植物生态学报 ›› 2020, Vol. 44 ›› Issue (3): 248-256.DOI: 10.17521/cjpe.2019.0157
冯银平1,2,沈海花1,2,罗永开1,2,徐龙超1,2,刘上石1,2,朱言坤1,2,赵梦颖1,2,邢爱军1,2,方精云1,2,3,*()
收稿日期:
2019-06-25
接受日期:
2020-02-20
出版日期:
2020-03-20
发布日期:
2020-07-31
通讯作者:
方精云
基金资助:
FENG Yin-Ping1,2,SHEN Hai-Hua1,2,LUO Yong-Kai1,2,XU Long-Chao1,2,LIU Shang-Shi1,2,ZHU Yan-Kun1,2,ZHAO Meng-Ying1,2,XING Ai-Jun1,2,FANG Jing-Yun1,2,3,*()
Received:
2019-06-25
Accepted:
2020-02-20
Online:
2020-03-20
Published:
2020-07-31
Contact:
Jing-Yun FANG
Supported by:
摘要:
种植密度作为影响作物产量和品质的重要因素, 会造成植物对于光照、水分和养分的竞争。为研究种植密度对苜蓿生长与产量的影响, 在日光温室环境下, 以紫花苜蓿(Medicago sativa)为材料, 设置25、100、400、800、1 500、2 000株·m -2, 共6个种植密度, 对紫花苜蓿的种群密度和生长状况进行了观测。结果表明, 各处理播种后15天的平均种植密度分别为25、100、373、745、1 255、1 938株·m -2; 随着紫花苜蓿的生长, 除了低密度(25、100株·m -2)处理没有发生植株数量的变化外, 其余4个密度处理植株数量均有所减少, 即发生不同程度的自疏, 至第二茬收获时(播种后第187天)种群数量分别减少为297、571、759、839株·m -2。植株个体的株高、基径和分枝数量随着现存密度的增加呈指数下降; 个体生物量与现存密度的关系满足竞争密度效应的幂函数关系, 即随着密度的增加而减小。紫花苜蓿单位面积地上生物量符合最终产量恒定法则, 然而, 随着密度的增加, 地下生物量有先增加后减小的趋势。
冯银平, 沈海花, 罗永开, 徐龙超, 刘上石, 朱言坤, 赵梦颖, 邢爱军, 方精云. 种植密度对苜蓿生长及生物量的影响. 植物生态学报, 2020, 44(3): 248-256. DOI: 10.17521/cjpe.2019.0157
FENG Yin-Ping, SHEN Hai-Hua, LUO Yong-Kai, XU Long-Chao, LIU Shang-Shi, ZHU Yan-Kun, ZHAO Meng-Ying, XING Ai-Jun, FANG Jing-Yun. Effects of planting density on growth and biomass of Medicago sativa. Chinese Journal of Plant Ecology, 2020, 44(3): 248-256. DOI: 10.17521/cjpe.2019.0157
图1 不同种植密度下紫花苜蓿种群的数量变化(平均值±标准误差)。A、B、C、D、E、F分别表示种植密度为25、100、400、800、1 500、2 000株·m-2。
Fig. 1 Quantity change of Medicago sativa population under different planting densities (mean ± SE). A, B, C, D, E, F represents 25, 100, 400, 800, 1 500, 2 000 plants·m-2 planting densities.
图2 不同种植密度下的紫花苜蓿种群第一茬和第二茬的平均死亡率(平均值±标准误差)。A、B、C、D、E、F分别表示种植密度为25、100、400、800、1 500、2 000株·m-2。
Fig. 2 Average death rate of Medicago sativa population under different planting densities in the first and second harvests (mean ± SE). A, B, C, D, E, F represents 25, 100, 400, 800, 1 500, 2 000 plants·m-2 planting densities.
图3 现存密度与紫花苜蓿平均株高(A)、平均基径(B)和平均分枝数(C)的关系。
Fig. 3 Relationship between density of survivors and mean plant height (A), basal diameter (B) and branch number (C) for Medicago sativa.
图4 紫花苜蓿植物个体生物量与现存密度的关系(横纵坐标轴均为对数坐标轴)。
Fig. 4 Relationships between individual biomass and density of survivors for Medicago sativa. The horizontal and vertical axes are both logarithmic scale.
