植物生态学报 ›› 2015, Vol. 39 ›› Issue (10): 1021-1032.DOI: 10.17521/cjpe.2015.0099
所属专题: 植物功能性状
• • 上一篇
出版日期:
2015-10-01
发布日期:
2015-10-24
通讯作者:
王传宽
作者简介:
# 共同第一作者
Online:
2015-10-01
Published:
2015-10-24
Contact:
Chuan-Kuan WANG
About author:
# Co-first authors
摘要:
叶片既是植物光合产物形成的主要场所, 又是整株植物的水力瓶颈、应对灾难性水力失调的安全阀门, 是植物碳水耦合权衡的重要器官。叶经济型谱反映了叶片经济性状“投资-收益”的权衡, 为验证植物进化过程中形成的物种对策提供了适用的理论框架。叶片水力性状变化会影响叶片经济性状及植物存活和生长。因此, 探索植物叶片水力与经济性状的权衡关系, 对建立植物碳-水耦合模型、揭示植物水-碳投资机理、扩展植物性状型谱等均有重要意义。该文首先综述了叶片水力性状、经济性状及两者之间的权衡关系, 分析了叶片导水率与水力脆弱性、失膨点水势、水容、安全阈值等水力性状以及与叶片的形态、结构和气体交换功能性状之间的关系。然后, 从叶片形态、解剖和叶脉网络结构以及气孔功能方面探讨了叶片水力性状与经济性状的调节机制。最后, 提出今后应加强三方面的研究: (1)探索建立植物根-茎-叶水力输导系统的碳-氮-水资源的整株经济型谱, 以揭示植物功能结构耦合、高效固碳用水的生理生态学机制; (2)探索叶片水力安全、水力效率和固碳效率之间的普适性权衡关系, 以深入理解抗旱植物叶片构建的生物物理结构与生理代谢的关系; (3)探索个体水平碳水代谢关系、水分运输与生长速率的耦合, 为代谢推演理论和植物群落尺度预测提供基础。
金鹰, 王传宽. 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 2015, 39(10): 1021-1032. DOI: 10.17521/cjpe.2015.0099
JIN Ying,WANG Chuan-Kuan. Trade-offs between plant leaf hydraulic and economic traits. Chinese Journal of Plant Ecology, 2015, 39(10): 1021-1032. DOI: 10.17521/cjpe.2015.0099
图1 叶片水力性状、叶片经济性状及两者之间的权衡关系。图中“+”代表正相关, “-”代表负相关; 虚线部分代表关系不确定, 其中“+”表示可能存在权衡关系; 灰色区域部分代表植物个体水力性状。
Fig. 1 The trade-offs among leaf hydraulic and economic traits. “+” represents positive relationships, “-” represents negative relationships; the dashed line region represents that the relationships are uncertain, where “+” represents a potential trade-off relationship; the gay region represents individual-level hydraulic traits.
