146.
PMID |
[3] | Bucci SJ, Silletta LMC, Garré A, Cavallaro A, Efron ST, Arias NS, Goldstein G, Scholz FG (2019). Functional relationships between hydraulic traits and the timing of diurnal depression of photosynthesis. Plant, Cell & Environment, 42, 1603-1614. |
[4] | Gao HP (2019). Afforestation situation and countermeasures of main broad-leaved species in Heicha forest bureau. Shanxi Forestry Science and Technology, 48(4), 48-50. |
[ 郜慧萍 (2019). 黑茶林局主要阔叶树造林现状及对策建议. 山西林业科技, 48(4), 48-50.] | |
[5] |
Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB, Bhaskar R, Brodribb TJ, Bucci SJ, Cao KF, Cochard H, Delzon S, Domec JC, Fan ZX, Feild TS, et al. (2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species. New Phytologist, 209, 123-136.
DOI PMID |
[6] | Guo JP, Yang HX, Xue JJ, Wang YM, Wei X (1999). Forest landscape heterogeneity and its dynamics of Guandishan Mountain. Chinese Journal of Applied Ecology, 10, 40-44. |
郭晋平, 阳含熙, 薛俊杰, 王毅敏, 魏信 (1999). 关帝山森林景观异质性及其动态的研究. 应用生态学报, 10, 40-44.] | |
[7] |
He B, Li ZG, Hao XJ, He YC (2014). A new technique of fast paraffin sectioning in plant tissues. Chinese Bulletin of Botany, 49, 203-208.
DOI URL |
[ 贺冰, 李志岗, 郝晓娟, 贺运春 (2014). 植物材料快速石蜡制片方法. 植物学报, 49, 203-208.] | |
[8] |
Hoffmann WA, Marchin RM, Abit P, Lau OL (2011). Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought. Global Change Biology, 17, 2731-2742.
DOI URL |
[9] |
Jin Y, Wang CK (2016). Leaf hydraulic traits and their trade-offs for nine Chinese temperate tree species with different wood properties. Chinese Journal of Plant Ecology, 40, 702-710.
DOI URL |
[ 金鹰, 王传宽 (2016). 九种不同材性的温带树种叶水力性状及其权衡关系. 植物生态学报, 40, 702-710.]
DOI |
|
[10] | Johnson DM, McCulloh KA, Woodruff DR, Meinzer FC (2012). Evidence for xylem embolism as a primary factor in dehydration-induced declines in leaf hydraulic conductance. Plant, Cell & Environment, 35, 760-769. |
[11] | Johnson DM, Meinzer FC, Woodruff DR, McCulloh KA (2009). Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species. Plant, Cell & Environment, 32, 828-836. |
[12] | Liu M, Zhang XY, Li XL, Liu Q, Meng WZ, Xu MH (2020). Short-term responses of under-canopy grasslands to the experimental warming on the Loess Plateau, China. Acta Ecologica Sinica, 40, 6009-6024. |
[ 刘敏, 张潇月, 李晓丽, 刘琦, 孟万忠, 徐满厚 (2020). 黄土高原林下草地对模拟增温的短期响应. 生态学报, 40, 6009-6024.] | |
[13] |
Maréchaux I, Bartlett MK, Sack L, Baraloto C, Engel J, Joetzjer E, Chave J (2015). Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Functional Ecology, 29, 1268-1277.
DOI URL |
[14] | McCulloh KA, Johnson DM, Meinzer FC, Woodruff DR (2014). The dynamic pipeline: hydraulic capacitance and xylem hydraulic safety in four tall conifer species. Plant, Cell & Environment, 37, 1171-1183. |
[15] |
McDowell NG, Brodribb TJ, Nardini A (2019). Hydraulics in the 21st century. New Phytologist, 224, 537-542.
DOI PMID |
[16] |
Nardini A, Luglio J (2014). Leaf hydraulic capacity and drought vulnerability: possible trade-offs and correlations with climate across three major biomes. Functional Ecology, 28, 810-818.
DOI URL |
[17] |
Nardini A, Pedà G, Rocca NL (2012). Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho- anatomical bases, carbon costs and ecological consequences. New Phytologist, 196, 788-798.
DOI PMID |
[18] |
Nardini A, Salleo S (2005). Water stress-induced modifications of leaf hydraulic architecture in sunflower: co-ordination with gas exchange. Journal of Experimental Botany, 56, 3093-3101.
PMID |
[19] | Sack L, Ball MC, Brodersen C, Davis SD, Marais DLD, Donovan LA, Givnish TJ, Hacke UG, Huxman T, Jansen S, Jacobsen AL, Johnson DM, Koch GW, Maurel C, McCulloh KA, et al. (2016). Plant hydraulics as a central hub integrating plant and ecosystem function: meeting report for “Emerging Frontiers in Plant Hydraulics”. Plant, Cell & Environment, 39, 2085-2094. |
[20] |
Sack L, Holbrook NM (2006). Leaf hydraulics. Annual Review of Plant Biology, 57, 361-381.
