植物生态学报 ›› 2012, Vol. 36 ›› Issue (4): 333-345.DOI: 10.3724/SP.J.1258.2012.00333
收稿日期:
2011-11-23
接受日期:
2012-02-15
出版日期:
2012-11-23
发布日期:
2012-03-28
通讯作者:
覃凤飞
QIN Feng-Fei(),LI Qiang,CUI Zhao-Ming,LI Hong-Ping,YANG Zhi-Ran
Received:
2011-11-23
Accepted:
2012-02-15
Online:
2012-11-23
Published:
2012-03-28
Contact:
QIN Feng-Fei
摘要:
在我国南北气候过渡地区, 采用遮阴试验和石蜡切片法, 研究越冬期不同光强对3个不同秋眠型紫花苜蓿(Medicago sativa)品种(‘维多利亚’、 ‘巨人201’和‘游客’)叶片解剖结构的影响。结果表明: 随着光强减弱, 各紫花苜蓿品种表皮结构中上、下表皮角质层厚度, 气孔密度和气孔开度明显下降; 上、下表皮厚度呈上升趋势。随着遮阴强度增加, 叶肉组织中海绵组织细胞宽度显著上升, 栅栏组织厚度、栅栏组织细胞层数、栅栏组织厚度/海绵组织厚度显著下降; 品种间海绵组织厚度和栅栏组织细胞宽度变化趋势不一致。叶片结构整体特征中叶片厚度、叶肉厚度、中脉厚度、组织结构紧密度随光强减弱而显著下降, 组织结构疏松度明显上升, 叶脉突起度变化不明显。品种间各叶片解剖性状变幅及可塑性指数具有明显的差异, 表明其对弱光适应方式不同。Pearson相关分析表明, 各紫花苜蓿品种叶片气孔密度、栅栏组织厚度、叶肉厚度、叶片厚度及栅栏组织厚度/海绵组织厚度与光强呈显著正相关, 可能是紫花苜蓿叶片解剖结构光强敏感特征参数, 其中, ‘维多利亚’叶片敏感特征参数与光强相关程度较低, 与光强相关的性状较少。综合各项分析结果, 初步确定越冬期紫花苜蓿耐阴性与其秋眠性相关, 半秋眠型品种‘维多利亚’ >秋眠型品种‘巨人201’≥非秋眠型品种‘游客’。
覃凤飞,李强,崔棹茗,李洪萍,杨智然. 越冬期遮阴条件下3个不同秋眠型紫花苜蓿品种叶片解剖结构与其光生态适应性. 植物生态学报, 2012, 36(4): 333-345. DOI: 10.3724/SP.J.1258.2012.00333
QIN Feng-Fei,LI Qiang,CUI Zhao-Ming,LI Hong-Ping,YANG Zhi-Ran. Leaf anatomical structures and ecological adaptabilities to light of three alfalfa cultivars with different fall dormancies under shading during overwintering. Chinese Journal of Plant Ecology, 2012, 36(4): 333-345. DOI: 10.3724/SP.J.1258.2012.00333
图1 不同遮阴处理下3个不同秋眠型紫花苜蓿品种叶横切面显微结构。A, ‘巨人201’。B, ‘维多利亚’。C, ‘游客’。L0, L1, L2, L3, 分别为全光照、全光照的(43.4 ± 1.9)%、全光照的(20.5 ± 0.6)%和全光照的(7.1 ± 0.2)%。CLE, 下表皮角质层; CUE, 上表皮角质层; LE, 下表皮; PP, 栅栏组织; S, 气孔; SP, 海绵组织; UE, 上表皮。
Fig. 1 Light micrographs of leaf transverse paraffin sections of three alfalfa cultivars with different fall dormancy under different shading conditions. A, ‘Ameristand 201’; B, ‘Victoria’; C, ‘Eureka’. L0, L1, L2, L3 is full light intensity, (43.4 ± 1.9)% of full light intensity, (20.5 ± 0.6)% of full light intensity and (7.1 ± 0.2)% of full light intensity, respectively. CLE, cuticle of lower epidermis; CUE, cuticle of upper epidermis; LE, lower epidermis; PP, palisade parenchyma; S, stomata; SP, spongy parenchyma; UE, upper epidermis.
