植物生态学报 ›› 2019, Vol. 43 ›› Issue (2): 85-93.DOI: 10.17521/cjpe.2018.0242
所属专题: 生物多样性
收稿日期:
2018-10-02
接受日期:
2019-01-11
出版日期:
2019-02-20
发布日期:
2019-06-04
通讯作者:
任安芝
基金资助:
WU Man,LI Juan-Juan,LIU Jin-Ming,REN An-Zhi(),GAO Yu-Bao
Received:
2018-10-02
Accepted:
2019-01-11
Online:
2019-02-20
Published:
2019-06-04
Contact:
REN An-Zhi
Supported by:
摘要:
Epichloë内生真菌感染能够影响宿主植物的种内和种间竞争力, 但目前关于内生真菌感染对宿主植物所在群落多样性和生产力影响的研究较少。该研究以感染(E+)和不感染(E-)内生真菌的羽茅(Achnatherum sibiricum)及其原生境中常见的5种植物构建人工群落, 探究在不同养分水平和刈割条件下内生真菌对宿主植物群落的影响。结果表明: 内生真菌对宿主植物群落多样性的影响同刈割与否有关。在无刈割条件下, 内生真菌感染对宿主群落多样性无显著影响; 在刈割条件下, 内生真菌感染显著增加了宿主群落的多样性, 其原因在于内生真菌感染显著增加了群落中多度较小的冰草(Agropyron cristatum)和大针茅(Stipa grandis)等的多度, 而显著降低了优势种羊草(Leymus chinensis)的多度。内生真菌感染对群落生产力未见显著影响。研究发现养分添加对内生真菌作用的影响只出现在宿主植物水平, 而对宿主植物所在群落未产生显著影响, 内生真菌对宿主羽茅的促进作用只出现在养分添加条件下。
吴曼, 李娟娟, 刘金铭, 任安芝, 高玉葆. 刈割干扰和养分添加条件下Epichloë内生真菌感染对羽茅所在群落多样性和生产力的影响. 植物生态学报, 2019, 43(2): 85-93. DOI: 10.17521/cjpe.2018.0242
WU Man, LI Juan-Juan, LIU Jin-Ming, REN An-Zhi, GAO Yu-Bao. Effects of Epichloë infection on the diversity and productivity of Achnatherum sibiricum community under various nutrient and mowing conditions. Chinese Journal of Plant Ecology, 2019, 43(2): 85-93. DOI: 10.17521/cjpe.2018.0242
图1 在无刈割处理(M-)和刈割处理(M+)条件下内生真菌感染对宿主群落多样性的影响(平均值+标准误差, n = 5)。E+, 内生真菌感染; E-, 内生真菌不感染。**, p < 0.01; ns, p > 0.05。
Fig. 1 Effects of endophyte infection on Shannon’s diversity index of host plant communities under no-mowing (M-) and mowing (M+) conditions (mean + SE, n = 5). E+, endophyte- infected; E-, endophyte-uninfected. **, p < 0.01; ns, p > 0.05.
图2 内生真菌感染和氮添加对宿主群落地上生物量的影响(平均值+标准误差, n = 5)。E+, 内生真菌感染; E-, 无内生真菌感染; N-, 无氮添加; N+, 氮添加。不同小写字母表示E+、E-植物群落间差异显著(p < 0.05)。
Fig. 2 Effects of endophyte infection and nitrogen addition on the aboveground shoot biomass of host plant communities (mean + SE, n = 5). E+, endophyte-infected; E-, endophyte- uninfected; N-, no-nitrogen addition; N+, nitrogen addition. Different lowercase letters mean significant difference between E+ and E- plants community (p < 0.05).
图3 在无刈割处理(M-)和刈割处理(M+)条件下内生真菌感染对物种多度的影响(平均值+标准误差, n = 5)。E+, 内生真菌感染; E-, 无内生真菌感染。AC, 冰草; AF, 冷蒿; AS, 羽茅; CS, 糙隐子草; LC, 羊草; SG, 大针茅。星号表示E+、E-植物群落间差异显著, *, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 3 Effects of endophyte infection on the species abundance under no-mowing (M-) and mowing (M+) conditions (mean + SE, n = 5). E+, endophyte-infected; E-, endophyte- uninfected. AC, Agropyron cristatum; AF, Artemisia frigida; AS, Achnatherum sibiricum; CS, Cleistogenes squarrosa; LC, Leymus chinensis; SG, Stipa grandis. The asterisk denotes significant difference between E+ and E- plants, *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图4 不同处理条件下内生真菌感染对羊草(A)和羽茅(B-D)多度的影响。B, 氮添加。C, 磷添加。D, 刈割处理(平均值+标准误差, n = 5)。E-, 无内生真菌感染; E+, 内生真菌感染; M-, 无刈割处理; M+, 刈割处理; N-, 无氮添加; N+, 氮添加; P-, 无磷添加; P+, 磷添加。不同小写字母表示E+、E-植物群落间差异显著(p < 0.05)。
Fig. 4 Effects of endophyte infection on the abundance of Leymus chinensis (A) and Achnatherum sibiricum (B-D). B, nitrogen addition. C, phosphorus addition. D, mowing treatment (mean + SE, n = 5). E-, endophyte-uninfected; E+, endophyte-infected; M-, no-mowing; M+, mowing; N-, no-nitrogen addition; N+, nitrogen addition; P-, no-phosphorus addition; P+, phosphorus addition. Different lowercase letters denote significant difference between E+ and E- plants (p < 0.05).