[1] | Aasamaa K, Niinemets Ü, Sõber A (2005). Leaf hydraulic conductance in relation to anatomical and functional traits during Populus tremula leaf ontogeny.Tree Physiology, 25, 1409-1418. |
[2] | Aasamaa K, Sõber A (2001). Hydraulic conductance and stomatal sensitivity to changes of leaf water status in six deciduous tree species.Biologia Plantarum, 44, 65-73. |
[3] | Aasamaa K, Sõber A, Rahi M (2001). Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees.Australian Journal of Plant Physiology, 28, 765-774. |
[4] | Ambrose AR, Baxter WL, Wong CS, Næsborg RR, Williams CB, Dawson TE (2015). Contrasting drought-response strategies in California redwoods.Tree Physiology, 35, 453-469. |
[5] | Apgaua DMG, Ishida FY, Tng DYP, Laidlaw MJ, Santos RM, Rumman R, Eamus D, Holtum JAM, Laurance SGW (2015). Functional traits and water transport strategies in lowland tropical rainforest trees.PLoS ONE, 10, e0130799. |
[6] | Beerling DJ, Franks PJ (2010). Plant science: The hidden cost of transpiration.Nature, 464, 495-496. |
[7] | Blackman CJ, Brodribb TJ, Jordan GJ (2010). Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms.New Phytologist, 188, 1113-1123. |
[8] | Blonder B, Violle C, Bentley LP, Enquist BJ (2011). Venation networks and the origin of the leaf economics spectrum.Ecology Letters, 14, 91-100. |
[9] | Boyce CK, Brodribb TJ, Feild TS, Zwieniecki MA (2009). Angiosperm leaf vein evolution was physiologically and environmentally transformative.Proceedings of the Royal Society B: Biological Sciences, 276, 1771-1776. |
[10] | Brodribb TJ, Feild TS (2000). Stem hydraulic supply is linked to leaf photosynthetic capacity: Evidence from New Caledonian and Tasmanian rainforests.Plant, Cell & Environment, 23, 1381-1388. |
[11] | Brodribb TJ, Feild TS, Jordan GJ (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics.Plant Physiology, 144, 1890-1898. |
[12] | Brodribb TJ, Feild TS, Sack L (2010). Viewing leaf structure and evolution from a hydraulic perspective.Functional Plant Biology, 37, 488-498. |
[13] | Brodribb TJ, Holbrook NM (2003). Stomatal closure during leaf dehydration, correlation with other leaf physiological traits.Plant Physiology, 132, 2166-2173. |
[14] | Brodribb TJ, Holbrook NM (2004a). Diurnal depression of leaf hydraulic conductance in a tropical tree species.Plant, Cell & Environment, 27, 820-827. |
[15] | Brodribb TJ, Holbrook NM (2004b). Stomatal protection against hydraulic failure: A comparison of coexisting ferns and angiosperms.New Phytologist, 162, 663-670. |
[16] | Brodribb TJ, Holbrook NM, Gutiérrez MV (2002). Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees.Plant, Cell & Environment, 25, 1435-1444. |
[17] | Brodribb TJ, Holbrook NM, Zwieniecki MA, Palma B (2005). Leaf hydraulic capacity in ferns, conifers and angiosperms: Impacts on photosynthetic maxima.New Phytologist, 165, 839-846. |
[18] | Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees.New Phytologist, 192, 437-448. |
[19] | Bucci SJ, Scholz FG, Campanello PI, Montti L, Jimenez- Castillo M, Rockwell FA, La Manna L, Guerra P, Bernal PL, Troncoso O, Enricci J, Holbrook MN, Goldstein G (2012). Hydraulic differences along the water transport system of South American Nothofagus species: Do leaves protect the stem functionality?Tree Physiology, 32, 880-893. |
[20] | Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Franco AC, Campanello PI, Villalobos-Vega R, Bustamante M, Miralles-Wilhelm F (2006). Nutrient availability constrains the hydraulic architecture and water relations of savannah trees.Plant, Cell & Environment, 29, 2153-2167. |
