植物生态学报 ›› 2020, Vol. 44 ›› Issue (6): 654-660.DOI: 10.17521/cjpe.2020.0037
收稿日期:
2020-02-10
接受日期:
2020-03-31
出版日期:
2020-06-20
发布日期:
2020-05-30
通讯作者:
* 任安芝: ORCID:0000-0001-8835-1240, renanzhi@nankai.edu.cn
基金资助:
QIN Tian-Zi, REN An-Zhi*(), FAN Xiao-Wen, GAO Yu-Bao
Received:
2020-02-10
Accepted:
2020-03-31
Online:
2020-06-20
Published:
2020-05-30
Contact:
REN An-Zhi: ORCID:0000-0001-8835-1240, renanzhi@nankai.edu.cn
Supported by:
摘要:
Epichloë内生真菌感染能够影响宿主植物的生长发育, 但关于内生真菌感染对宿主植物叶形状和叶面积的研究很少。该研究以羽茅(Achnatherum sibiricum)为实验材料, 采用长宽系数计算和扫描测定叶面积相结合的方法探究内生真菌种类和羽茅母本基因型对羽茅-内生真菌共生体叶形状和叶面积的影响。结果表明: 内生真菌感染与否、内生真菌种类和宿主母本基因型对反映叶形状的叶校正系数、叶片长度、宽度和长宽比均无显著影响, 经计算与验证, 确定了羽茅叶片的校正系数为0.594 9。采用该校正系数及叶长宽计算的叶面积与实测叶面积无显著差异, 且二者均未受到内生真菌感染与否、内生真菌种类或宿主植物母本基因型的显著影响。
秦天姿, 任安芝, 樊晓雯, 高玉葆. 内生真菌种类和母本基因型对内生真菌-禾草共生体叶形状和叶面积的影响. 植物生态学报, 2020, 44(6): 654-660. DOI: 10.17521/cjpe.2020.0037
QIN Tian-Zi, REN An-Zhi, FAN Xiao-Wen, GAO Yu-Bao. Effects of endophyte fungal species and host plant genotype on the leaf shape and leaf area of endophyte-grass symbionts. Chinese Journal of Plant Ecology, 2020, 44(6): 654-660. DOI: 10.17521/cjpe.2020.0037
叶长 Leaf length (cm) | 叶宽 Leaf width (cm) | 长宽比 Length-width ratio | ||||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
E | 3.503 | 0.068 | 0.563 | 0.457 | 1.970 | 0.167 |
PG (EG) | 0.372 | 0.893 | 1.955 | 0.095 | 1.596 | 0.171 |
E × PG (EG) | 0.349 | 0.906 | 0.801 | 0.532 | 1.728 | 0.143 |
表1 不同内生真菌-羽茅共生体中, 内生真菌感染及宿主母本基因型对羽茅叶片长度、宽度和长宽比影响的方差分析
Table 1 Analysis of variance for the effects of endophyte infection and host plant genotype on leaf length, width and length-width ratio of Achnatherum sibiricum-endophyte symbionts
叶长 Leaf length (cm) | 叶宽 Leaf width (cm) | 长宽比 Length-width ratio | ||||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
E | 3.503 | 0.068 | 0.563 | 0.457 | 1.970 | 0.167 |
PG (EG) | 0.372 | 0.893 | 1.955 | 0.095 | 1.596 | 0.171 |
E × PG (EG) | 0.349 | 0.906 | 0.801 | 0.532 | 1.728 | 0.143 |
叶长 Leaf length (cm) | 叶宽 Leaf width (cm) | 长宽比 Length-width ratio | ||||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
内生真菌种类 Endophyte species | 0.190 | 0.828 | 1.024 | 0.374 | 1.917 | 0.169 |
表2 内生真菌种类对羽茅叶片长度、宽度和长宽比影响的单因素方差分析
Table 2 One-way analysis of variance for the effects of endophyte species on leaf length, width and leaf length-width ratio of Achnatherum sibiricum
叶长 Leaf length (cm) | 叶宽 Leaf width (cm) | 长宽比 Length-width ratio | ||||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
内生真菌种类 Endophyte species | 0.190 | 0.828 | 1.024 | 0.374 | 1.917 | 0.169 |
羽茅叶面积 Leaf area of A. sibiricum | ||
---|---|---|
F | p | |
校正模型 Corrected Model | 595.131 | <0.001 |
E | 1.112 | 0.292 |
PG (EG) | 0.843 | 0.537 |
LWP | 15 233.050 | <0.001 |
E × PG (EG) | 0.683 | 0.707 |
E × LWP | 0.707 | 0.401 |
PG (EG) × LWP | 1.567 | 0.131 |
E × PG (EG) × LWP | 1.858 | 0.063 |