DOI URL |
[21] |
Sanchez-Martinez P, Martínez-Vilalta J, Dexter KG, Segovia RA, Mencuccini M (2020). Adaptation and coordinated evolution of plant hydraulic traits. Ecology Letters, 23, 1599-1610.
DOI URL |
[22] |
Scoffoni C, Albuquerque C, Brodersen CR, Townes SV, John GP, Cochard H, Buckley TN, McElrone AJ, Sack L (2017). Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. New Phytologist, 213, 1076-1092.
DOI URL |
[23] |
Scoffoni C, McKown AD, Rawls M, Sack L (2012). Dynamics of leaf hydraulic conductance with water status: quantification and analysis of species differences under steady state. Journal of Experimental Botany, 63, 643-658.
DOI URL |
[24] | Simonin KA, Limm EB, Dawson TE (2012). Hydraulic conductance of leaves correlates with leaf lifespan: implications for lifetime carbon gain. New Phytologist, 193, 939-947. |
[25] |
Sperry JS, Hacke UG, Pittermann J (2006). Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany, 93, 1490-1500.
DOI PMID |
[26] |
Tyree MT, Ewers FW (1991). The hydraulic architecture of trees and other woody plants. New Phytologist, 119, 345-360.
DOI URL |
[27] |
Tyree MT, Hammel HT (1972). The measurement of the turgor pressure and the water relations of plants by the pressure- bomb technique. Journal of Experimental Botany, 23, 267-282.
DOI URL |
[28] | Vilagrosa A, Morales F, Abadía A, Bellot J, Cochard H, Gil-Pelegrin E (2010). Are symplast tolerance to intense drought conditions and xylem vulnerability to cavitation coordinated? An integrated analysis of photosynthetic, hydraulic and leaf level processes in two Mediterranean drought-resistant species. Environmental & Experimental Botany, 69, 233-242. |
[29] |
Villagra M, Campanello PI, Bucci SJ, Goldstein G (2013). Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species. Tree Physiology, 33, 1308-1318.
DOI URL PMID |
[30] |
Yan CL, Ni MY, Cao KF, Zhu SD (2020). Leaf hydraulic safety margin and safety-efficiency trade-off across angiosperm woody species. Biology Letters, 16, 20200456. DOI: 10.1098/rsbl.2020.0456.
DOI URL |
[31] |
Yao GQ, Nie ZF, Turner NC, Li FM, Gao TP, Fang XW, Scoffoni C (2021). Combined high leaf hydraulic safety and efficiency provides drought tolerance in Caragana species adapted to low mean annual precipitation. New Phytologist, 229, 230-244.
DOI URL |
[32] | Zwieniecki MA, Brodribb TJ, Holbrook NM (2007). Hydraulic design of leaves: insights from rehydration kinetics. Plant, Cell & Environment, 30, 910-921. |
[1] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[2] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[3] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[4] | 罗丹丹, 王传宽, 金鹰. 木本植物水力系统对干旱胁迫的响应机制[J]. 植物生态学报, 2021, 45(9): 925-941. |
[5] | 赵丹丹, 马红媛, 李阳, 魏继平, 王志春. 水分和养分添加对羊草功能性状和地上生物量的影响[J]. 植物生态学报, 2019, 43(6): 501-511. |
[6] | 金鹰, 王传宽. 九种不同材性的温带树种叶水力性状及其权衡关系[J]. 植物生态学报, 2016, 40(7): 702-710. |
[7] | 金鹰, 王传宽. 植物叶片水力与经济性状权衡关系的研究进展[J]. 植物生态学报, 2015, 39(10): 1021-1032. |
[8] | 杨浩, 罗亚晨. 糙隐子草功能性状对氮添加和干旱的响应[J]. 植物生态学报, 2015, 39(1): 32-42. |
[9] | 白雪, 程军回, 郑淑霞, 詹书侠, 白永飞. 典型草原建群种羊草对氮磷添加的生理生态响应[J]. 植物生态学报, 2014, 38(2): 103-115. |
[10] | 李东胜, 史作民, 冯秋红, 刘峰. 中国东部南北样带暖温带区栎属树种叶片形态性状对气候条件的响应[J]. 植物生态学报, 2013, 37(9): 793-802. |
[11] | 任海彦, 郑淑霞, 白永飞. 放牧对内蒙古锡林河流域草地群落植物茎叶生物量资源分配的影响[J]. 植物生态学报, 2009, 33(6): 1065-1074. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19