图5 紫花苜蓿植物个体生物量与平均株高(A)、平均基径(B)和平均分枝数(C)的关系。
Fig. 5 Relationships between individual plant biomass and mean plant height (A), basal diameter (B) and branch number (C) for Medicago sativa.
处理 Treatment | 单位面积干草生物量 Dry matter biomass (g·m-2) | 单位面积鲜草生物量 Fresh matter biomass (g·m-2) | 单位面积地下生物量 Below-ground biomass (g·m-2) |
---|---|---|---|
A | 236.9 ± 41.9a | 924.7 ± 62.2a | 100.0 ± 23.6a |
B | 256.5 ± 26.4a | 902.9 ± 97.6a | 125.8 ± 12.9ab |
C | 243.7 ± 8.0a | 886.1 ± 81.9a | 146.7 ± 16.4b |
D | 246.8 ± 10.1a | 968.0 ± 70.2ab | 144.5 ± 14.2b |
E | 255.0 ± 19.0a | 1 074.3 ± 139.9ab | 129.6 ± 7.5ab |
F | 248.4 ± 16.4a | 1 139.5 ± 65.8b | 133.2 ± 21.6ab |
表1 不同种植密度对紫花苜蓿单位面积生物量的影响(平均值±标准误差)
Table 1 Effect of planting density on biomass for Medicago sativa (mean ± SE)
处理 Treatment | 单位面积干草生物量 Dry matter biomass (g·m-2) | 单位面积鲜草生物量 Fresh matter biomass (g·m-2) | 单位面积地下生物量 Below-ground biomass (g·m-2) |
---|---|---|---|
A | 236.9 ± 41.9a | 924.7 ± 62.2a | 100.0 ± 23.6a |
B | 256.5 ± 26.4a | 902.9 ± 97.6a | 125.8 ± 12.9ab |
C | 243.7 ± 8.0a | 886.1 ± 81.9a | 146.7 ± 16.4b |
D | 246.8 ± 10.1a | 968.0 ± 70.2ab | 144.5 ± 14.2b |
E | 255.0 ± 19.0a | 1 074.3 ± 139.9ab | 129.6 ± 7.5ab |
F | 248.4 ± 16.4a | 1 139.5 ± 65.8b | 133.2 ± 21.6ab |
处理 Treatment | 根冠比 Root-shoot ratio | 叶茎比 Leaf-stem ratio |
---|---|---|
A | 0.45 ± 0.20 | 0.82 ± 0.05 |
B | 0.49 ± 0.10 | 0.95 ± 0.12 |
C | 0.60 ± 0.08 | 0.97 ± 0.13 |
D | 0.58 ± 0.04 | 0.77 ± 0.05 |
E | 0.53 ± 0.10 | 0.74 ± 0.07 |
F | 0.53 ± 0.06 | 0.88 ± 0.11 |
表2 不同种植密度对紫花苜蓿生物量分配的影响(平均值±标准误差)
Table 2 Effect of planting density on biomass allocation for Medicago sativa (mean ± SE)
处理 Treatment | 根冠比 Root-shoot ratio | 叶茎比 Leaf-stem ratio |
---|---|---|
A | 0.45 ± 0.20 | 0.82 ± 0.05 |
B | 0.49 ± 0.10 | 0.95 ± 0.12 |
C | 0.60 ± 0.08 | 0.97 ± 0.13 |
D | 0.58 ± 0.04 | 0.77 ± 0.05 |
E | 0.53 ± 0.10 | 0.74 ± 0.07 |
F | 0.53 ± 0.06 | 0.88 ± 0.11 |
[1] |
Adams CB, Erickson JE, Campbell DN, Singh MP, Rebolledo JP (2015). Effects of row spacing and population density on yield of sweet sorghum: applications for harvesting as billets. Agronomy Journal, 107, 1831-1836.
DOI URL |
[2] |
Benedek V, Englert P (2019). The effect of ramet mortality on clonal plant growth. Theory in Biosciences, 138, 215-221.