表3 不同内生真菌-羽茅共生体中, 内生真菌感染及宿主母本基因型对羽茅叶片长宽积和叶面积影响的广义线性混合模型分析
Table 3 Analysis of generalized linear mixed model for the effects of endophyte infection and host plant genotype on leaf length-width product and leaf area of different Achnatherum sibiricum-endophyte symbionts
羽茅叶面积 Leaf area of A. sibiricum | ||
---|---|---|
F | p | |
校正模型 Corrected Model | 595.131 | <0.001 |
E | 1.112 | 0.292 |
PG (EG) | 0.843 | 0.537 |
LWP | 15 233.050 | <0.001 |
E × PG (EG) | 0.683 | 0.707 |
E × LWP | 0.707 | 0.401 |
PG (EG) × LWP | 1.567 | 0.131 |
E × PG (EG) × LWP | 1.858 | 0.063 |
羽茅叶面积 Leaf area of A. sibiricum | ||
---|---|---|
F | p | |
校正模型 Corrected Model | 2 687.209 | <0.001 |
EG | 0.041 | 0.989 |
LWP | 10 131.957 | <0.001 |
EG × LWP | 0.381 | 0.683 |
表4 内生真菌种类对羽茅叶片长宽积和叶面积的广义线性混合模型分析
Table 4 The generalized linear mixed model analysis for the effects of endophyte species on leaf length-width product and area of Achnatherum sibiricum
羽茅叶面积 Leaf area of A. sibiricum | ||
---|---|---|
F | p | |
校正模型 Corrected Model | 2 687.209 | <0.001 |
EG | 0.041 | 0.989 |
LWP | 10 131.957 | <0.001 |
EG × LWP | 0.381 | 0.683 |
图1 羽茅叶片实际叶面积与长宽积的关系。 n, 总叶片数量。
Fig. 1 The linear relationship between the actual leaf area and length-width product of Achnatherum sibiricum. n, total number of leaves.
图2 实际叶面积与长宽法测得叶面积的关系。 n, 选取的叶片数。
Fig. 2 The linear relation between actual leaf area and leaf area measured by length-width method. n, selected number of leaves.
实际叶面积 Actual leaf area (cm2) | 长宽法测得叶面积 Leaf area measured by length-width method (cm2) | |||
---|---|---|---|---|
F | p | F | p | |
E | 1.677 | 0.202 | 2.324 | 0.135 |
PG (EG) | 1.101 | 0.377 | 1.256 | 0.297 |
E × PG (EG) | 0.291 | 0.937 | 0.205 | 0.973 |
表5 不同内生真菌-羽茅共生体中, 内生真菌感染及宿主母本基因型对羽茅平均叶面积影响的方差分析
Table 5 Analysis of variance for the effects of endophyte infection and host plant genotype on average leaf area of different Achnatherum sibiricum-endophyte symbionts
实际叶面积 Actual leaf area (cm2) | 长宽法测得叶面积 Leaf area measured by length-width method (cm2) | |||
---|---|---|---|---|
F | p | F | p | |
E | 1.677 | 0.202 | 2.324 | 0.135 |
PG (EG) | 1.101 | 0.377 | 1.256 | 0.297 |
E × PG (EG) | 0.291 | 0.937 | 0.205 | 0.973 |
实际叶面积 Actual leaf area (cm2) | 长宽法测得叶面积 Leaf area measured by length-width method (cm2) | |||
---|---|---|---|---|
F | p | F | p | |
内生真菌种类 Endophyte species | 0.843 | 0.443 | 0.114 | 0.892 |
表6 内生真菌种类对羽茅平均叶面积影响的单因素方差分析
Table 6 One-way analysis of variance for the effects of endophyte species on average leaf area of Achnatherum sibiricum
实际叶面积 Actual leaf area (cm2) | 长宽法测得叶面积 Leaf area measured by length-width method (cm2) | |||
---|---|---|---|---|
F | p | F | p | |
内生真菌种类 Endophyte species | 0.843 | 0.443 | 0.114 | 0.892 |
[1] |
Bittleston LS, Brockmann F, Wcislo W, van Bael SA (2011). Endophytic fungi reduce leaf-cutting ant damage to seedlings. Biology Letters, 7, 30-32.