[21] | Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Sternberg LDSL (2003). Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: Factors and mechanisms contributing to the refilling of embolized vessels.Plant, Cell & Environment, 26, 1633-1645. |
[22] | Bucci SJ, Scholz FG, Peschiutta ML, Arias NS, Meinzer FC, Goldstein G (2013). The stem xylem of Patagonian shrubs operates far from the point of catastrophic dysfunction and is additionally protected from drought-induced embolism by leaves and roots.Plant, Cell & Environment, 36, 2163-2174. |
[23] | Campanello PI, Gatti MG, Goldstein G (2008). Coordination between water-transport efficiency and photosynthetic capacity in canopy tree species at different growth irradiances.Tree Physiology, 28, 85-94. |
[24] | Chaves MM, Zarrouk O, Francisco R, Costa JM, Santos T, Regalado AP, Rodrigues ML, Lopes CM (2010). Grapevine under deficit irrigation: Hints from physiological and molecular data.Annals of Botany, 105, 661-676. |
[25] | Chen JW, Zhang Q, Li XS, Cao KF (2009). Independence of stem and leaf hydraulic traits in six Euphorbiaceae tree species with contrasting leaf phenology.Planta, 230, 459-468. |
[26] | Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum.Chinese Journal of Plant Ecology, 38, 1135-1153. (in Chinese with English abstract) |
[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 1135-1153.] | |
[27] | Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012). Global convergence in the vulnerability of forests to drought.Nature, 491, 752-755. |
[28] | Cochard H (2002). Xylem embolism and drought-induced stomatal closure in maize.Planta, 215, 466-471. |
[29] | Cochard H, Coll L, Le Roux X, Améglio T (2002). Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut.Plant Physiology, 128, 282-290. |
[30] | Cochard H, Froux F, Mayr S, Coutand C (2004). Xylem wall collapse in water-stressed pine needles.Plant Physiology, 134, 401-408. |
[31] | Corson F (2010). Fluctuations and redundancy in optimal transport networks.Physical Review Letters, 104, 048703. |
[32] | Dengler N, Kang JL (2001). Vascular patterning and leaf shape.Current Opinion in Plant Biology, 4, 50-56. |
[33] | Falster DS, Reich PB, Ellsworth DS, Wright IJ, Westoby M, Oleksyn J, Lee TD (2012). Lifetime return on investment increases with leaf lifespan among 10 Australian woodland species.New Phytologist, 193, 409-419. |
[34] | Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010). Evidence of the ‘plant economics spectrum’ in a subarctic flora.Journal of Ecology, 98, 362-373. |
[35] | Gagliardi S, Martin AR, Virginio Filho EM, Rapidel B, Isaac ME (2015). Intraspecific leaf economic trait variation partially explains coffee performance across agroforestry management regimes.Agriculture, Ecosystems & Environment, 200, 151-160. |
[36] | Givnish TJ (1987). Comparative studies of leaf form: Assessing the relative roles of selective pressures and phylogenetic constraints.The New Phytologist, 106, 131-160. |
[37] | Gong R, Gao Q (2015). Research progress in the effects of leaf hydraulic characteristics on plant physiological functions.Chinese Journal of Plant Ecology, 39, 300-308. (in Chinese with English Abstract) |
[龚容, 高琼 (2015). 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 39, 300-308.] | |
[38] | Hao GY, Hoffmann WA, Scholz FG, Bucci SJ, Meinzer FC, Franco AC, Cao KF, Goldstein G (2008). Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems.Oecologia, 155, 405-415. |
[39] | Jacobsen AL, Agenbag L, Esler KJ, Pratt RB, Ewers FW, Davis SD (2007). Xylem density, biomechanics and anatomical traits correlate with water stress in 17 evergreen shrub species of the Mediterranean-type climate region of South Africa.Journal of Ecology, 95, 171-183. |