DOI URL |
[3] |
Berti MT, Samarappuli D (2018). How does sowing rate affect plant and stem density, forage yield, and nutritive value in glyphosate-tolerant alfalfa? Agronomy, 8, 169. DOI: 10.3390/agronomy8090169.
DOI URL |
[4] |
Bybee-Finley KA, Mirsky SB, Ryan MR (2017). Crop biomass not species richness drives weed suppression in warm- season annual grass—Legume intercrops in the northeast. Weed Science, 65, 669-680.
DOI URL |
[5] | Cain ML, Pacala SW, Silander JA (1991). Stochastic simulation of clonal growth in the tall goldenrod, Solidago altissima. Oecologia, 88, 477-485. |
[6] |
Chen J, Zhao CZ, Wang JW, Zhao LC (2017). Canopy structure and radiation interception of Salix matsudana: stand density dependent relationships. Chinese Journal of Plant Ecology, 41, 661-669.
DOI URL |
[ 陈静, 赵成章, 王继伟, 赵连春 (2017). 不同密度旱柳的树冠构型与光截获. 植物生态学报, 41, 661-669.]
DOI URL |
|
[7] | Cheng JM, Wan HE, Wang J (2005). Alfalfa growth and its relation with soil water status in loess hilly and gully region. Chinese Journal of Applied Ecology, 16, 435-438. |
[ 程积民, 万惠娥, 王静 (2005). 黄土丘陵区紫花苜蓿生长与土壤水分变化. 应用生态学报, 16, 435-438.] | |
[8] |
Chocarro C, Lloveras J (2015). The effect of row spacing on alfalfa seed and forage production under irrigated Mediterranean agricultural conditions. Grass and Forage Science, 70, 651-660.
DOI URL |
[9] |
Chu CJ, Weiner J, Maestre FT, Xiao S, Wang YS, Li Q, Yuan JL, Zhao LQ, Ren ZW, Wang G (2009). Positive interactions can increase size inequality in plant populations. Journal of Ecology, 97, 1401-1407.
DOI URL |
[10] | Deng JM, Ran JZ, Wang ZQ, Fan ZX, Wang GX, Ji MF, Liu J, Wang Y, Liu JQ, Brown JH (2012). Models and tests of optimal density and maximal yield for crop plants. Proceedings of the National Academy of Sciences of the United States of America, 109, 15823-15828. |
[11] | Deru J, Schilder H, an der Schoot J R, Van Eekeren N (2016). No Trade-off Between Root Biomass and Aboveground Production in Lolium perenne. Breeding in a World of Scarcity. Springer International Publishing, Cham, Switzerland. 289-292. |
[12] | Du HQ, Niu YC, Zhao XL, Chen SE (2004). Sowing density effects on the major characteristics of alfalfa. Pratacultural Science, 21, 42-45. |
[ 杜汉强, 牛一川, 赵晓玲, 陈双恩 (2004). 不同播种密度对紫花苜蓿主要性状的影响. 草业科学, 21, 42-45.] | |
[13] | Du S, You SH, Liu Y, Sun L, Gegentu, Jia YS (2016). Effect of different clipping periods and heights on alfalfa quality. Acta Agrestia Sinica, 24, 874-878. |
[ 都帅, 尤思涵, 刘燕, 孙林, 格根图, 贾玉山 (2016). 不同刈割时期与刈割高度对苜蓿品质的影响. 草地学报, 24, 874-878.] | |
[14] |
Enquist BJ, Brown JH, West GB (1998). Allometric scaling of plant energetics and population density. Nature, 395, 163-165.