DOI URL PMID |
[2] | Carroll G (1988). Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology, 69, 2-9. |
[3] | Cheplick GP (1997). Effects of endophytic fungi on the phenotypic plasticity of Lolium perenne(Poaceae). American Journal of Botany, 84, 34-40. |
[4] | Clay K (1987). Effects of fungal endophytes on the seed and seedling biology of Lolium perenne and Festuca arundinacea. Oecologia, 73, 358-362. |
[5] | Du JX, Wang XF, Zhang GJ (2007). Leaf shape based plant species recognition. Applied Mathematics and Computation, 185, 883-893. |
[6] | Du YJ, Sun XB, Han LB (2010). Effect ofNeotyphodium starrii infected on photosynthetic and orphological characteristics of tall fescue under high temperature. Journal of Central South University of Forestry & Technology, 30, 41-47. |
[ 杜永吉, 孙鑫博, 韩烈保 (2010). 内生真菌感染对高羊茅光合和形态特性的影响. 中南林业科技大学学报, 30, 41-47.] | |
[7] | Estrada C, Rojas EI, Wcislo WT, van Bael SA (2014). Fungal endophyte effects on leaf chemistry alter the in vitro growth rates of leaf-cutting ants’ fungal mutualist, Leucocoprinus gongylophorus. Fungal Ecology, 8, 37-45. |
[8] | Iannone LJ, Pinget AD, Nagabhyru P, Schardl CL, de Battista JP (2012). Beneficial effects of Neotyphodium tembladerae and Neotyphodium pampeanum on a wild forage grass. Grass and Forage Science, 67, 382-390. |
[9] | Jia T, Ren AZ, Wang S, Gao YB (2011). Effect of Endophytic fungi on growth and photosynthetic characteristics of Achnatherum sibiricum. Acta Ecologica Sinica, 31, 4811-4817. |
[ 贾彤, 任安芝, 王帅, 高玉葆 (2011). 内生真菌对羽茅生长及光合特性的影响. 生态学报, 31, 4811-4817.] | |
[10] | Kannadan S, Rudgers JA (2008). Endophyte symbiosis benefits a rare grass under low water availability. Functional Ecology, 22, 706-713. |
[11] |
Knapp AK (2001). Variation among biomes in temporal dynamics of aboveground primary production. Science, 291, 481-484.
DOI URL PMID |
[12] | Latch GCM, Christensen MJ, Samuels GJ (1984). Five endophytes of Lolium and Festuca in New Zealand. Mycotaxon, 20, 535-550. |
[13] | Li HR, Li HL, Wang HG, Li DX, Li RQ, Li YM (2018). Further study on the method of leaf area calculation in winter wheat. Journal of Triticeae Crops, 38, 455-459. |
[ 李浩然, 李慧玲, 王红光, 李东晓, 李瑞奇, 李雁鸣 (2018). 冬小麦叶面积测算方法的再探讨. 麦类作物学报, 38, 455-459.] | |
[14] | Li X, Han R, Ren AZ, Gao YB (2010). Using high-temperature treatment to construct endophyte-free Achnatherum sibiricum. Microbiology China, 37, 1395-1400. |
[ 李夏, 韩荣, 任安芝, 高玉葆 (2010). 高温处理构建不感染内生真菌羽茅种群的方法探讨. 微生物学通报, 37, 1395-1400.] | |
[15] | Li X, Zhou Y, Zhu MJ, Qin JH, Ren AZ, Gao YB (2015). Stroma-bearing endophyte and its potential horizontal transmission ability in Achnatherum sibiricum. Mycologia, 107, 21-31. |
[16] | Li YM (1993a). A preliminary study on the correction value (k) of leaf area of Sorghum bicolor(L.) Moench. Journal of Agricultural University of Hebei, 16, 32-36. |
[ 李雁鸣 (1993a). 高粱叶面积校正值(k)的初步研究. 河北农业大学学报, 16, 32-36.] | |
[17] | Li YM (1993b). Preliminary study on the method of leaf area measurement in oats (Avena spp.). Journal of Agricultural University of Hebei, 16, 25-28. |
[ 李雁鸣 (1993b). 燕麦(Avena spp.)叶面积测定方法的初步研究. 河北农业大学学报, 16, 25-28.] | |
[18] | Liu H, Chen W, Zhou Y, Li X, Ren AZ, Gao YB (2015). Effects of endophyte and arbuscular mycorrhizal fungi on growth of Leymus chinensis. Chinese Journal of Plant Ecology, 39, 477-485. |
[ 刘慧, 陈薇, 周勇, 李夏, 任安芝, 高玉葆 (2015). 内生真菌和丛枝菌根真菌对羊草生长的影响. 植物生态学报, 39, 477-485.] | |
[19] | Luo J, Zhang H, Deng ZH, Xu LN, Gao SJ, Chen RK, Chen YQ (2005). Relationship between canopy characters and leaf morphology at different positions of sugarcane. Chinese Journal of Applied and Environmental Biology, 11, 28-31. |
[ 罗俊, 张华, 邓祖湖, 徐良年, 高三基, 陈如凯, 陈由强 (2005). 甘蔗不同叶位叶片形态与冠层特征的关系. 应用与环境生物学报, 11, 28-31.] | |
[20] | Novas MV, Gentile A, Cabral D (2003). Comparative study of growth parameters on diaspores and seedlings between populations of Bromus setifolius from Patagonia, differing in Neotyphodium endophyte infection. Flora, 198, 421-426. |
[21] | Oberhofer M, Güsewell S, Leuchtmann A (2014). Effects of natural hybrid and non-hybrid Epichloë endophytes on the response of Hordelymus europaeus to drought stress. New Phytologist, 201, 242-253. |
[22] | Ren AZ, Clay K (2009). Impact of a horizontally transmitted endophyte, Balansia henningsiana, on growth and drought tolerance of Panicum rigidulum. International Journal of Plant Sciences, 170, 599-608. |
[23] | Ren AZ, Gao YB (2003). Growth characteristics of endophyte- infected and endophyte-freeLolium perenne L. seedlings under osmotic stress conditions. Acta Ecologica Sinica, 23, 2307-2317. |
[ 任安芝, 高玉葆 (2003). 渗透胁迫下内生真菌感染对黑麦草幼苗生长的影响. 生态学报, 23, 2307-2317.] | |
[24] | Ren AZ, Li X, Han R, Yin LJ, Wei MY, Gao YB (2011). Benefits of a symbiotic association with endophytic fungi are subject to water and nutrient availability in Achnatherum sibiricum. Plant and Soil, 346, 363-373. |
[25] | Rymbai H, Laxman RH, Dinesh MR, Sunoj VSJ, Ravishankar KV, Jha AK (2014). Diversity in leaf morphology and physiological characteristics among mango (Mangifera indica) cultivars popular in different agro-climatic regions of India. Scientia Horticulturae, 176, 189-193. |
[26] | Simpson WR, Schmid J, Singh J, Faville MJ, Johnson RD (2012). A morphological change in the fungal symbiont Neotyphodium lolii induces dwarfing in its host plant Lolium perenne. Fungal Biology, 116, 234-240. |
[27] | Song ML, Chai Q, Li XZ, Yao X, Li CJ, Christensen MJ, Nan ZB (2015). An asexual Epichloë endophyte modifies the nutrient stoichiometry of wild barley(Hordeum brevisubulatum) under salt stress. Plant and Soil, 387, 153-165. |
[28] | Vila-Aiub MM, Gundel PE, Ghersa CM (2005). Fungal endophyte infection changes growth attributes in Lolium multiflorum Lam. Austral Ecology, 30, 49-57. |
[29] | Wang JF, Nan ZB, Christensen MJ, Zhang XX, Tian P, Zhang ZX, Niu XL, Gao P, Chen T, Ma LX (2018). Effect of Epichloë gansuensis endophyte on the nitrogen metabolism, nitrogen use efficiency, and stoichiometry of Achnatherum inebrians under nitrogen limitation. Journal of Agricultural and Food Chemistry, 66, 4022-4031. |
[30] |
Wang X, Dai TB, Jiang D, Jing Q, Cao WX (2005). Yield- formation and source-sink characteristics of rice genotypes under two different eco-environments. Chinese Journal of Applied Ecology, 16, 615-619.
URL PMID |
[ 王勋, 戴廷波, 姜东, 荆奇, 曹卫星 (2005). 不同生态环境下水稻基因型产量形成与源库特性的比较研究. 应用生态学报, 16, 615-619.]
PMID |
|
[31] | Wei YK, Gao YB, Xu H, Su D, Zhang X, Wang YH, Lin F, Chen L, Nie LY, Ren AZ (2006). Occurrence of endophytes in grasses native to Northern China. Grass and Forage Science, 61, 422-429. |
[32] | Yu JY, He Y, Zhao ZF, Wang D (2007). Study on the correction coefficient of measuring crop leaf area by length- width method. Jiangsu Agricultural Sciences, 35, 37-39. |
[ 郁进元, 何岩, 赵忠福, 王栋 (2007). 长宽法测定作物叶面积的校正系数研究. 江苏农业科学, 35, 37-39.] | |
[33] | Zhang L, Luo TX (2004). Advances in ecological studies on leaf lifespan and associated leaf traits. Acta Phytoecologica Sinica, 28, 844-852. |
[ 张林, 罗天祥 (2004). 植物叶寿命及其相关叶性状的生态学研究进展. 植物生态学报, 28, 844-852.] | |
[34] | Zhang X, Ren AZ, Wei YK, Lin F, Li C, Liu ZJ, Gao YB (2009). Taxonomy, diversity and origins of symbiotic endophytes of Achnatherum sibiricum in the Inner Mongolia Steppe of China. FEMS Microbiology Letters, 301, 12-20. |
[35] | Zhou YG, Li HL, Jiang TC, Dou ZH, Liu J, Wu SF, Feng H, Zhang TB, He JQ (2016). Temporal and spatial variations of leaf shape coefficients of summer maize. Scientia Agricultura Sinica, 49, 4520-4530. |
[ 周元刚, 李华龙, 蒋腾聪, 窦子荷, 刘健, 吴淑芳, 冯浩, 张体彬, 何建强 (2016). 夏玉米叶片形状系数的时间和空间变异. 中国农业科学, 49, 4520-4530.] |
[1] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[2] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[3] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[4] | 刘兵兵, 魏建新, 胡天宇, 杨秋丽, 刘小强, 吴发云, 苏艳军, 郭庆华. 卫星遥感监测产品在中国森林生态系统的验证和不确定性分析——基于海量无人机激光雷达数据[J]. 植物生态学报, 2022, 46(10): 1305-1316. |
[5] | 刘超, 李平, 武运涛, 潘胜难, 贾舟, 刘玲莉. 一种基于数码相机图像和群落冠层结构调查的草地地上生物量估算方法[J]. 植物生态学报, 2022, 46(10): 1280-1288. |
[6] | 石新建, 张靖歆, 秦天姿, 刘金铭, 高玉葆, 任安芝. 内生真菌感染对宿主羽茅及邻生植物抗病性的影响[J]. 植物生态学报, 2021, 45(8): 860-869. |
[7] | 张自琰, 金光泽, 刘志理. 不同区域针叶年龄对红松叶性状及相关关系的影响[J]. 植物生态学报, 2021, 45(3): 253-264. |
[8] | 黄松宇, 贾昕, 郑甲佳, 杨睿智, 牟钰, 袁和第. 中国典型陆地生态系统波文比特征及影响因素[J]. 植物生态学报, 2021, 45(2): 119-130. |
[9] | 李群, 赵成章, 王继伟, 文军, 李子琴, 马俊逸. 甘肃小苏干湖盐沼湿地盐地风毛菊叶形态-光合生理特征对淹水的响应[J]. 植物生态学报, 2019, 43(8): 685-696. |
[10] | 杨焕莹, 宋建达, 周焘, 金光泽, 姜峰, 刘志理. 林分、土壤及空间因子对谷地云冷杉林叶面积指数空间异质性的影响[J]. 植物生态学报, 2019, 43(4): 342-351. |
[11] | 吴曼, 李娟娟, 刘金铭, 任安芝, 高玉葆. 刈割干扰和养分添加条件下Epichloë内生真菌感染对羽茅所在群落多样性和生产力的影响[J]. 植物生态学报, 2019, 43(2): 85-93. |
[12] | 高思涵, 葛珏希, 周李奕, 朱宝琳, 葛星宇, 李凯, 倪健. 测定森林树木叶面积的最适叶片数是多少?[J]. 植物生态学报, 2018, 42(9): 917-925. |
[13] | 李春杰, 姚祥, 南志标. 醉马草内生真菌共生体研究进展[J]. 植物生态学报, 2018, 42(8): 793-805. |
[14] | 彭曦, 闫文德, 王凤琪, 王光军, 玉昉永, 赵梅芳. 基于叶干质量比的杉木比叶面积估算模型的构建[J]. 植物生态学报, 2018, 42(2): 209-219. |
[15] | 李群, 赵成章, 赵连春, 王建良, 张伟涛, 姚文秀. 秦王川盐沼湿地芦苇比叶面积与叶片热耗散的关联性分析[J]. 植物生态学报, 2017, 41(9): 985-994. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19