[40] | Johnson DM, McCulloh KA, Meinzer FC, Woodruff DR, Eissenstat DM (2011). Hydraulic patterns and safety margins, from stem to stomata, in three eastern US tree species.Tree Physiology, 31, 659-668. |
[41] | Johnson DM, Woodruff DR, McCulloh KA, Meinzer FC (2009). Leaf hydraulic conductance, measured in situ, declines and recovers daily: Leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species.Tree Physiology, 29, 879-887. |
[42] | Katul G, Leuning R, Oren R (2003). Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant, Cell & Environment, 26, 339-350. |
[43] | Kleyer M, Minden V (2015). Why functional ecology should consider all plant organs: An allocation-based perspective.Basic & Applied Ecology, 16, 1-9. |
[44] | Knipfer T, Steudle E (2008). Root hydraulic conductivity measured by pressure clamp is substantially affected by internal unstirred layers.Journal of Experimental Botany, 59, 2071-2084. |
[45] | Kröber W, Heklau H, Bruelheide H (2015). Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiolo- gical traits.Plant Biology, 17, 373-383. |
[46] | Lamont BB, Lamont HC (2000). Utilizable water in leaves of 8 arid species as derived from pressure-volume curves and chlorophyll fluorescence.Physiologia Plantarum, 110, 64-71. |
[47] | Lloyd J, Bloomfield K, Domingues TF, Farquhar GD (2013). Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: Of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand?New Phytologist, 199, 311-321. |
[48] | Lo Gullo MA, Nardini A, Trifilò P, Salleo S (2003). Changes in leaf hydraulics and stomatal conductance following drought stress and irrigation in Ceratonia siliqua (Carob tree).Physiologia Plantarum, 117, 186-194. |
[49] | Lo Gullo MA, Nardini A, Trifilò P, Salleo S (2005). Diurnal and seasonal variations in leaf hydraulic conductance in evergreen and deciduous trees.Tree Physiology, 25, 505-512. |
[50] | Manzoni S, Vico G, Porporato A, Katul G (2013). Biological constraints on water transport in the soil-plant-atmosphere system.Advances in Water Resources, 51, 292-304. |
[51] | Mao W, Li YL, Zhang TH, Zhao XY, Huang YX, Song LL (2012). Research advance of plant leaf traits at different ecology scales.Journal of Desert Research, 32, 33-41. (in Chinese with English abstract) |
[毛伟, 李玉霖, 张铜会, 赵学勇, 黄迎新, 宋琳琳 (2012). 不同尺度生态学中植物叶性状研究概述. 中国沙漠, 32, 33-41.] | |
[52] | Maréchaux I, Bartlett MK, Sack L, Baraloto C, Engel J, Joetzjer E, Chave J (2015). Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest.Functional Ecology, 29, 1268-1277. |
[53] | Mason CM, Donovan LA (2015). Does investment in leaf defenses drive changes in leaf economic strategy? A focus on whole-plant ontogeny.Oecologia, 177, 1053-1066. |
[54] | McCulloh KA, Johnson DM, Meinzer FC, Woodruff DR (2014). The dynamic pipeline: Hydraulic capacitance and xylem hydraulic safety in four tall conifer species.Plant, Cell & Environment, 37, 1171-1183. |
[55] | McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?New Phytologist, 178, 719-739. |
[56] | McKown AD, Cochard H, Sack L (2010). Decoding leaf hydraulics with a spatially explicit model: Principles of venation architecture and implications for its evolution.The American Naturalist, 175, 447-460. |
[57] | Meinzer FC (2002). Co-ordination of vapour and liquid phase water transport properties in plants.Plant, Cell & Environment, 25, 265-274. |
[58] | Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR (2009). Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance.Functional Ecology, 23, 922-930. |
[59] | Mencuccini M (2014). Temporal scales for the coordination of tree carbon and water economies during droughts.Tree Physiology, 34, 439-442. |