DOI URL |
[15] | Fan GH, Huang YX, Zhao XY, Shen XJ (2017). Effect of population density on the allometric growth of Agriophyllum squarrosum. Acta Prataculturae Sinica, 26(3), 53-64. |
[ 范高华, 黄迎新, 赵学勇, 神祥金 (2017). 种群密度对沙米异速生长的影响. 草业学报, 26(3), 53-64.] | |
[16] | Fan X, Cai J, Liu JP, You MH, Fan X, Wang SS (2016). Module traits and biomass allocation of Humulus scandens seedlings during population self-thinning. Chinese Journal of Ecology, 35, 2926-2934. |
[ 樊星, 蔡捡, 刘金平, 游明鸿, 范宣, 王思思 (2016). 葎草种群自疏过程中幼苗构件性状及生物量分配变化. 生态学杂志, 35, 2926-2934.] | |
[17] | Fang H, Kong FB (2003). Study on biomass and its allocation of different density loblolly pine. Journal of Fujian College of Forestry, 23, 182-185. |
[ 方华, 孔凡斌 (2003). 不同密度火炬松林生物量及其分配. 福建林学院学报, 23, 182-185.] | |
[18] | Fang JY (1991). A Theoretical Approach to the Change of Density in Plant Populations. Transactions of the Ecological Society of Chinese Youth (1). Science and Technology Press of China, Beijing. 183-190. |
[ 方精云 (1991). 植物种群密度变化的理论. 青年生态学者论丛(一). 中国科学技术出版社, 北京. 183-190.] | |
[19] | Fang JY (1992). Self-thinning rule in plant population. Rural Eco-Environment, 8(2), 7-12. |
[ 方精云 (1992). 植物种群的自然稀疏法则. 农村生态环境, 8(2), 7-12.] | |
[20] | Fang JY, Kan M, Yamakura T (1991). Relationship between population growth and population density in monocultures of Larix leptolepis. Acta Botanica Sinica, 33, 949-957. |
[ 方精云, 菅诚, 山仓拓夫 (1991). 日本落叶松模拟种群的生长与密度的关系. 植物学报, 33, 949-957.] | |
[21] | Geng HZ (1995). China Alfalfa. China Agriculture Press, Beijing. 334-338. |
[ 耿华珠 (1995). 中国苜蓿. 中国农业出版社, 北京. 334-338.] | |
[22] |
Gibson DJ, Young BG, Wood AJ, Bardgett R (2017). Can weeds enhance profitability? Integrating ecological concepts to address crop-weed competition and yield quality. Journal of Ecology, 105, 900-904.
DOI URL |
[23] |
Hakl J, Fuksa P, Šantrůček J, Mášková K (2011). The development of lucerne root morphology traits under high initial stand density within a seven year period. Plant Soil and Environment, 57(2), 81-87.
DOI URL |
[24] | Harper JL (1977). Population biology of plants. Academic Press, London. 151-236. |
[25] |
Hecht VL, Temperton VM, Nagel KA, Rascher U, Pude R, Postma JA (2019). Plant density modifies root system architecture in spring barley (Hordeum vulgare L.) through a change in nodal root number. Plant and Soil, 439, 179-200.
DOI URL |
[26] | Hong FZ, Lu XS, Gao HW (2009). Alfalfa Science. China Agriculture Press, Beijing. 13-23. |
[ 洪绂曾, 卢欣石, 高洪文 (2009). 苜蓿科学. 中国农业出版社, 北京. 13-23.] | |
[27] | Hou LY, Yang J, Zhang QQ, Mao XT, Song SH, Bai WM, Pan QM, Zhou QP, Zhang WH (2018). Establishment and management of alfalfa pasture in cold regions of China. Chinese Science Bulletin, 63, 1-13. |
[ 侯龙鱼, 杨杰, 张强强, 毛小涛, 宋世环, 白文明, 潘庆民, 周青平, 张文浩 (2018). 高寒地区苜蓿人工草地建植技术. 科学通报, 63, 1-13.] | |
[28] |
Japhet W, Zhou DW, Zhang HX, Zhang HX, Yu T (2009). Evidence of phenotypic plasticity in the response of Fagopyrum esculentum to population density and sowing date. Journal of Plant Biology, 52, 303-311.
DOI URL |
[29] |
Jáuregui JM, Mills A, Black DBS, Wigley K, Ridgway HJ, Moot DJ (2019). Yield components of lucerne were affected by sowing dates and inoculation treatments. European Journal of Agronomy, 103, 1-12.
DOI URL |
[30] |
Kays S, Harper JL (1974). The regulation of plant and tiller density in a grass sward. The Journal of Ecology, 62, 97-105.