图5 磷添加对土壤(A)和优势种(B-D)磷浓度的影响。B, 羽茅。C, 羊草。D, 冷蒿(平均值+标准误差, n = 5)。E-, 无内生真菌感染; E+, 内生真菌感染; P-, 无磷添加; P+, 磷添加。***, p < 0.001。
Fig. 5 Effects of phosphorus addition on P concentration of the soil (A) and dominant plant species (B-D). B, Achnatherum sibiricum. C, Leymus chinensis. D, Artemisia frigida (mean + SE, n = 5). E-, endophyte-uninfected; E+, endophyte-infected; P-, no-phosphorus addition; P+, phosphorus addition. ***, p < 0.001.
[1] |
Afkhami ME, Strauss SY ( 2016). Native fungal endophytes suppress an exotic dominant and increase plant diversity over small and large spatial scales. Ecology, 97, 1159-1169.
DOI URL |
[2] |
Arachevaleta M, Bacon CW, Hoveland CS, Radcliffe DE ( 1989). Effect of the tall fescue endophyte on plant response to environmental stress. Agronomy Journal, 81, 83-90.
DOI URL |
[3] |
Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA ( 2000). Are tropical fungal endophytes hyperdiverse? Ecology Letters, 3, 267-274.
DOI URL |
[4] | Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd edn. China Agriculture Press, Beijing. 44-49. |
[ 鲍士旦 (2000). 土壤农化分析. 第三版. 中国农业出版社, 北京. 44-49.] | |
[5] | Bissels S, Hölzel N, Otte A ( 2004). Population structure of the threatened perennial Serratula tinctoria in relation to vegetation and management. Applied Vegetation Science, 7, 267-274. |
[6] |
Brem D, Leuchtmann A ( 2002). Intraspecific competition of endophyte infected vs uninfected plants of two woodland grass species. Oikos, 96, 281-290.
DOI URL |
[7] |
Cao J, Holden NM, Lü XT, Du G ( 2011). The effect of grazing management on plant species richness on the Qinghai-Tibetan Plateau. Grass and Forage Science, 66, 333-336.
DOI URL |
[8] |
Cheplick GP ( 2004). Symbiotic fungi and clonal plant physiology. New Phytologist, 164, 413-415.
DOI URL |
[9] | Cheplick GP, Clay K, Marks S ( 1989). Interactions between infection by endophytic fungi and nutrient limitation in the grasses Lolium perenne and Festuca arundinacea. New Phytologist, 111, 89-97. |
[10] | Christensen MJ ( 1996). Antifungal activity in grasses infected with Acremonium and Epichloë endophytes. Australasian Plant Pathology, 25, 186-191. |
[11] |
Clay K ( 1987). Effects of fungal endophytes on the seed and seedling biology of Lolium perenne and Festuca arundinacea. Oecologia, 73, 358-362.
DOI URL |
[12] |
Clay K, Holah J ( 1999). Fungal endophyte symbiosis and plant diversity in successional fields. Science, 285, 1742-1744.
DOI URL |
[13] |
Collins CD, Foster BL ( 2009). Community-level consequences of mycorrhizae depend on phosphorus availability. Ecology, 90, 2567-2576.
DOI URL |
[14] |
Elmi AA, West CP ( 1995). Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytologist, 131, 61-67.
DOI URL |
[15] | Faeth SH, Helander ML, Saikkonen KT ( 2004). Asexual Neotyphodium endophytes in a native grass reduce competitive abilities. Ecology Letters, 7, 304-313. |
[16] | Gao Y, Li GP, Shi H, Liu H, Ren AZ, Gao YB ( 2017). Allelopathic effect of endophyte-infected Achnatherum sibiricum on Stipa grandis. Acta Ecologica Sinica, 37, 1063-1073. |
[ 高远, 李隔萍, 施宏, 刘慧, 任安芝, 高玉葆 ( 2017). 感染内生真菌的羽茅对大针茅的化感作用. 生态学报, 37, 1063-1073.] | |
[17] |
Grime JP ( 1973). Competitive exclusion in herbaceous vegetation. Nature, 242, 344-347.
DOI |
[18] | Janos DP ( 1980). Mycorrhizae influence tropical succession. Biotropica, 12, 56-64. |
[19] |
Jones TA, Gardner DR, Chatterton NJ ( 2000). Cattle prefer endophyte-free robust needle grass. Journal of Range Management, 53, 427-431.
DOI URL |
[20] |
Knapp AK, Hoover DL, Blair JM, Buis G, Burkepile DE, Chamberlain A, Collins SL, Fynn RWS, Kirkman KP, Smith MD, Blake D, Govender N, O’Neal P, Schreck T, Zinn A ( 2012). A test of two mechanisms proposed to optimize grassland aboveground primary productivity in response to grazing. Journal of Plant Ecology, 5, 357-365.
DOI URL |
[21] |
Lan ZC, Bai YF ( 2012). Testing mechanisms of N-enrichment- induced species loss in a semiarid Inner Mongolia grassland: Critical thresholds and implications for long- term ecosystem responses. Philosophical Transactions of the Royal Society B, 367, 3125-3134.
DOI URL |
[22] |
Latch GCM, Christensen M ( 1985). Artificial infection of grasses with endophytes. Annals of Applied Biology, 107, 17-24.
DOI URL |
[23] | Leuchtmann A, Bacon CW, Schardl CL ( 2014). Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia, 106, 202-215. |
[24] | Lewis GC ( 2004). Effects of biotic and abiotic stress on the growth of three genotypes of Lolium perenne with and without infection by the fungal endophyte Neotyphodium lolii. