植物生态学报 ›› 2017, Vol. 41 ›› Issue (3): 359-368.DOI: 10.17521/cjpe.2015.0257
所属专题: 植物功能性状
出版日期:
2017-03-10
发布日期:
2017-04-12
通讯作者:
赵念席
作者简介:
* 通信作者Author for correspondence (E-mail:基金资助:
Xue YANG, Jun-Fang SHEN, Nian-Xi ZHAO*(), Yu-Bao GAO
Online:
2017-03-10
Published:
2017-04-12
Contact:
Nian-Xi ZHAO
About author:
KANG Jing-yao(1991-), E-mail: 摘要:
为了深入探讨植物对环境变化的适应机制, 该文以内蒙古草原区羊草(Leymus chinensis)不同基因型为对象, 在人工控制条件下, 研究了羊草基因型、刈割、干旱及其交互作用对羊草11个数量性状的影响。结果显示: (1)所观测的11个性状(光系统II光化学效率、最大净光合速率、蒸腾速率、比叶面积、相对生长速率、分蘖增长数、地上及地下生物量、叶总酚浓度、根非结构性碳水化合物总量和根冠比)受环境因素(干旱、刈割或两者交互)影响显著, 表明该物种具有较强的表型可塑性; 且在4种环境条件(对照、刈割、干旱、刈割干旱)下, 不同基因型羊草的反应规范并不一致, 其中, 最大净光合速率、蒸腾速率、比叶面积、相对生长速率、叶总酚浓度和根非结构性碳水化合物总量受环境和基因型交互作用影响显著, 表明这些性状的表型可塑性具有一定的遗传基础。(2)对同一环境条件下, 不同基因型间的性状进行分析显示, 分蘖增长数、地下生物量和根非结构性碳水化合物含量在4种环境条件下均未检测到基因型间的差异; 而其余8个性状在基因型间的差异显著, 表明这些性状的差异具有一定的遗传基础, 其中, 与生长相关的6个性状的遗传力(H2)较高, 均大于0.5, 而叶总酚浓度和根冠比仅在刈割干旱条件下检测出显著差异, H2分别为0.145和0.202。这些实验结果为理解羊草这一重要物种在内蒙古草原区的广泛分布提供了适应机制方面的数据支持, 为合理预测未来气候变化对该物种的影响提供了科学依据, 为合理利用和保护该物种及其生态系统提供了理论依据。
杨雪, 申俊芳, 赵念席, 高玉葆. 不同基因型羊草数量性状的可塑性及遗传分化. 植物生态学报, 2017, 41(3): 359-368. DOI: 10.17521/cjpe.2015.0257
Xue YANG, Jun-Fang SHEN, Nian-Xi ZHAO, Yu-Bao GAO. Phenotypic plasticity and genetic differentiation of quantitative traits in genotypes of Leymus chinensis. Chinese Journal of Plant Ecology, 2017, 41(3): 359-368. DOI: 10.17521/cjpe.2015.0257
性状 Traits | 基因型 Genotype (G) | 刈割 Defoliation (De) | 干旱 Drought (Dr) | De × Dr | 基因型×刈割 G × De | 基因型×干旱 G × Dr | 基因型× 刈割×干旱 G × De × Dr | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
光系统II光化学效率 Photochemical efficiency of photosystem II | 19.47 | <0.001 | 2.649 | 0.105 | 17.19 | <0.001 | 0.476 | 0.491 | 1.064 | 0.391 | 0.912 | 0.516 | 1.824 | 0.066 |
最大净光合速率 Maximum net photosynthetic rate | 41.08 | <0.001 | 315.7 | <0.001 | 7.305 | 0.007 | 0.023 | 0.879 | 9.143 | <0.001 | 1.385 | 0.197 | 1.353 | 0.212 |
蒸腾速率 Transpiration rate | 4.878 | <0.001 | 4.979 | 0.027 | 2.226 | 0.137 | 1.764 | 0.186 | 3.817 | <0.001 | 2.805 | 0.004 | 0.881 | 0.543 |
比叶面积 Specific leaf area | 3.781 | <0.001 | 34.3 | <0.001 | 2.916 | 0.089 | 11.62 | 0.001 | 1.231 | 0.278 | 2.207 | 0.023 | 1.843 | 0.063 |
相对生长速率 Relative growth rate | 2.829 | 0.006 | 1 765 | <0.001 | 212.8 | <0.001 | 115.1 | <0.001 | 6.55 | <0.001 | 3.071 | 0.003 | 4.847 | <0.001 |