DOI URL |
[31] | Kira T, Ogawa H, Sakazaki N (1953). Intraspecific competition among higher plants. I Competition-density-yield interrelationship in regularly dispersed population. Journal of the Institute of Polytechnics, Series D, 4, 1-16. |
[32] | Li B, Yang C, Lin P (2000). Ecology. Higher Education Press, Beijing. |
[ 李博, 杨持, 林鹏 (2000). 生态学. 高等教育出版社, 北京.] | |
[33] | Li L, Li N, Sheng JD, Wang H (2012). Effects of nitrogen fertilizer and planting density on alfalfa growth and seed yield. Acta Agrectia Sinica, 20, 54-57, 62. |
[ 李丽, 李宁, 盛建东, 王皓 (2012). 施氮量和种植密度对紫花苜蓿生长及种子产量的影响. 草地学报, 20, 54-57, 62.] | |
[34] | Li L, Zhou DW, Sheng LX (2011). Density dependence- determined plant biomass allocation pattern. Chinese Journal of Ecology, 30, 1579-1589. |
[ 黎磊, 周道玮, 盛连喜 (2011). 密度制约决定的植物生物量分配格局. 生态学杂志, 30, 1579-1589.] | |
[35] | Li XY, Luo J, Tian SX, Zhang SY (2015). Analysis of the overall situation of alfalfa production in China. China Dairy Cattle,(16), 58-64. |
[ 李新一, 罗峻, 田双喜, 张书义 (2015). 我国苜蓿生产总体形势分析. 中国奶牛, (16), 58-64.] | |
[36] | Liu DX, Liu GH, Yang ZM (2015). The effects of planting and harvesting factors on hay yield and stem-leaf ratio of Medicago sativa. Acta Prataculturae Sinica, 24(3), 48-57. |
[ 刘东霞, 刘贵河, 杨志敏 (2015). 种植及收获因子对紫花苜蓿干草产量和茎叶比的影响. 草业学报, 24(3), 48-57.] | |
[37] | Ma KC, Wang BL (2014). The effects of row spacing and sowing rates on seed yield and quality of Medicago sativa. Shaanxi Journal of Agricultural Sciences, 60(8), 6-8. |
[ 马克成, 王秉龙 (2014). 不同行距及播量对紫花苜蓿种子产量和质量的影响. 陕西农业科学, 60(8), 6-8.] | |
[38] | Meng K, Li XY, Jia ZY, Jin HQ, Mi FG (2019). Effects of planting density on the growth, yield and nutritional quality of alfalfa in central Inner Mongolia. Acta Prataculturae Sinica, 28(7), 73-81. |
[ 孟凯, 李星月, 贾振宇, 靳慧卿, 米福贵 (2019). 种植密度对内蒙古中部地区苜蓿生长,饲草产量及营养品质影响. 草业学报, 28(7), 73-81.] | |
[39] | Ouyang YS, Yu XG, Xu GH, Li XH, Liu SH, Dai ZH (2007). The effect of sowing rates and cutting frequency on the fresh yield of the alfalfa. Acta Agrectia Sinica, 15, 196-198. |
[ 欧阳延生, 于徐根, 徐桂花, 李翔宏, 刘水华, 戴征煌 (2007). 播种量与刈割对紫花苜蓿产草量的影响. 草地学报, 15, 196-198.] | |
[40] | Piao SJ, Yang C, Huang SF, Song MH (1997). Density and growth dynamics of Leymus chinensis population. Acta Phytoecologica Sinica, 21, 60-66. |
[ 朴顺姬, 杨持, 黄绍峰, 宋明华 (1997). 羊草种群密度与生长动态研究. 植物生态学报, 21, 60-66.] | |
[41] | Ping XY, Jia BR, Yuan WP, Wang FY, Wang YH, Zhou L, Xu ZZ, Zhou GS (2007). Biomass allocation of Leymus chinensis population: a dynamic simulation study. Chinese Journal of Applied Ecology, 12, 2699-2704. |
[ 平晓燕, 贾丙瑞, 袁文平, 王风玉, 王玉辉, 周莉, 许振柱, 周广胜 (2007). 羊草种群生物量分配动态模拟. 应用生态学报, 12, 2699-2704.] | |
[42] | Reineke LH (1933). Perfecting a stand-density index for even-aged forests. Journal of Agricultural Research, 46, 627-638. |
[43] | Shinozaki K, Kira T (1956). Intraspecific competition among higher plants. VII. Logistic theory of the C-D effect. Journal of the Institute of Polytechnics, 12, 69-82. |
[44] | Silvertown J, Lovett-Doust J (1993). Introduction to Plant Population Biology. 3rd ed. Blackwell Science, London, UK. |
[45] | Soleymani A, Shahrajabian MH, Naranjani L (2011). Determination of the suitable planting date and plant density for different cultivars of barley (Hordeum vulgare L.) in Fars. African Journal of Plant Science, 5, 284-286. |
[46] | Sun WB, Feng GG, Ma HL, Liu Q, Hou XY, Mu HB (2017). Nutrition characteristics of different alfalfa varieties in different growth stages. Grassland and Turf, 37(2), 63-68. |
[ 孙万斌, 冯刚刚, 马晖玲, 刘强, 侯向阳, 穆怀彬 (2017). 不同紫花苜蓿品种在不同生育期营养品质特性的比较. 草原与草坪, 37(2), 63-68.] | |
[47] | Wang G (1993). The general model in the self-thinning process of plants. Journal of Lanzhou University (Natural Sciences), 29(4), 215-218. |
[ 王刚 (1993). 关于植物自疏过程的一般模型. 兰州大学学报(自然科学版), 29(4), 215-218.] | |
[48] | Wang JF, Feng YL (2004). The effect of light intensity on biomass allocation leaf morphology and relative growth rate of two invasive plants. Acta Phytoecologica Sinica, 28, 781-786. |
[ 王俊峰, 冯玉龙 (2004). 光强对两种入侵植物生物量分配、叶片形态和相对生长速率的影响. 植物生态学报, 28, 781-786.] | |
[49] | Wang JF, Shi YJ, Ao YN, Yu DF, Wang J, Gao S, Knops JMH, Mu CS, Li ZJ (2019). Summer drought decreases Leymus chinensis productivity through constraining the bud, tiller and shoot production. Journal of Agronomy and Crop Science, 205, 554-561. |
[50] | Wang YH, Wang CZ, Li DF, Zheng AR, Qi SL, Li GZ (2017). Effects of seeding rate on plant number, production performance, and quality of alfalfa. Acta Prataculturae Sinica, 26(2), 123-135. |
[ 王彦华, 王成章, 李德锋, 郑爱荣, 齐胜利, 李冠真 (2017). 播种量和品种对紫花苜蓿植株动态变化、产量及品质的影响. 草业学报, 26(2), 123-135.] | |
[51] | Wei YP, Nan LL, Yu C, Fu SJ (2017). Effect of row spacing and planting density on the yield and quality of Medicago sativa. Pratacultural Science, 34, 1898-1905. |
[ 魏永鹏, 南丽丽, 于闯, 付双军 (2017). 种植密度和行距配置对紫花苜蓿群体产量及品质的影响. 草业科学, 34, 1898-1905.] | |
[52] |
Weiner J, Damgaard C (2006). Size-asymmetric competition and size-asymmetric growth in a spatially explicit zone-of-influence model of plant competition. Ecological Research, 21, 707-712.
DOI URL |
[53] | Yoda K, Kira T, Ogawa H, Hozumi K (1963). Self-thinning in over-crowded pure stands under cultivated and natural conditions. Journal of Biology of Osaka City University, 14, 107-129. |
[54] | Zhang ZP, Fang JY, Kan M (2000). Effects of competition on growth rate and probability of death of plant individuals: a study based on nursery experiments of Larix leptolepis populations. Acta Phytoecologica Sinica, 24, 340-345. |
[ 张泽浦, 方精云, 菅诚 (2000). 邻体竞争对植物个体生长速率和死亡概率的影响: 基于日本落叶松种群试验的研究. 植物生态学报, 24, 340-345.] |
[1] | 许泽海 赵燕东. 生长季五角枫茎干水分含量序列特征及其影响因素解译[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[4] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[5] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[6] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[7] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[8] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[9] | 施梦娇, 李斌, 伊力塔, 刘美华. 美洲黑杨幼苗生长和生理生态指标对干旱-复水响应的性别差异[J]. 植物生态学报, 2023, 47(8): 1159-1170. |
[10] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[11] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[12] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[13] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[14] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[15] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19