项目 Item | 遮阴处理 Shading treatment | 品种 Cultivar | ||
---|---|---|---|---|
‘巨人201’ ‘Ameristand 201’ | ‘维多利亚’ ‘Victoria’ | ‘游客’ ‘Eureka’ | ||
上表皮角质层厚度 Cuticle thickness of upper epidermis (μm) | L0 | 3.73 ± 0.26a | 3.97 ± 0.13a | 3.82 ± 0.12a |
L1 | 3.55 ± 0.21a | 3.58 ± 0.09b | 3.63 ± 0.14a | |
L2 | 3.42 ± 0.11ab | 3.56 ± 0.13b | 3.23 ± 0.10b | |
L3 | 2.89 ± 0.18b | 3.48 ± 0.13b | 3.14 ± 0.07b | |
p 可塑性指数 PI | 0.046* 0.225 | 0.027* 0.123 | 0.000** 0.178 | |
下表皮角质层厚度 Cuticle thickness of lower epidermis (μm) | L0 | 4.41 ± 0.27a | 3.48 ± 0.20a | 3.32 ± 0.18a |
L1 | 3.23 ± 0.15b | 3.30 ± 0.09ab | 3.24 ± 0.12a | |
L2 | 3.05 ± 0.09b | 3.25 ± 0.12ab | 3.07 ± 0.08ab | |
L3 | 2.97 ± 0.15b | 2.89 ± 0.09b | 2.86 ± 0.12b | |
p 可塑性指数 PI | 0.000** 0.327 | 0.041* 0.170 | 0.054 0.139 | |
上表皮厚度 Thickness of upper epidermis (μm) | L0 | 21.75 ± 1.21a | 17.46 ± 0.54a | 18.19 ± 0.72a |
L1 | 22.11 ± 1.31a | 18.92 ± 0.75ab | 18.26 ± 0.62a | |
L2 | 24.04 ± 0.90a | 20.60 ± 1.11bc | 18.44 ± 0.80a | |
L3 | 24.31 ± 1.18a | 21.78 ± 0.95c | 18.54 ± 0.66a | |
p 可塑性指数 PI | 0.357 0.105 | 0.003** 0.198 | 0.984 0.019 | |
下表皮厚度 Thickness of lower epidermis (μm) | L0 | 15.64 ± 0.46a | 16.00 ± 0.54a | 15.47 ± 0.69a |
L1 | 16.16 ± 0.73a | 17.04 ± 0.90ab | 15.43 ± 0.58a | |
L2 | 19.74 ± 0.98b | 17.28 ± 0.89ab | 14.36 ± 0.48a | |
L3 | 20.96 ± 0.99b | 18.76 ± 0.73b | 13.85 ± 0.40a | |
p 可塑性指数 PI | 0.000** 0.254 | 0.096 0.147 | 0.096 0.104 | |
气孔密度(个/叶片横切面) Stomatal density (number of leaf transverse section ) | L0 | 9.67 ± 1.26a | 13.83 ± 1.05a | 11.00 ± 1.52a |
L1 | 6.83 ± 0.79ab | 5.67 ± 0.21b | 7.67 ± 0.33b | |
L2 | 5.25 ± 0.48b | 5.17 ± 0.54b | 5.83 ± 0.48b | |
L3 | 5.00 ± 0.82b | 4.50 ± 0.56b | 5.17 ± 0.95b | |
p 可塑性指数 PI | 0.013* 0.483 | 0.000** 0.675 | 0.001** 0.530 | |
气孔开度 Stomata aperture (μm) | L0 | 3.78 ± 0.41a | 2.73 ± 0.20a | 2.65 ± 0.21a |
L1 | 2.94 ± 0.27ab | 2.94 ± 0.25a | 2.82 ± 0.32a | |
L2 | 2.39 ± 0.30bc | 1.86 ± 0.24b | 1.48 ± 0.25b | |
L3 | 1.90 ± 0.29c | 1.73 ± 0.17b | 1.39 ± 0.21b | |
p 可塑性指数 PI | 0.003** 0.497 | 0.000** 0.412 | 0.000** 0.507 |
表1 不同遮阴处理下3个紫花苜蓿品种叶表皮结构比较(平均值±标准误差)
Table 1 Comparison of structures of leaf epidermis of three alfalfa cultivars under different shading conditions (mean ± SE)
项目 Item | 遮阴处理 Shading treatment | 品种 Cultivar | ||
---|---|---|---|---|
‘巨人201’ ‘Ameristand 201’ | ‘维多利亚’ ‘Victoria’ | ‘游客’ ‘Eureka’ | ||
上表皮角质层厚度 Cuticle thickness of upper epidermis (μm) | L0 | 3.73 ± 0.26a | 3.97 ± 0.13a | 3.82 ± 0.12a |
L1 | 3.55 ± 0.21a | 3.58 ± 0.09b | 3.63 ± 0.14a | |
L2 | 3.42 ± 0.11ab | 3.56 ± 0.13b | 3.23 ± 0.10b | |
L3 | 2.89 ± 0.18b | 3.48 ± 0.13b | 3.14 ± 0.07b | |
p 可塑性指数 PI | 0.046* 0.225 | 0.027* 0.123 | 0.000** 0.178 | |
下表皮角质层厚度 Cuticle thickness of lower epidermis (μm) | L0 | 4.41 ± 0.27a | 3.48 ± 0.20a | 3.32 ± 0.18a |
L1 | 3.23 ± 0.15b | 3.30 ± 0.09ab | 3.24 ± 0.12a | |
L2 | 3.05 ± 0.09b | 3.25 ± 0.12ab | 3.07 ± 0.08ab | |
L3 | 2.97 ± 0.15b | 2.89 ± 0.09b | 2.86 ± 0.12b | |
p 可塑性指数 PI | 0.000** 0.327 | 0.041* 0.170 | 0.054 0.139 | |
上表皮厚度 Thickness of upper epidermis (μm) | L0 | 21.75 ± 1.21a | 17.46 ± 0.54a | 18.19 ± 0.72a |
L1 | 22.11 ± 1.31a | 18.92 ± 0.75ab | 18.26 ± 0.62a | |
