植物生态学报 ›› 2012, Vol. 36 ›› Issue (4): 333-345.DOI: 10.3724/SP.J.1258.2012.00333

• 研究论文 • 上一篇    下一篇

越冬期遮阴条件下3个不同秋眠型紫花苜蓿品种叶片解剖结构与其光生态适应性

覃凤飞(),李强,崔棹茗,李洪萍,杨智然   

  1. 南京农业大学动物科技学院, 南京 210095
  • 收稿日期:2011-11-23 接受日期:2012-02-15 出版日期:2012-11-23 发布日期:2012-03-28
  • 通讯作者: 覃凤飞

Leaf anatomical structures and ecological adaptabilities to light of three alfalfa cultivars with different fall dormancies under shading during overwintering

QIN Feng-Fei(),LI Qiang,CUI Zhao-Ming,LI Hong-Ping,YANG Zhi-Ran   

  1. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2011-11-23 Accepted:2012-02-15 Online:2012-11-23 Published:2012-03-28
  • Contact: QIN Feng-Fei

摘要:

在我国南北气候过渡地区, 采用遮阴试验和石蜡切片法, 研究越冬期不同光强对3个不同秋眠型紫花苜蓿(Medicago sativa)品种(‘维多利亚’、 ‘巨人201’和‘游客’)叶片解剖结构的影响。结果表明: 随着光强减弱, 各紫花苜蓿品种表皮结构中上、下表皮角质层厚度, 气孔密度和气孔开度明显下降; 上、下表皮厚度呈上升趋势。随着遮阴强度增加, 叶肉组织中海绵组织细胞宽度显著上升, 栅栏组织厚度、栅栏组织细胞层数、栅栏组织厚度/海绵组织厚度显著下降; 品种间海绵组织厚度和栅栏组织细胞宽度变化趋势不一致。叶片结构整体特征中叶片厚度、叶肉厚度、中脉厚度、组织结构紧密度随光强减弱而显著下降, 组织结构疏松度明显上升, 叶脉突起度变化不明显。品种间各叶片解剖性状变幅及可塑性指数具有明显的差异, 表明其对弱光适应方式不同。Pearson相关分析表明, 各紫花苜蓿品种叶片气孔密度、栅栏组织厚度、叶肉厚度、叶片厚度及栅栏组织厚度/海绵组织厚度与光强呈显著正相关, 可能是紫花苜蓿叶片解剖结构光强敏感特征参数, 其中, ‘维多利亚’叶片敏感特征参数与光强相关程度较低, 与光强相关的性状较少。综合各项分析结果, 初步确定越冬期紫花苜蓿耐阴性与其秋眠性相关, 半秋眠型品种‘维多利亚’ >秋眠型品种‘巨人201’≥非秋眠型品种‘游客’。

关键词: 生态适应性, 秋眠性, 叶片解剖结构, 紫花苜蓿, 可塑性, 遮阴, 越冬期

Abstract:

Aims This research studied effects of light intensity on leaf anatomical characteristics of three alfalfa (Medicago sativa) cultivars (‘Victoria’, ‘Ameristand 201’and ‘Eureka’) with different fall dormancy during overwintering in climatic transitional regions from north to south China. Our objective was to determine leaf anatomical characteristics sensitive to light intensity and correlate fall dormancy and shade tolerance of overwintering alfalfa.
Methods We cultured seedlings of the alfalfa cultivars for 70 days under four light intensity levels: 100%, 43%, 21% and 7% of full natural light intensity. Using the paraffin section method, fluorescence microscopy technique and Image-Pro Plus 6.0, we measured leaf epidermises, mesophyll tissues, and some leaf-integrated characteristics under different shade conditions to examine effects of light intensity on leaf anatomical structures.
Important findings Cuticle thicknesses of lower and upper epidermis and stomatal densities and apertures of the cultivars significantly decreased while thicknesses of upper and lower epidermis increased under with shading. Widths of spongy cell increased and thicknesses of palisade parenchyma, layers of palisade parenchyma and palisade-spongy ratio significantly decreased with decreased light intensity, but thicknesses of spongy parenchyma and widths of palisade cells had different trends among the cultivars. Leaf, mesophyll and midrib thicknesses and cell tense ratio of the cultivars significantly decreased, and vein protuberant degree did not significantly change when the spongy ratio increased significantly with increasing shade. Significant differences in range and plasticity indexes of leaf anatomical characteristics among the cultivars under different shading conditions showed different shade-tolerant mechanisms among them. Pearson correlation analysis showed that stomatal density, thickness of palisade parenchyma, mesophyll thickness, leaf thickness and palisade-spongy ratio were positively correlated with light intensity, which meant that these leaf characteristics may be anatomically sensitive in response to light intensity. ‘Victoria’ had fewer leaf anatomical characteristics correlated with light intensity and also had weaker association to some of these five characteristics than the other cultivars. Results suggested that fall dormancy of alfalfa could be relevant to its shade tolerance during overwintering, and semi-dormancy cultivar of alfalfa has a higher shade tolerance than other cultivars. The order of shade tolerance of three alfalfa cultivars is semi-dormancy cultivar ‘Victoria’ > dormancy cultivar ‘Ameristand 201’ ≥ non-dormancy cultivar ‘Eureka’.

Key words: ecological adaptation, fall dormancy, leaf anatomical structures, Medicago sativa, plasticity, shading, overwinter