[60] | Mitchell PJ, O’Grady AP, Tissue DT, Worledge D, Pinkard EA (2014). Co-ordination of growth, gas exchange and hydraulics define the carbon safety margin in tree species with contrasting drought strategies.Tree Physiology, 34, 443-458. |
[61] | Nardini A (2001). Are sclerophylls and malacophylls hydraulically different?Biologia Plantarum, 44, 239-245. |
[62] | Nardini A, Gortan E, Salleo S (2005). Hydraulic efficiency of the leaf venation system in sun- and shade-adapted species.Functional Plant Biology, 32, 953-961. |
[63] | Nardini A, Lo Gullo MA, Salleo S (2011). Refilling embolized xylem conduits: Is it a matter of phloem unloading?Plant Science, 180, 604-611. |
[64] | Nardini A, Luglio J (2014). Leaf hydraulic capacity and drought vulnerability: Possible trade-offs and correlations with climate across three major biomes.Functional Ecology, 28, 810-818. |
[65] | Nardini A, Pedà G, La Rocca N (2012a). Trade-offs between leaf hydraulic capacity and drought vulnerability: Morpho-anatomical bases, carbon costs and ecological consequences.New Phytologist, 196, 788-798. |
[66] | Nardini A, Pedá G, Salleo S (2012b). Alternative methods for scaling leaf hydraulic conductance offer new insights into the structure-function relationships of sun and shade leaves.Functional Plant Biology, 39, 394-401. |
[67] | Nardini A, Salleo S, Raimondo F (2003). Changes in leaf hydraulic conductance correlate with leaf vein embolism in Cercis siliquastrum L.Trees-Structure and Function, 17, 529-534. |
[68] | Nardini A, Tyree MT, Salleo S (2001). Xylem cavitation in the leaf of Prunus laurocerasus and its impact on leaf hydraulics.Plant Physiology, 125, 1700-1709. |
[69] | Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009). A global study of relationships between leaf traits, climate and soil measures of nutrient fertility.Global Ecology and Biogeography, 18, 137-149. |
[70] | Osnas JLD, Lichstein JW, Reich PB, Pacala SW (2013). Global leaf trait relationships: Mass, area, and the leaf economics spectrum.Science, 340, 741-744. |
[71] | Pan YP, Chen YP (2014). Recent advances in leaf hydraulic traits.Chinese Journal of Ecology, 33, 2834-2841. (in Chinese with English abstract) |
[潘莹萍, 陈亚鹏 (2014). 叶片水力性状研究进展. 生态学杂志, 33, 2834-2841.] | |
[72] | Pantin F, Simonneau T, Muller B (2012). Coming of leaf age: Control of growth by hydraulics and metabolics during leaf ontogeny.New Phytologist, 196, 349-366. |
[73] | Pivovaroff AL, Sack L, Santiago LS (2014). Coordination of stem and leaf hydraulic conductance in southern California shrubs: A test of the hydraulic segmentation hypothesis.New Phytologist, 203, 842-850. |
[74] | Prado K, Maurel C (2013). Regulation of leaf hydraulics: From molecular to whole plant levels.Frontiers in Plant Science, 4, 255. |
[75] | Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ (2014). Balancing the costs of carbon gain and water transport: Testing a new theoretical framework for plant functional ecology.Ecology Letters, 17, 82-91. |
[76] | Reich PB (2014). The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto.Journal of Ecology, 102, 275-301. |
[77] | Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H (2001). Evolution and function of leaf venation architecture: A review.Annals of Botany, 87, 553-566. |
[78] | Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003). The ‘hydrology’ of leaves: Co-ordination of structure and function in temperate woody species.Plant, Cell & Environment, 26, 1343-1356. |
[79] | Sack L, Frole K (2006). Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees.Ecology, 87, 483-491. |
[80] | Sack L, Holbrook NM (2006). Leaf hydraulics.Annual Review of Plant Biology, 57, 361-381. |
[81] | Sack L, Melcher PJ, Zwieniecki MA, Holbrook NM (2002). The hydraulic conductance of the angiosperm leaf lamina: A comparison of three measurement methods.Journal of Experimental Botany, 53, 2177-2184. |
[82] | Sack L, Scoffoni C (2013). Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future.New Phytologist, 198, 983-1000. |
[83] | Sack L, Scoffoni C, John GP, Poorter H, Mason CM, Mendez-Alonzo R, Donovan LA (2013). How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.Journal of Experimental Botany, 64, 4053-4080. |
[84] | Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T (2012). Developmentally based scaling of leaf venation architecture explains global ecological patterns.Nature Communications, 3, 837. |
[85] | Sack L, Streeter CM, Holbrook NM (2004). Hydraulic analysis of water flow through leaves of sugar maple and red oak.Plant Physiology, 134, 1824-1833. |
[86] | Sack L, Tyree MT, Holbrook NM (2005). Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees.New Phytologist, 167, 403-413. |
[87] | Sade N, Gebremedhin A, Moshelion M (2012). Risk-taking plants: Anisohydric behavior as a stress-resistance trait.Plant Signaling & Behavior, 7, 767-770. |
[88] | Salleo S, Lo Gullo MA, Raimondo F, Nardini A (2001). Vulnerability to cavitation of leaf minor veins: Any impact on leaf gas exchange?Plant, Cell & Environment, 24, 851-859. |
[89] | Salleo S, Nardini A, Pitt F, Lo Gullo MA (2000). Xylem cavitation and hydraulic control of stomatal conductance in Laurel (Laurus nobilis L.).Plant, Cell & Environment, 23, 71-79. |
[90] | Santiago LS, Goldstein G, Meinzer FC, Fisher JB, Machado K, Woodruff D, Jones T (2004). Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees.Oecologia, 140, 543-550. |
[91] | Scoffoni C, Kunkle J, Pasquet-Kok J, Vuong C, Patel AJ, Montgomery RA, Givnish TJ, Sack L (2015). Light- induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads.New Phytologist, 207, 43-58. |
[92] | Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011). Decline of leaf hydraulic conductance with dehydration: Relationship to leaf size and venation architecture.Plant Physiology, 156, 832-843. |
[93] | Shipley B (2002). Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: Relationship with daily irradiance.Functional Ecology, 16, 682-689. |
[94] | Simonin KA, Limm EB, Dawson TE (2012). Hydraulic conductance of leaves correlates with leaf lifespan: Implications for lifetime carbon gain.New Phytologist, 193, 939-947. |
[95] | Sperry JS (2004). Coordinating stomatal and xylem functioning—An evolutionary perspective.New Phytologist, 162, 568-570. |
[96] | Sperry JS, Hacke UG, Oren R, Comstock JP (2002). Water deficits and hydraulic limits to leaf water supply.Plant, Cell & Environment, 25, 251-263. |
[97] | Stearns SC (1992). The Evolution of Life Histories. Oxford University Press, New York. |
[98] | Tombesi S, Nardini A, Farinelli D, Palliotti A (2014). Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera.Physiologia Plantarum, 152, 453-464. |
[99] | Tyree MT, Ewers FW (1991). The hydraulic architecture of trees and other woody plants.New Phytologist, 119, 345-360. |
[100] | Tyree MT, Velez V, Dalling JW (1998). Growth dynamics of root and shoot hydraulic conductance in seedlings of five neotropical tree species: Scaling to show possible adaptation to differing light regimes.Oecologia, 114, 293-298. |
[101] | Vilagrosa A, Morales F, Abadía A, Bellot J, Cochard H, Gil-Pelegrin E (2010). Are symplast tolerance to intense drought conditions and xylem vulnerability to cavitation coordinated? An integrated analysis of photosynthetic, hydraulic and leaf level processes in two Mediterranean drought-resistant species.Environmental & Experimental Botany, 69, 233-242. |