分蘖增长数 The number of tillers increased | 1.842 | 0.073 | 4.488 | 0.037 | 30.15 | <0.001 | 24.72 | <0.001 | 1.061 | 0.401 | 1.5 | 0.162 | 0.848 | 0.574 |
地上生物量 Aboveground biomass | 1.454 | 0.167 | 0.007 | 0.933 | 69.06 | <0.001 | 28.66 | 0.001 | 1.116 | 0.353 | 1.848 | 0.062 | 0.635 | 0.767 |
地下生物量 Belowground biomass | 2.249 | 0.021 | 1.221 | 0.27 | 21.93 | <0.001 | 11.07 | 0.001 | 0.527 | 0.854 | 1.644 | 0.105 | 0.664 | 0.741 |
叶总酚浓度 Total phenolic concentration of leaf | 1.624 | 0.111 | 30.62 | <0.001 | 0.002 | 0.962 | 48.21 | <0.001 | 1.978 | 0.044 | 2.321 | 0.017 | 0.957 | 0.477 |
根非结构性碳水化合物总量 Total non-structural carbohydrates content of root | 1.480 | 0.157 | 11.09 | 0.001 | 47.13 | <0.001 | 16.21 | <0.001 | 1.938 | 0.049 | 2.462 | 0.011 | 1.76 | 0.078 |
根冠比 Root/shoot ratio | 0.976 | 0.461 | 0.099 | 0.753 | 6.005 | 0.015 | 0.479 | 0.49 | 1.099 | 0.365 | 0.855 | 0.567 | 1.093 | 0.369 |
表1 不同基因型羊草表型变异的多因素方差分析及交互作用
Table 1 Multivariate analysis of variance for genotype and phenotypic variations and interactions of genotype and treatments in Leymus chinensis
性状 Traits | 基因型 Genotype (G) | 刈割 Defoliation (De) | 干旱 Drought (Dr) | De × Dr | 基因型×刈割 G × De | 基因型×干旱 G × Dr | 基因型× 刈割×干旱 G × De × Dr | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | F | p | F | p | F | p | |
光系统II光化学效率 Photochemical efficiency of photosystem II | 19.47 | <0.001 | 2.649 | 0.105 | 17.19 | <0.001 | 0.476 | 0.491 | 1.064 | 0.391 | 0.912 | 0.516 | 1.824 | 0.066 |
最大净光合速率 Maximum net photosynthetic rate | 41.08 | <0.001 | 315.7 | <0.001 | 7.305 | 0.007 | 0.023 | 0.879 | 9.143 | <0.001 | 1.385 | 0.197 | 1.353 | 0.212 |
蒸腾速率 Transpiration rate | 4.878 | <0.001 | 4.979 | 0.027 | 2.226 | 0.137 | 1.764 | 0.186 | 3.817 | <0.001 | 2.805 | 0.004 | 0.881 | 0.543 |
比叶面积 Specific leaf area | 3.781 | <0.001 | 34.3 | <0.001 | 2.916 | 0.089 | 11.62 | 0.001 | 1.231 | 0.278 | 2.207 | 0.023 | 1.843 | 0.063 |
相对生长速率 Relative growth rate | 2.829 | 0.006 | 1 765 | <0.001 | 212.8 | <0.001 | 115.1 | <0.001 | 6.55 | <0.001 | 3.071 | 0.003 | 4.847 | <0.001 |
分蘖增长数 The number of tillers increased | 1.842 | 0.073 | 4.488 | 0.037 | 30.15 | <0.001 | 24.72 | <0.001 | 1.061 | 0.401 | 1.5 | 0.162 | 0.848 | 0.574 |
地上生物量 Aboveground biomass | 1.454 | 0.167 | 0.007 | 0.933 | 69.06 | <0.001 | 28.66 | 0.001 | 1.116 | 0.353 | 1.848 | 0.062 | 0.635 | 0.767 |