L2 | 24.04 ± 0.90a | 20.60 ± 1.11bc | 18.44 ± 0.80a | |
L3 | 24.31 ± 1.18a | 21.78 ± 0.95c | 18.54 ± 0.66a | |
p 可塑性指数 PI | 0.357 0.105 | 0.003** 0.198 | 0.984 0.019 | |
下表皮厚度 Thickness of lower epidermis (μm) | L0 | 15.64 ± 0.46a | 16.00 ± 0.54a | 15.47 ± 0.69a |
L1 | 16.16 ± 0.73a | 17.04 ± 0.90ab | 15.43 ± 0.58a | |
L2 | 19.74 ± 0.98b | 17.28 ± 0.89ab | 14.36 ± 0.48a | |
L3 | 20.96 ± 0.99b | 18.76 ± 0.73b | 13.85 ± 0.40a | |
p 可塑性指数 PI | 0.000** 0.254 | 0.096 0.147 | 0.096 0.104 | |
气孔密度(个/叶片横切面) Stomatal density (number of leaf transverse section ) | L0 | 9.67 ± 1.26a | 13.83 ± 1.05a | 11.00 ± 1.52a |
L1 | 6.83 ± 0.79ab | 5.67 ± 0.21b | 7.67 ± 0.33b | |
L2 | 5.25 ± 0.48b | 5.17 ± 0.54b | 5.83 ± 0.48b | |
L3 | 5.00 ± 0.82b | 4.50 ± 0.56b | 5.17 ± 0.95b | |
p 可塑性指数 PI | 0.013* 0.483 | 0.000** 0.675 | 0.001** 0.530 | |
气孔开度 Stomata aperture (μm) | L0 | 3.78 ± 0.41a | 2.73 ± 0.20a | 2.65 ± 0.21a |
L1 | 2.94 ± 0.27ab | 2.94 ± 0.25a | 2.82 ± 0.32a | |
L2 | 2.39 ± 0.30bc | 1.86 ± 0.24b | 1.48 ± 0.25b | |
L3 | 1.90 ± 0.29c | 1.73 ± 0.17b | 1.39 ± 0.21b | |
p 可塑性指数 PI | 0.003** 0.497 | 0.000** 0.412 | 0.000** 0.507 |
项目 Item | 遮阴处理 Shading treatment | 品种 Cultivar | ||
---|---|---|---|---|
‘巨人201’ ‘Ameristand 201’ | ‘维多利亚’ ‘Victoria’ | ‘游客’ ‘Eureka’ | ||
栅栏组织厚度 Thickness of palisade parenchyma (μm) | L0 | 96.11 ± 2.12a | 89.71 ± 3.27a | 101.08 ± 2.72a |
L1 | 71.83 ± 3.73b | 66.60 ± 1.22b | 74.44 ± 2.78b | |
L2 | 54.41 ± 3.56c | 65.85 ± 2.07b | 51.70 ± 1.32c | |
L3 | 47.12 ± 1.49c | 55.77 ± 3.00c | 48.78 ± 2.53c | |
p 可塑性指数 PI | 0.000** 0.510 | 0.000** 0.378 | 0.000** 0.517 | |
栅栏细胞宽度 Width of palisade cell (μm) | L0 | 16.60 ± 0.54a | 14.67 ± 0.35a | 15.75 ± 0.47a |
L1 | 16.41 ± 0.38a | 14.74 ± 0.44a | 15.06 ± 0.48a | |
L2 | 14.03 ± 0.31b | 14.85 ± 0.30a | 12.90 ± 0.28b | |
L3 | 12.85 ± 0.45b | 16.35 ± 0.30b | 12.58 ± 0.34b | |
p 可塑性指数 PI | 0.000** 0.226 | 0.003** 0.119 | 0.000** 0.201 | |
栅栏组织细胞层数 Layer of palisade cell | L0 | 2-3 | 2-3 | 2-3 |
L1 | 2-3 | 1-2 | 1-2 | |
L2 | 1-2 | 1-2 | 1-2 | |
L3 | 1-2 | 1 | 1 | |
海绵组织厚度 Thickness of spongy parenchyma (μm) | L0 | 70.90 ± 1.97a | 57.82 ± 2.12a | 67.91 ± 3.44a |
L1 | 67.86 ± 4.16a | 57.67 ± 1.17a | 63.68 ± 2.09a | |
L2 | 66.76 ± 2.13a | 64.35 ± 2.08a | 55.79 ± 1.38b | |
L3 | 61.48 ± 3.43b | 79.41 ± 3.25b | 54.18 ± 2.35b | |
p 可塑性指数 PI | 0.248 0.133 | 0.000** 0.274 | 0.000** 0.202 | |
海绵细胞宽度 Width of spongy cell (μm) | L0 | 9.13 ± 0.42a | 11.67 ± 0.38a | 11.78 ± 0.46a |
L1 | 12.20 ± 0.40b | 11.91 ± 0.46a | 12.11 ± 0.36a | |
L2 | 12.84 ± 0.33b | 12.57 ± 0.34a | 12.26 ± 0.21a | |
L3 | 12.96 ± 0.26b | 15.07 ± 0.55b | 13.87 ± 0.61b | |
p 可塑性指数 PI | 0.000** 0.296 | 0.000** 0.226 | 0.004** 0.151 | |
栅栏组织厚度/海绵组织厚度 Palisade-spongy ratio | L0 | 1.37 ± 0.03a | 1.58 ± 0.13a | 1.56 ± 0.08a |
L1 | 1.11 ± 0.06b | 1.15 ± 0.04b | 1.17 ± 0.03b | |
L2 | 0.83 ± 0.06c | 1.06 ± 0.05bc | 0.93 ± 0.03c | |
L3 | 0.89 ± 0.03c | 0.83 ± 0.10c | 0.90 ± 0.05c | |
p 可塑性指数 PI | 0.000** 0.394 | 0.000** 0.475 | 0.000** 0.423 |
表2 不同遮阴处理下3个紫花苜蓿品种叶肉结构比较(平均值±标准误差)
Table 2 Comparison of mesophyll tissue structures of three alfalfa cultivars under different shading conditions (mean ± SE)
项目 Item | 遮阴处理 Shading treatment | 品种 Cultivar | ||
---|---|---|---|---|
‘巨人201’ ‘Ameristand 201’ | ‘维多利亚’ ‘Victoria’ | ‘游客’ ‘Eureka’ | ||
栅栏组织厚度 Thickness of palisade parenchyma (μm) | L0 | 96.11 ± 2.12a | 89.71 ± 3.27a | 101.08 ± 2.72a |
L1 | 71.83 ± 3.73b | 66.60 ± 1.22b | 74.44 ± 2.78b | |
L2 | 54.41 ± 3.56c | 65.85 ± 2.07b | 51.70 ± 1.32c | |
L3 | 47.12 ± 1.49c | 55.77 ± 3.00c | 48.78 ± 2.53c | |
p 可塑性指数 PI | 0.000** 0.510 | 0.000** 0.378 | 0.000** 0.517 | |
栅栏细胞宽度 Width of palisade cell (μm) | L0 | 16.60 ± 0.54a | 14.67 ± 0.35a | 15.75 ± 0.47a |
L1 | 16.41 ± 0.38a | 14.74 ± 0.44a | 15.06 ± 0.48a | |
L2 | 14.03 ± 0.31b | 14.85 ± 0.30a | 12.90 ± 0.28b | |
L3 | 12.85 ± 0.45b | 16.35 ± 0.30b | 12.58 ± 0.34b | |
p 可塑性指数 PI | 0.000** 0.226 | 0.003** 0.119 | 0.000** 0.201 | |
栅栏组织细胞层数 Layer of palisade cell | L0 | 2-3 | 2-3 | 2-3 |
L1 | 2-3 | 1-2 | 1-2 | |
L2 | 1-2 | 1-2 | 1-2 | |
L3 | 1-2 | 1 | 1 | |
海绵组织厚度 Thickness of spongy parenchyma (μm) | L0 | 70.90 ± 1.97a | 57.82 ± 2.12a | 67.91 ± 3.44a |
L1 | 67.86 ± 4.16a | 57.67 ± 1.17a | 63.68 ± 2.09a | |
L2 | 66.76 ± 2.13a | 64.35 ± 2.08a | 55.79 ± 1.38b | |
L3 | 61.48 ± 3.43b | 79.41 ± 3.25b | 54.18 ± 2.35b | |
p 可塑性指数 PI | 0.248 0.133 | 0.000** 0.274 | 0.000** 0.202 | |
海绵细胞宽度 Width of spongy cell (μm) | L0 | 9.13 ± 0.42a | 11.67 ± 0.38a | 11.78 ± 0.46a |
L1 | 12.20 ± 0.40b | 11.91 ± 0.46a | 12.11 ± 0.36a | |
L2 | 12.84 ± 0.33b | 12.57 ± 0.34a | 12.26 ± 0.21a | |
L3 | 12.96 ± 0.26b | 15.07 ± 0.55b | 13.87 ± 0.61b | |
p 可塑性指数 PI | 0.000** 0.296 | 0.000** 0.226 | 0.004** 0.151 | |
栅栏组织厚度/海绵组织厚度 Palisade-spongy ratio | L0 | 1.37 ± 0.03a | 1.58 ± 0.13a | 1.56 ± 0.08a |
L1 | 1.11 ± 0.06b | 1.15 ± 0.04b | 1.17 ± 0.03b | |
L2 | 0.83 ± 0.06c | 1.06 ± 0.05bc | 0.93 ± 0.03c | |
L3 | 0.89 ± 0.03c | 0.83 ± 0.10c | 0.90 ± 0.05c | |
p 可塑性指数 PI | 0.000** 0.394 | 0.000** 0.475 | 0.000** 0.423 |
项目 Item | 遮阴处理 Shading treatment | 品种 Cultivar | ||
---|---|---|---|---|
‘巨人201’ ‘Ameristand 201’ | ‘维多利亚’ ‘Victoria’ | ‘游客’ ‘Eureka’ | ||
叶片厚度 Leaf thickness (μm) | L0 | 241.85 ± 5.06a | 218.51 ± 3.78a | 242.94 ± 3.79a |
L1 | 217.38 ± 6.61b | 184.69 ± 4.56b | 202.13 ± 3.40b | |
L2 | 179.52 ± 5.05c | 173.01 ± 3.05bc | 147.42 ± 1.54c | |
L3 | 178.99 ± 2.32c | 172.18 ± 5.09c | 153.76 ± 4.12c | |
p 可塑性指数 PI | 0.000** 0.26 | 0.000** 0.212 | 0.000** 0.393 | |
叶肉厚度 Mesophyll thickness (μm) | L0 | 164.37 ± 3.56a | 156.90 ± 2.52a | 171.53 ± 4.01a |
L1 | 143.87 ± 5.68b | 120.68 ± 1.44b | 140.65 ± 2.06b | |
L2 | 119.39 ± 3.77c | 118.99 ± 2.30b | 104.97 ± 1.94c | |
L3 | 116.20 ± 4.02c | 110.58 ± 3.31c | 101.19 ± 3.81c | |
p 可塑性指数 PI | 0.000** 0.293 | 0.000** 0.295 | 0.000** 0.410 | |
中脉厚度 Midrib thickness (μm) | L0 | 388.99 ± 32.24a | 402.17 ± 23.00a | 511.23 ± 20.63a |
L1 | 370.22 ± 8.82a | 380.37 ± 24.85a | 387.18 ± 19.31b | |
L2 | 367.07 ± 2.13a | 374.11 ± 15.78a | 275.58 ± 11.58c | |
L3 | 278.21 ± 11.50b | 292.78 ± 9.35b | 274.62 ± 2.63c | |
p 可塑性指数 PI | 0.001** 0.285 | 0.000** 0.272 | 0.000** 0.463 | |
组织结构紧密度 Cell tense ratio | L0 | 0.40 ± 0.01a | 0.41 ± 0.02a | 0.42 ± 0.02a |
L1 | 0.33 ± 0.02b | 0.39 ± 0.01ab | 0.37 ± 0.02ab | |
L2 | 0.32 ± 0.02b | 0.38 ± 0.02ab | 0.33 ± 0.02b | |
L3 | 0.26 ± 0.01c | 0.34 ± 0.02b | 0.34 ± 0.02b | |
p 可塑性指数 PI | 0.000** 0.350 | 0.070 0.171 | 0.037* 0.21 | |
组织结构疏松度 Spongy ratio | L0 | 0.30 ± 0.01a | 0.27 ± 0.01a | 0.28 ± 0.02a |
L1 | 0.31 ± 0.02a | 0.34 ± 0.02a | 0.31 ± 0.01a | |
L2 | 0.40 ± 0.03b | 0.37 ± 0.01ab | 0.38 ± 0.01b | |
L3 | 0.34 ± 0.03ab | 0.47 ± 0.07b | 0.39 ± 0.02b | |
p 可塑性指数 PI | 0.035* 0.250 | 0.006** 0.426 | 0.000** 0.282 | |
叶脉突起度 Vein protuberant degree | L0 | 1.61 ± 0.22a | 1.79 ± 0.21a | 2.11 ± 0.15a |
L1 | 1.72 ± 0.08a | 2.15 ± 0.31a | 1.94 ± 0.21a | |
L2 | 2.21 ± 0.15b | 2.17 ± 0.12a | 1.77 ± 0.11a | |
L3 | 1.54 ± 0.11a | 1.81 ± 0.18a | 1.78 ± 0.07a | |
p 可塑性指数 PI | 0.037* 0.303 | 0.368 0.175 | 0.364 0.161 |
表3 不同遮阴处理下3个紫花苜蓿品种叶片结构整体特征比较(平均值±标准误差)
Table 3 Comparison of leaf integrated structures of three alfalfa cultivars under different shading treatment (mean ± SE)
项目 Item | 遮阴处理 Shading treatment | 品种 Cultivar | ||
---|---|---|---|---|
‘巨人201’ ‘Ameristand 201’ | ‘维多利亚’ ‘Victoria’ | ‘游客’ ‘Eureka’ | ||
叶片厚度 Leaf thickness (μm) | L0 | 241.85 ± 5.06a | 218.51 ± 3.78a | 242.94 ± 3.79a |
L1 | 217.38 ± 6.61b | 184.69 ± 4.56b | 202.13 ± 3.40b | |
L2 | 179.52 ± 5.05c | 173.01 ± 3.05bc | 147.42 ± 1.54c | |
L3 | 178.99 ± 2.32c | 172.18 ± 5.09c | 153.76 ± 4.12c | |
p 可塑性指数 PI | 0.000** 0.26 | 0.000** 0.212 | 0.000** 0.393 | |
叶肉厚度 Mesophyll thickness (μm) | L0 | 164.37 ± 3.56a | 156.90 ± 2.52a | 171.53 ± 4.01a |
L1 | 143.87 ± 5.68b | 120.68 ± 1.44b | 140.65 ± 2.06b | |
L2 | 119.39 ± 3.77c | 118.99 ± 2.30b | 104.97 ± 1.94c | |
L3 | 116.20 ± 4.02c | 110.58 ± 3.31c | 101.19 ± 3.81c | |
p 可塑性指数 PI | 0.000** 0.293 | 0.000** 0.295 | 0.000** 0.410 | |
中脉厚度 Midrib thickness (μm) | L0 | 388.99 ± 32.24a | 402.17 ± 23.00a | 511.23 ± 20.63a |
L1 | 370.22 ± 8.82a | 380.37 ± 24.85a | 387.18 ± 19.31b | |
L2 | 367.07 ± 2.13a | 374.11 ± 15.78a | 275.58 ± 11.58c | |
L3 | 278.21 ± 11.50b | 292.78 ± 9.35b | 274.62 ± 2.63c | |
p 可塑性指数 PI | 0.001** 0.285 | 0.000** 0.272 | 0.000** 0.463 | |
组织结构紧密度 Cell tense ratio | L0 | 0.40 ± 0.01a | 0.41 ± 0.02a | 0.42 ± 0.02a |
L1 | 0.33 ± 0.02b | 0.39 ± 0.01ab | 0.37 ± 0.02ab | |
L2 | 0.32 ± 0.02b | 0.38 ± 0.02ab | 0.33 ± 0.02b | |
L3 | 0.26 ± 0.01c | 0.34 ± 0.02b | 0.34 ± 0.02b | |
p 可塑性指数 PI | 0.000** 0.350 | 0.070 0.171 | 0.037* 0.21 | |
组织结构疏松度 Spongy ratio | L0 | 0.30 ± 0.01a | 0.27 ± 0.01a | 0.28 ± 0.02a |
L1 | 0.31 ± 0.02a | 0.34 ± 0.02a | 0.31 ± 0.01a | |
L2 | 0.40 ± 0.03b | 0.37 ± 0.01ab | 0.38 ± 0.01b | |
L3 | 0.34 ± 0.03ab | 0.47 ± 0.07b | 0.39 ± 0.02b | |
p 可塑性指数 PI | 0.035* 0.250 | 0.006** 0.426 | 0.000** 0.282 | |
叶脉突起度 Vein protuberant degree | L0 | 1.61 ± 0.22a | 1.79 ± 0.21a | 2.11 ± 0.15a |
L1 | 1.72 ± 0.08a | 2.15 ± 0.31a | 1.94 ± 0.21a | |
L2 | 2.21 ± 0.15b | 2.17 ± 0.12a | 1.77 ± 0.11a | |
L3 | 1.54 ± 0.11a | 1.81 ± 0.18a | 1.78 ± 0.07a | |
p 可塑性指数 PI | 0.037* 0.303 | 0.368 0.175 | 0.364 0.161 |
项目 Item | 品种 Cultivar | ||
---|---|---|---|
‘巨人201’ ‘Ameristand 201’ (FD = 2) | ‘维多利亚’ ‘Victoria’ (FD = 6) | ‘游客’ ‘Eureka’ (FD = 8) | |
组织结构紧密度 Cell tense ratio | 0.954* | 0.843 | 0.980* |
组织结构疏松度 Spongy ratio | -0.688 | -0.916 | -0.947 |
叶脉突起度 Vein protuberant degree | -0.282 | -0.15 | 0.976* |