[102] | Villagra M, Campanello PI, Bucci SJ, Goldstein G (2013). Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species.Tree Physiology, 33, 1308-1318. |
[103] | Walls RL (2011). Angiosperm leaf vein patterns are linked to leaf functions in a global-scale data set.American Journal of Botany, 98, 244-253. |
[104] | Westoby M, Warton D, Reich PB (2000). The time value of leaf area.The American Naturalist, 155, 649-656. |
[105] | Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005). Assessing the generality of global leaf trait relationships.New Phytologist, 166, 485-496. |
[106] | Wright IJ, Reich PB, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats.Functional Ecology, 15, 423-434. |
[107] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum.Nature, 428, 821-827. |
[108] | Xiong DL, Yu TT, Zhang T, Li Y, Peng SB, Huang JL (2015). Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza.Journal of Experimental Botany, 66, 741-748. |
[109] | Zhang DY (2004). Plant Life-History Evolution and Reproductive Ecology. Science Press, Beijing. (in Chinese) |
[张大勇 (2004). 植物生活史进化与繁殖生态学. 科学出版社, 北京.] | |
[110] | Zhang JL, Cao KF (2009). Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species.Functional Ecology, 23, 658-667. |
[111] | Zhang SB, Guan ZJ, Sun M, Zhang JJ, Cao KF, Hu H (2012). Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae.PLoS ONE, 7, e40080. |
[112] | Zhang YJ, Cao KF, Sack L, Li N, Wei XM, Goldstein G (2015). Extending the generality of leaf economic design principles in the cycads, an ancient lineage.New Phytologist, 206, 817-829. |
[113] | Zhang ZL, Liu GD, Zhang FC, Zheng CX, Kang YH (2014). Research progress of plant leaf hydraulic conductivity.Chinese Journal of Ecology, 33, 1663-1670. (in Chinese with English abstract) |
[张志亮, 刘国东, 张富仓, 郑彩霞, 康银红 (2014). 植物叶片导水率的研究进展. 生态学杂志, 33, 1663-1670.] | |
[114] | Zimmermann MH (1983). Xylem Structure and the Ascent of Sap. Springer-Verlag, Berlin. |
[115] | Zwieniecki MA, Brodribb TJ, Holbrook NM (2007). Hydraulic design of leaves: Insights from rehydration kinetics.Plant, Cell & Environment, 30, 910-921. |
[116] | Zwieniecki MA, Melcher PJ, Boyce CK, Sack L, Holbrook NM (2002). Hydraulic architecture of leaf venation in Laurus nobilis L.Plant, Cell & Environment, 25, 1445-1450. |
[1] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[2] | 罗丹丹, 王传宽, 金鹰. 木本植物水力系统对干旱胁迫的响应机制[J]. 植物生态学报, 2021, 45(9): 925-941. |
[3] | 吴建波, 王小丹. 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报, 2021, 45(3): 265-273. |
[4] | 纪若璇, 于笑, 常远, 沈超, 白雪卡, 夏新莉, 尹伟伦, 刘超. 蒙古莸叶片解剖结构的地理种源变异及其对环境变化响应的意义[J]. 植物生态学报, 2020, 44(3): 277-286. |
[5] | 罗丹丹, 王传宽, 金鹰. 植物水分调节对策: 等水与非等水行为[J]. 植物生态学报, 2017, 41(9): 1020-1032. |
[6] | 韩吉梅, 张旺锋, 熊栋梁, 张亚黎. 植物光合作用叶肉导度及主要限制因素研究进展[J]. 植物生态学报, 2017, 41(8): 914-924. |
[7] | 李志民, 王传宽, 罗丹丹. 兴安落叶松叶水力与光合性状的变异性和相关性[J]. 植物生态学报, 2017, 41(11): 1140-1148. |
[8] | 郝晨淞, 王庆凯, 孙小玲. 异质性光对野牛草叶片解剖结构的影响[J]. 植物生态学报, 2016, 40(3): 246-254. |
[9] | 王娜, 张韫, 钱文丽, 王政权, 谷加存. CO2浓度倍增对红松幼苗根尖和叶解剖结构及生理功能的影响[J]. 植物生态学报, 2016, 40(1): 60-68. |
[10] | 邱权,潘昕,李吉跃,王军辉,马建伟,杜坤. 青藏高原20种灌木抗旱形态和生理特征[J]. 植物生态学报, 2014, 38(6): 562-575. |
[11] | 孙善文, 章永江, 曹坤芳. 热带季雨林不同小生境大戟科植物幼树的叶片结构、耐旱性和光合能力之间的相关性[J]. 植物生态学报, 2014, 38(4): 311-324. |
[12] | 覃凤飞,李强,崔棹茗,李洪萍,杨智然. 越冬期遮阴条件下3个不同秋眠型紫花苜蓿品种叶片解剖结构与其光生态适应性[J]. 植物生态学报, 2012, 36(4): 333-345. |
[13] | 毛立彦, 慕小倩, 董改改, 崔宏安, 冉俊祥. 光照强度对曼陀罗和紫花曼陀罗生长发育的影响[J]. 植物生态学报, 2012, 36(3): 243-252. |
[14] | 刘颖, 谷加存, 卫星, 许旸, 王政权. 树木不同着生位置1级根的形态、解剖结构和氮 含量[J]. 植物生态学报, 2010, 34(11): 1336-1343. |
[15] | 卫星, 刘颖, 陈海波. 黄波罗不同根序的解剖结构及其功能异质性[J]. 植物生态学报, 2008, 32(6): 1238-1247. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19