地下生物量 Belowground biomass | 2.249 | 0.021 | 1.221 | 0.27 | 21.93 | <0.001 | 11.07 | 0.001 | 0.527 | 0.854 | 1.644 | 0.105 | 0.664 | 0.741 |
叶总酚浓度 Total phenolic concentration of leaf | 1.624 | 0.111 | 30.62 | <0.001 | 0.002 | 0.962 | 48.21 | <0.001 | 1.978 | 0.044 | 2.321 | 0.017 | 0.957 | 0.477 |
根非结构性碳水化合物总量 Total non-structural carbohydrates content of root | 1.480 | 0.157 | 11.09 | 0.001 | 47.13 | <0.001 | 16.21 | <0.001 | 1.938 | 0.049 | 2.462 | 0.011 | 1.76 | 0.078 |
根冠比 Root/shoot ratio | 0.976 | 0.461 | 0.099 | 0.753 | 6.005 | 0.015 | 0.479 | 0.49 | 1.099 | 0.365 | 0.855 | 0.567 | 1.093 | 0.369 |
图1 四种处理条件下10个基因型羊草的反应规范。De-Dr-, 对照; De+Dr-, 非干旱刈割; De-Dr+, 非刈割干旱; De+Dr+, 刈割干旱。
Fig. 1 Reaction norms of traits of 10 Leymus chinensis genotypes under four treatments. De-Dr-, control; De+Dr-, non-arid defoliation; De-Dr+, non-defoliation but drought; De+Dr+, defoliation and drought.
性状 Trait | 对照 Control | 刈割 Defoliation | 干旱 Drought | 刈割干旱 Defoliation and drought | ||||
---|---|---|---|---|---|---|---|---|
H2 | p | H2 | p | H2 | p | H2 | p | |
光系统II光化学效率 Photochemical efficiency of photosystem II | 0.000 | <0.001 | 0.000 | <0.001 | 1.000 | <0.001 | 1.000 | <0.001 |
最大净光合速率 Maximum net photosynthetic rate | 0.847 | <0.001 | 0.679 | <0.001 | 0.585 | <0.001 | 0.660 | <0.001 |
蒸腾速率 Transpiration rate | 0.538 | <0.001 | - | 0.948 | 0.380 | <0.001 | 0.168 | 0.029 |
比叶面积 Specific leaf area | 0.221 | 0.022 | - | 0.127 | 0.171 | 0.022 | - | 0.061 |
相对生长速率 Relative growth rate | 0.400 | 0.002 | 0.727 | <0.001 | 0.625 | 0.001 | 0.515 | 0.006 |
分蘖增长数 The number of tillers increased | - | 0.314 | - | 0.286 | - | 0.410 | - | 0.056 |
地上生物量 Aboveground biomass | 0.269 | 0.007 | - | 0.787 | - | 0.752 | - | 0.075 |
地下生物量 Belowground biomass | - | 0.151 | - | 0.145 | - | 0.523 | - | 0.553 |
叶总酚浓度 Total phenolic concentration of leaf | - | 0.170 | - | 0.201 | - | 0.616 | 0.145 | 0.004 |
根非结构性碳水化合物总量 Total non-structural carbohydrates content of root | - | 0.201 | - | 0.062 | - | 0.550 | - | 0.951 |
根冠比 Root/shoot ratio | - | 0.936 | - | 0.061 | - | 0.068 | 0.202 | 0.017 |
表2 四种处理条件下羊草表型变异的单因素方差分析与广义遗传力(H2)分析
Table 2 ANOVA analysis and the broad-sense heritability (H2) estimates for 10 traits of phenotypic variations under four treatments in Leymus chinensis
性状 Trait | 对照 Control | 刈割 Defoliation | 干旱 Drought | 刈割干旱 Defoliation and drought | ||||
---|---|---|---|---|---|---|---|---|
H2 | p | H2 | p | H2 | p | H2 | p | |
光系统II光化学效率 Photochemical efficiency of photosystem II | 0.000 | <0.001 | 0.000 | <0.001 | 1.000 | <0.001 | 1.000 | <0.001 |
最大净光合速率 Maximum net photosynthetic rate | 0.847 | <0.001 | 0.679 | <0.001 | 0.585 | <0.001 | 0.660 | <0.001 |
蒸腾速率 Transpiration rate | 0.538 | <0.001 | - | 0.948 | 0.380 | <0.001 | 0.168 | 0.029 |
比叶面积 Specific leaf area | 0.221 | 0.022 | - | 0.127 | 0.171 | 0.022 | - | 0.061 |
相对生长速率 Relative growth rate | 0.400 | 0.002 | 0.727 | <0.001 | 0.625 | 0.001 | 0.515 | 0.006 |
分蘖增长数 The number of tillers increased | - | 0.314 | - | 0.286 | - | 0.410 | - | 0.056 |
地上生物量 Aboveground biomass | 0.269 | 0.007 | - | 0.787 | - | 0.752 | - | 0.075 |
地下生物量 Belowground biomass | - | 0.151 | - | 0.145 | - | 0.523 | - | 0.553 |
叶总酚浓度 Total phenolic concentration of leaf | - | 0.170 | - | 0.201 | - | 0.616 | 0.145 | 0.004 |
根非结构性碳水化合物总量 Total non-structural carbohydrates content of root | - | 0.201 | - | 0.062 | - | 0.550 | - | 0.951 |
根冠比 Root/shoot ratio | - | 0.936 | - | 0.061 | - | 0.068 | 0.202 | 0.017 |
性状 Traits | 对照 Control | 刈割 Defoliation | 干旱 Drought | 刈割干旱 Defoliation and drought | ||||
---|---|---|---|---|---|---|---|---|
函数1 Function 1 | 函数2 Function 2 | 函数1 Function 1 | 函数2 Function 2 | 函数1 Function 1 | 函数2 Function 2 | 函数1 Function 1 | 函数2 Function 2 | |
光系统II光化学效率 Photochemical efficiency of photosystem II | 0.891 | 0.966 | -0.510 | -0.191 | 1.585 | 0.717 | -0.193 | 0.312 |
最大净光合速率 Maximum net photosynthetic rate | 1.285 | -0.462 | -0.905 | 0.865 | 1.231 | -1.609 | 0.783 | -0.672 |
蒸腾速率 Transpiration rate | -0.561 | 0.125 | 0.491 | -0.213 | 0.576 | -0.827 | 1.319 | 0.098 |
比叶面积 Specific leaf area | -0.692 | -0.533 | 0.542 | 0.219 | 1.341 | -0.835 | -0.042 | 1.452 |
相对生长速率 Relative growth rate | -0.588 | 0.815 | 0.962 | 0.953 | 1.235 | 0.236 | 1.101 | 0.267 |
分蘖增长数 The number of tillers increased | -0.416 | 0.347 | -0.424 | -1.030 | -1.365 | 0.603 | -0.079 | 0.521 |
地上生物量 Aboveground biomass | 1.114 | 0.571 | 1.919 | 2.834 | -0.579 | 3.541 | 1.323 | 2.44 |
地下生物量 Belowground biomass | -1.81 | 0.104 | -1.614 | -2.049 | 1.594 | -3.385 | 0.055 | -2.852 |