海绵组织厚度 Thickness of spongy parenchyma | 0.882 | -0.728 | 0.944 |
海绵细胞宽度 Width of spongy cell | -0.981* | -0.736 | -0.742 |
栅栏组织厚度 Thickness of palisade parenchyma | 0.992** | 0.977* | 0.987* |
栅栏细胞宽度 Width of palisade cell | 0.844 | -0.751 | 0.911 |
栅栏组织厚度/海绵组织厚度 Palisade-spongy ratio | 0.960* | 0.984* | 0.994** |
气孔密度 Stomatal density | 0.996** | 0.964* | 0.998** |
气孔开度 Stomata aperture | 0.982* | 0.738 | 0.766 |
上表皮厚度 Thickness of upper epidermis | -0.882 | -0.957* | -0.904 |
下表皮厚度 Thickness of lower epidermis | -0.869 | -0.902 | 0.833 |
上表皮角质层厚度 Cuticle thickness of upper epidermis | 0.828 | 0.976* | 0.937 |
下表皮角质层厚度 Cuticle thickness of lower epidermis | 0.978* | 0.861 | 0.874 |
中脉厚度 Midrib thickness | 0.725 | 0.765 | 0.982* |
叶片厚度 Leaf thickness | 0.955* | 0.990* | 0.957* |
叶肉厚度 Mesophyll thickness | 0.972* | 0.977* | 0.974* |
表4 不同秋眠型紫花苜蓿品种叶片解剖结构特征与光强的相关性
Table 4 Correlation of leaf anatomical parameters of different alfalfa cultivars and light intensity
项目 Item | 品种 Cultivar | ||
---|---|---|---|
‘巨人201’ ‘Ameristand 201’ (FD = 2) | ‘维多利亚’ ‘Victoria’ (FD = 6) | ‘游客’ ‘Eureka’ (FD = 8) | |
组织结构紧密度 Cell tense ratio | 0.954* | 0.843 | 0.980* |
组织结构疏松度 Spongy ratio | -0.688 | -0.916 | -0.947 |
叶脉突起度 Vein protuberant degree | -0.282 | -0.15 | 0.976* |
海绵组织厚度 Thickness of spongy parenchyma | 0.882 | -0.728 | 0.944 |
海绵细胞宽度 Width of spongy cell | -0.981* | -0.736 | -0.742 |
栅栏组织厚度 Thickness of palisade parenchyma | 0.992** | 0.977* | 0.987* |
栅栏细胞宽度 Width of palisade cell | 0.844 | -0.751 | 0.911 |
栅栏组织厚度/海绵组织厚度 Palisade-spongy ratio | 0.960* | 0.984* | 0.994** |
气孔密度 Stomatal density | 0.996** | 0.964* | 0.998** |
气孔开度 Stomata aperture | 0.982* | 0.738 | 0.766 |
上表皮厚度 Thickness of upper epidermis | -0.882 | -0.957* | -0.904 |
下表皮厚度 Thickness of lower epidermis | -0.869 | -0.902 | 0.833 |
上表皮角质层厚度 Cuticle thickness of upper epidermis | 0.828 | 0.976* | 0.937 |
下表皮角质层厚度 Cuticle thickness of lower epidermis | 0.978* | 0.861 | 0.874 |
中脉厚度 Midrib thickness | 0.725 | 0.765 | 0.982* |
叶片厚度 Leaf thickness | 0.955* | 0.990* | 0.957* |
叶肉厚度 Mesophyll thickness | 0.972* | 0.977* | 0.974* |
[1] |
Ashton PMS, Olander LP, Berlyn GP, Thadani R, Cameron IR (1998). Changes in leaf structure in relation to crown position and tree size of Betula papyrifera within fire-origin stands of interior cedar-hemlock. Canadian Journal of Botany, 76, 1180-1187.
DOI URL |
[2] |
Bergh J, Linder S, Lundmark T, Elfving B (1999). The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. Forest Ecology and Management, 119, 51-62.
DOI URL |
[3] |
Bone RL, Lee DW, Norman JM (1985). Epidermal cells functioning as lenses in leaves of tropical rain-forest shade plants. Applied Optics, 24, 1408-1412.
DOI URL PMID |
[4] | Bradshaw AD (1965). Evolutionary significance of phenotypic plasticity in plants. Advanced Genetics, 13, 115-155. |
[5] |
Cooper CS (1966). Response of birdsfoot trefoil and alfalfa to various levels of shade. Crop Science, 6, 63-66.
DOI URL |
[6] |
Cuningham SM, Volence JJ, Teuber LR (1998). Plant survival and root and bud composition of alfalfa populations selected for contrasting fall dormancy. Crop Science, 38, 962-969.
DOI URL |
[7] | Dai LF (戴凌峰), Cui LQ (崔令军), Zhang ZX (张志翔) (2008). Influence of shading treatment on growth of Jatropha curcas seedling. Journal of Anhui Agricultural Sciences (安徽农业科学) 36, 5729-5731. (in Chinese with English abstract) |
[8] | Esau K (1977). Anatomy of Seed Plants 2nd edn. John Wiley and Sons Press, New York. 351-372. |
[9] | Gui KY (桂克印), Li YL (李炎林), Tang QR (唐前瑞), Yin H (尹恒), Chen L (陈丽), He SH (贺苏华) (2007). Leaf anatomy of Scindapsus aureus growing under illumination treatment. Journal of Jishou University (Natural Sciences Edition) (吉首大学学报(自然科学版)), 28(5), 95-98. (in Chinese with English abstract) |
[10] |
Hu QP (胡启鹏), Guo ZH (郭志华), Li CY (李春燕), Ma LY (马履一) (2008). Advance at phenotypic plasticity in plant responses to abiotic factors. Scientia Silvae Sinicae (林业科学) 44(5), 135-142. (in Chinese with English abstract)
DOI URL |
[11] |
Huber H, Lukács S, Watson MA (1999). Spatial structure of stoloniferous herbs: an interplay between structure blue-print, ontogeny and phenotypic plasticity. Plant Ecology, 141, 107-115.
DOI URL |
[12] |
Isanogle IT (1944). Effects of controlled shading upon the development of leaf structure in two deciduous tree species. Ecology, 25, 404-413.
DOI URL |
[13] | Knipe B, Reisen P, McCaslin M , (1997). The importance of fall dormancy to yield, persistence and forage quality. In: Certified Alfalfa Seed Council ed. Proceedings of the 1997 California Alfalfa Symposium. Pennsylvania State University Press, Pennsylvania, USA. 5, 192-197. |
[14] | Knipe B, Reisen P, McCaslin M (1998). The relationship between fall dormancy and stand persistence in alfalfa varieties. In: Certified Alfalfa Seed Council ed. Proceedings of the 1998 California Alfalfa Symposium. Pennsylvania State University Press, Pennsylvania, USA. 3, 203-208. |
[15] | Lee DW (1986). Unusual strategies of light absorption in rainforest herbs. In: Givinish TJ ed. On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, UK. 105-131. |
[16] |
Lee DW, Bone RA, Tersis SL, Storch D (1990). Correlates of leaf optical properties in tropical forest sun and extreme- shade plants. American Journal of Botany, 77, 370-380.
DOI URL |
[17] | Li FL (李芳兰), Bao WK (包维楷) (2005). Responses of the morphological and anatomical structure of the plant leaf to environmental change. Chinese Bulletin of Botany (植物学通报) 22, 118-127. (in Chinese with English abstract) |
[18] | Li GH (李国华), Xu T (徐涛), Chen GY (陈国云), Yue H (岳海), Liang GP (梁国平) (2009). Anatomical structure of leaves of 10 macadamia cultivars. Chinese Journal of Tropical Crops (热带作物学报) 30, 1437-1441. (in Chinese with English abstract) |
[19] | Li XL (李向林), Wan LQ (万里强) (2004). Alfalfa fall dormancy and its relationship to winter hardiness and yield. Acta Prataculturae Sinica (草业学报) 13(3), 57-61. (in Chinese with English abstract) |
[20] |
Lin CH, McGraw RL, George MF, Garrett HE (1999). Shade effects on forage crops with potential in temperate agroforestry practices. Agroforestry Systems, 44, 109-119.
DOI URL |
[21] | Liu SB (刘世彪), Hu ZH (胡正海) (2004). Effects of shading treatment on the leaf morphology, structure and photos- ynthetic characteristics of Gynostemma pentaphyllum. Journal of Wuhan Botanical Research (武汉植物学研究) 22, 339-344. (in Chinese with English abstract) |
[22] | Lu XS (卢欣石), Shen YL (申玉龙) (1991). Research and utilization of alfalfa fall dormancy. Abroad Animal Husbandry― Grassland and Forage (国外畜牧学—草原与牧草) (4), 1-4. (in Chinese) |
[23] | McCaslin M, Brown D, Deery H (1990). Report of the 32nd North American Alfalfa Improvement Conference. Pasco, Washington. |
[24] | Mott KA, Gibson AG, O’Leary JW (1982). The adaptive sign-ificance of amphistomatic leaves. Plant, Cell & Environ- ment, 5, 455-460. |
[25] | Pintado A, Valladares F, Sancho LG (1997). Exploring phenotypic plasticity in the lichen Ramalina capitata: morphology, water relations and chlorophyll content in north- and south-facing populations. Annals of Botany, 80, 345-353. |
[26] | Putz FE, Mooney HA (1991). The Biology of Vines. Cambridge University Press, Cambridge, UK. 1-353. |
[27] |
Qin FF (覃凤飞), Shen YX (沈益新), Zhou JG (周建国), Wang QS (王庆师), Sun ZC (孙志成), Wang B (王波) (2010). Seedling morphology and growth responses of nine Medicago sativa varieties to shade conditions. Acta Prataculturae Sinica (草业学报) 19, 204-211. (in Chinese with English abstract)
DOI URL |
[28] | Rôças G, Barros CF, Scarano FR (1997). Leaf anatomy plasticity of Alchornea triplinervia (Euphorbiaceae) under distinct light regimes in a Brazilian montane Atlantic rain forest. Trees, 11, 469-473. |
[29] | Shi GR (史刚荣), Cai QS (蔡庆生) (2006). Leaf anatomic plasticity of white clover and its response to different light intensities. Acta Agrectia Sinica (草地学报) 14, 301-305. (in Chinese with English abstract) |
[30] |
Stout DG, Hall JW (1989). Fall growth and winter survival of alfalfa in interior British Columbia. Canadian Journal of Plant Science, 69, 491-499.
DOI URL |
[31] |
Strauss-Debenedetti S, Bazzaz FA (1991). Plasticity and acclimation to light in tropical Moraceae of different sucessional positions. Oecologia, 87, 377-387.
URL PMID |
[32] |
Sultan SE (1995). Phenotypic plasticity and plant adaptation. Acta Botanica Neerlandica, 44, 363-383.
DOI URL |
[33] |
Sultan SE (2005). An emerging focus on plant ecological development. New Phytologist, 166, 1-5.
DOI URL PMID |
[34] |
Trewavas AJ, Malhó R (1997). Signal perception and transduction: the origin of the phenotype. Plant Cell, 9, 1181-1195.
DOI URL PMID |
[35] | Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000). Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 81, l925-l936. |
[36] |
van Kleunen M, Fischer M (2005). Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytologist, 166, 49-60.
DOI URL PMID |
[37] |
Ventroni LM, Volenec JJ, Cangiano CA (2010). Fall dormancy and cutting frequency impact on alfalfa yield and yield components. Field Crops Research, 119, 252-259.
DOI URL |
[38] | Wang QY (王庆亚) (2010). Biological Electron Microscopy Technique (生物显微技术). China Agriculture Press, Beijing. 43-65. (in Chinese) |
[39] | Wang XL (王勋陵), Wang J (王静) (1989). Plant Morphology and Environment. Lanzhou University Press, Lanzhou. 1-90. (in Chinese) |
[40] | Wang Y (王雁), Su XH (苏雪痕), Peng ZH (彭镇华) (2002). Review of studies on plant shade-tolerance. Forest Research (林业科学研究) 15, 349-355. (in Chinese with English abstract) |
[41] |
Weinig C (2000). Plasticity versus canalization: population differences in the timing of shade-avoidance responses. Evolution, 54, 441-451.
DOI URL PMID |
[42] | Yang Z (杨曌), Li XL (李向林), Zhang XQ (张新全), Wan LQ (万里强), He F (何峰) (2010). Study on the photosyn- thetic characteristics of alfalfa with different fall-dor- mancy levels in the southwest region of Hunan Province. Acta Agrestia Sinica (草地学报) 18, 188-194. (in Chinese with English abstract) |
[43] | Ye DZ, Jiang YD, Dong WJ (2003). The northward shift of climatic belts in China during the last 50 years and the corresponding seasonal responses. Advances in Atmosp- heric Sciences, 20, 959-967. |
[44] | Zhang JC (张家诚) (1991). Climate of China (中国气候总论). China Meteorological Press, Beijing. 156-168. (in Chinese) |
[45] | Zhang SJ (张世君) (2002). Fall dormancy of alfalfa and its application. Pratacultural Science (草业科学) 19, 79. (in Chinese with English abstract) |
[1] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[2] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[3] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[4] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[5] | 钟楠蝶, 王力, 肖杰, 王琼. 增温条件下花粉来源对红雉凤仙花生殖成功的影响[J]. 植物生态学报, 2022, 46(4): 416-427. |
[6] | 杜军, 王文, 何志斌, 陈龙飞, 蔺鹏飞, 朱喜, 田全彦. 祁连山青海云杉物候表型的空间分异及其内在机制[J]. 植物生态学报, 2021, 45(8): 834-843. |
[7] | 张自琰, 金光泽, 刘志理. 不同区域针叶年龄对红松叶性状及相关关系的影响[J]. 植物生态学报, 2021, 45(3): 253-264. |
[8] | 吴建波, 王小丹. 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报, 2021, 45(3): 265-273. |
[9] | 冯银平, 沈海花, 罗永开, 徐龙超, 刘上石, 朱言坤, 赵梦颖, 邢爱军, 方精云. 种植密度对苜蓿生长及生物量的影响[J]. 植物生态学报, 2020, 44(3): 248-256. |
[10] | 白天道, 余春兰, 甘泽朝, 赖海荣, 杨隐超, 黄厚宸, 蒋维昕. 细叶云南松种实性状变异与地理气象因子的关联[J]. 植物生态学报, 2020, 44(12): 1224-1235. |
[11] | 蔡建国, 韦孟琪, 章毅, 魏云龙. 遮阴对绣球光合特性和叶绿素荧光参数的影响[J]. 植物生态学报, 2017, 41(5): 570-576. |
[12] | 杨雪, 申俊芳, 赵念席, 高玉葆. 不同基因型羊草数量性状的可塑性及遗传分化[J]. 植物生态学报, 2017, 41(3): 359-368. |
[13] | 周晓旋, 蔡玲玲, 傅梅萍, 洪礼伟, 沈英嘉, 李庆顺. 红树植物胎生现象研究进展[J]. 植物生态学报, 2016, 40(12): 1328-1343. |
[14] | 邹长明, 王允青, 刘英, 张晓红, 唐杉. 四种豆科作物的光合生理和生长发育对弱光的响应[J]. 植物生态学报, 2015, 39(9): 909-916. |
[15] | 闫帮国, 刘刚才, 樊博, 何光熊, 史亮涛, 李纪潮, 纪中华. 干热河谷植物化学计量特征与生物量之间的关系[J]. 植物生态学报, 2015, 39(8): 807-815. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19