叶总酚浓度 Total phenolic concentration of leaf | 0.126 | 0.905 | -0.714 | -0.021 | -0.115 | 0.486 | -1.226 | -1.07 |
根非结构性碳水化合物总量 Total non-structural carbohydrates content of root | 0.598 | -1.076 | -0.010 | -0.446 | -1.058 | 0.564 | -0.129 | -0.498 |
根冠比 Root/shoot ratio | 1.174 | 0.781 | 1.201 | 1.319 | -0.141 | 1.039 | 0.838 | 2.452 |
解释的方差 Explained variance (%) | 49.8 | 31.9 | 44.5 | 30.2 | 59.2 | 20.4 | 37.3 | 22.0 |
表3 四种处理条件下羊草性状的典则判别函数系数
Table 3 Function coefficients of canonical discriminant traits of Leymus chinensis for four treatments
性状 Traits | 对照 Control | 刈割 Defoliation | 干旱 Drought | 刈割干旱 Defoliation and drought | ||||
---|---|---|---|---|---|---|---|---|
函数1 Function 1 | 函数2 Function 2 | 函数1 Function 1 | 函数2 Function 2 | 函数1 Function 1 | 函数2 Function 2 | 函数1 Function 1 | 函数2 Function 2 | |
光系统II光化学效率 Photochemical efficiency of photosystem II | 0.891 | 0.966 | -0.510 | -0.191 | 1.585 | 0.717 | -0.193 | 0.312 |
最大净光合速率 Maximum net photosynthetic rate | 1.285 | -0.462 | -0.905 | 0.865 | 1.231 | -1.609 | 0.783 | -0.672 |
蒸腾速率 Transpiration rate | -0.561 | 0.125 | 0.491 | -0.213 | 0.576 | -0.827 | 1.319 | 0.098 |
比叶面积 Specific leaf area | -0.692 | -0.533 | 0.542 | 0.219 | 1.341 | -0.835 | -0.042 | 1.452 |
相对生长速率 Relative growth rate | -0.588 | 0.815 | 0.962 | 0.953 | 1.235 | 0.236 | 1.101 | 0.267 |
分蘖增长数 The number of tillers increased | -0.416 | 0.347 | -0.424 | -1.030 | -1.365 | 0.603 | -0.079 | 0.521 |
地上生物量 Aboveground biomass | 1.114 | 0.571 | 1.919 | 2.834 | -0.579 | 3.541 | 1.323 | 2.44 |
地下生物量 Belowground biomass | -1.81 | 0.104 | -1.614 | -2.049 | 1.594 | -3.385 | 0.055 | -2.852 |
叶总酚浓度 Total phenolic concentration of leaf | 0.126 | 0.905 | -0.714 | -0.021 | -0.115 | 0.486 | -1.226 | -1.07 |
根非结构性碳水化合物总量 Total non-structural carbohydrates content of root | 0.598 | -1.076 | -0.010 | -0.446 | -1.058 | 0.564 | -0.129 | -0.498 |
根冠比 Root/shoot ratio | 1.174 | 0.781 | 1.201 | 1.319 | -0.141 | 1.039 | 0.838 | 2.452 |
解释的方差 Explained variance (%) | 49.8 | 31.9 | 44.5 | 30.2 | 59.2 | 20.4 | 37.3 | 22.0 |
图2 四种处理下10个基因型羊草的典则判别函数散点图。A, 对照。B, 刈割。C, 干旱。D, 刈割干旱。
Fig. 2 Scatterplot of canonical discriminant of 10 genotypes in Leymus chinensis for four treatments. A, Control. B, Non-arid defoliation. C, Non-defoliation but drought. D, Defoliation and drought.
[1] | Ackerly DD, Dudley SA, Sultan SE, Schmitt J, Coleman JS, Linder CR, Sandquist DR, Geber MA, Evans AS, Dawson TE (2000). The evolution of plant ecophysiological traits: Recent advances and future directions new research addresses natural selection, genetic constraints, and the adaptive evolution of plant ecophysiological traits. Bioscience, 50, 979-995. |
[2] | Aslam M, KhanIA, Saleem M, Ali Z (2006). Assessment of water stress tolerance in different maize accessions at germination and early growth stage. Pakistan Journal of Botany, 38, 1571-1579. |
[3] | Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VH, Schreiber SJ, Urban MC, Vasseur DA (2011). Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26, 183-192. |
[4] | Chang CC, Smith MD (2014). Direct and indirect relationships between genetic diversity of a dominant grass, community diversity and above-ground productivity in tallgrass prairie. Journal of Vegetation Science, 25, 470-480. |
[5] | Cook-Patton SC, McArt SH, Parachnowitsch AL, Thaler JS, Agrawal AA (2011). A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function. Ecology, 92, 915-923. |
[6] | Crutsinger GM, Sanders NJ, Classen AT (2009). Comparing intra-and inter-specific effects on litter decomposition in an old-field ecosystem. Basic and Applied Ecology, 10, 535-543. |
[7] | Da Silveira AJ, Feitosa Teles F, Stull JW (1978). A rapid technique for total nonstructural carbohydrate determination of plant tissue. Journal of Agricultural and Food Chemistry, 26, 770-772. |
[8] | Draghi JA, Whitlock MC (2012). Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution, 66, 2891-2902. |
[9] | Eid MH (2009). Estimation of heritability and genetic advance of yield traits in wheat (Triticum aestivum L.) under drought condition. International Journal of Genetics and Molecular Biology, 1, 115-120. |
[10] | Fernandez-Orozco R, Li L, Harflett C, Shewry PR, Ward JL (2010). Effects of environment and genotype on phenolic acids in wheat in the health grain diversity screen. Journal of Agricultural and Food Chemistry, 58, 9341-9352. |
[11] | Gao Y, Wang D, Ba L, Bai Y, Liu B (2008). Interactions between herbivory and resource availability on grazing tolerance of Leymus chinensis. Environmental and Experimental Botany, 63, 113-122. |
[12] | Gu WC (2004). Statistical Genetic. Science Press, Beijing. (in Chinese)[顾万春 (2004). 统计遗传学. 科学出版社, 北京.] |
[13] | Gutbrodt B, Dorn S, Mody K (2012). Drought stress affects constitutive but not induced herbivore resistance in apple plants. Arthropod-Plant Interactions, 6, 171-179. |
[14] | Haugen R, Steffes L, Wolf J, Brown P, Matzner S, Siemens DH (2008). Evolution of drought tolerance and defense: Dependence of tradeoffs on mechanism, environment and defense switching. Oikos, 117, 231-244. |
[15] | Hedrick PW (2005). A standardized genetic differentiation measure. Evolution, 59, 1633-1638. |
[16] | Hu BZ, Liu D, Hu GF, Jiang SJ, Zhang AY (2001). Morphological variation and genetic diversity in Aneurolepidium chinensis. Acta Phytoecologica Sinica, 25, 83-89. (in Chinese with English abstract)[胡宝忠, 刘娣, 胡国富, 姜述君, 张阿英 (2001). 羊草遗传多样性的研究. 植物生态学报, 25, 83-89.] |
[17] | Hughes AR, Stachowicz JJ, Williams SL (2009). Morphological and physiological variation among seagrass (Zostera marina) genotypes. Oecologia, 159, 725-733. |
[18] | Johnson MT, Agrawal AA (2005). Plant genotype and environment interact to shape a diverse arthropod community on evening primrose (Oenothera biennis). Ecology, 86, 874-885. |
[19] | Joshi J, Stoll P, Rusterholz HP, Schmid B, Dolt C, Baur B (2006). Small-scale experimental habitat fragmentation reduces colonization rates in species-rich grasslands. Oecologia, 148, 144-152. |
[20] | Kanaga MK, Ryel RJ, Mock KE, Pfrender ME (2008). Quantitative-genetic variation in morphological and physiological traits within a quaking aspen (Populus tremuloides) population. Canadian Journal of Forest Research, 38, 1690-1694. |
[21] | Kotowska AM, Cahill JJ, Keddie BA (2010). Plant genetic diversity yields increased plant productivity and herbivore performance. Journal of Ecology, 98, 237-245. |
[22] | Lande R (2009). Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. Journal of Evolutionary Biology, 22, 1435-1446. |
[23] | Le Corre V, Kremer A (2012). The genetic differentiation at quantitative trait loci under local adaptation. Molecular Ecology, 21, 1548-1566. |
[24] | Li H, Yang YF, Lu XS (2004). Quantitative analysis of reproductive tiller characteristics of Leymus chinensis populations on the Songnen Plain of China. Acta Prataculturae Sinica, 13(4), 50-56. (in Chinese with English abstract)[李红, 杨允菲, 卢欣石 (2004). 松嫩平原羊草种群生殖分蘖株的数量特征及其定量分析. 草业学报, 13(4), 50-56.] |
[25] | Li HY, Li JD, Xu ZG, Zhou JY, Zhang JF (2011). Vegetative reproduction characteristics of Leymus chinensis populations in Tumuji National Nature Reserve, Inner Mongolia. Acta Prataculturae Sinica, 20(5), 19-25. (in Chinese with English abstract)[李海燕, 李建东, 徐振国, 周景英, 张建峰 (2011). 内蒙古图牧吉自然保护区羊草种群营养繁殖特性的比较. 草业学报 20(5), 19-25.] |
[26] | Liefting M, Hoffmann AA, Ellers J (2009). Plasticity versus environmental canalization: Population differences in thermal responses along a latitudinal gradient in Drosophila serrata. Evolution, 63, 1954-1963. |
[27] | Liu HF, Gao YB, Ruan WB, Chen L, Li CL, Zhao NX, Wang D (2004a). Genetic differentiation within and between Leymus chinensis populations from different zones of mid-eastern Inner Mongolia steppe. Acta Ecologica Sinica, 24, 2157-2164. (in Chinese with English abstract)[刘惠芬, 高玉葆, 阮维斌, 陈磊, 李长林, 赵念席, 王丹 (2004a). 内蒙古中东部不同草原地带羊草种群遗传分化. 生态学报, 24, 2157-2164.] |
[28] | Liu HF, Gao YB, Wang D, Ren AZ, Ruan WB, Chen L, Zhao NX (2004b). Genetic differentiation in eight populations of Leymus chinensis in Inner Mongolia steppe. Acta Ecologica Sinica, 24, 423-431. (in Chinese with English abstract)[刘惠芬, 高玉葆, 王丹, 任安芝, 阮维斌, 陈磊, 赵念席 (2004b). 内蒙古典型草原羊草种群遗传分化的RAPD分析. 生态学报, 24, 423-431.] |
[29] | Malinowski DP, Alloush GA, Belesky DP (1998). Evidence for chemical changes on the root surface of tall fescue in response to infection with the fungal endophyte Neotyphodium coenophialum. Plant and Soil, 205, 1-12. |
[30] | Mallitt KL, Bonser SP, Hunt J (2010). The plasticity of phenotypic integration in response to light and water availability in the pepper grass, Lepidium bonariense. Evolutionary Ecology, 24, 1321-1337. |
[31] | Manaa A, Ahmed HB, Valot B, Bouchet JP, Aschi-Smiti S, Causse M, Faurobert M (2011). Salt and genotype impact on plant physiology and root proteome variations in tomato. Journal of Experimental Botany, 17, 1-17. |
[32] | Miner BG, Sultan SE, Morgan SG, Padilla DK, Relyea RA (2005). Ecological consequences of phenotypic plasticity. Trends in Ecology & Evolution, 20, 685-692. |
[33] | Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan E, Mathesius U, Poot P, Purugganan MD, Richards C, Valladares F (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15, 684-692. |
[34] | Pigliucci M, Schlichting C, Whitton J (1995). Reaction norms of Arabidopsis. II. Response to stress and unordered environmental variation. Functional Ecology, 9, 537-547. |
[35] | Richards JH (1993). Physiology of Plants Recovering from Defoliation. SIR Publishing, Wellington, New Zealand. 85-94. |
[36] | Seliskar DM, Gallagher JL, Burdick DM, Mutz LA (2002). The regulation of ecosystem functions by ecotypic variation in the dominant plant: A Spartina alterniflora salt-marsh case study. Journal of Ecology, 90, 1-11. |
[37] | Shen JF, Ren HQ, Xin XJ, Xu B, Gao YB, Zhao NX (2015). Leymus chinensis genotypic diversity increases the response of population to disturbance. Acta Ecologica Sinica, 35, 7682-7689. (in Chinese with English abstract)[申俊芳, 任慧琴, 辛晓静, 徐冰, 高玉葆, 赵念席 (2015). 羊草基因型多样性能增强种群对干扰的响应. 生态学报, 35, 7682-7689.] |
[38] | Stevens MT, Waller DM, Lindroth RL (2007). Resistance and tolerance in Populus tremuloides: Genetic variation, costs, and environmental dependency. Evolutionary Ecology, 21, 829-847. |
[39] | Strasburg JL, Sherman NA, Wright KM, Moyle LC, Willis JH, Rieseberg LH (2012). What can patterns of differentiation across plant genomes tell us about adaptation and speciation? Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 364-373. |
[40] | Sultan SE (1995). Phenotypic plasticity and plant adaptation. Acta Botanica Neerlandica, 44, 363-383. |
[41] | Sultan SE (2000). Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5, 537-542. |
[42] | Toker C (2004). Estimates of broad-sense heritability for seed yield and yield criteria in faba bean (Vicia faba L.). Hereditas, 140, 222-225. |
[43] | Wang D (2004). The Variance and Differentiation of Leymus chinensis in Mid-Eastern Inner Mongolia Grassland. Master degree dissertation, Nankai University, Tianjin. 35-45. (in Chinese with English abstract)[王丹 (2004). 内蒙古中东部草原羊草种内变异与分化研究. 硕士学位论文, 南开大学, 天津. 35-45.] |
[44] | Wang R, Gao Q (2001). Photosynthesis, transpiration, and water use efficiency in two divergent Leymus chinensis populations from Northeast China. Photosynthetica, 39, 123-126. |
[45] | Yang Y, Fang J, Ji C, Han W (2009). Above- and belowground biomass allocation in Tibetan grasslands. Journal of Vegetation Science, 20, 177-184. |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[3] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[4] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[5] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[6] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[7] | 余俊瑞, 万春燕, 朱师丹. 热带亚热带喀斯特森林木本植物的水力脆弱性分割[J]. 植物生态学报, 2023, 47(11): 1576-1584. |
[8] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[9] | 张宏祥, 闻志彬, 王茜. 新疆野苹果种群遗传结构及其环境适应性[J]. 植物生态学报, 2022, 46(9): 1098-1108. |
[10] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
[11] | 孟庆静, 樊卫国. 刺梨的适钙类型及对高钙生境的适应性[J]. 植物生态学报, 2022, 46(12): 1562-1572. |
[12] | 杜军, 王文, 何志斌, 陈龙飞, 蔺鹏飞, 朱喜, 田全彦. 祁连山青海云杉物候表型的空间分异及其内在机制[J]. 植物生态学报, 2021, 45(8): 834-843. |
[13] | 吴建波, 王小丹. 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报, 2021, 45(3): 265-273. |
[14] | 代景忠, 白玉婷, 卫智军, 张楚, 闫瑞瑞. 切根对羊草营养生长期内植物功能性状的影响[J]. 植物生态学报, 2021, 45(12): 1292-1302. |
[15] | 秦天姿, 任安芝, 樊晓雯, 高玉葆. 内生真菌种类和母本基因型对内生真菌-禾草共生体叶形状和叶面积的影响[J]. 植物生态学报, 2020, 44(6): 654-660. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19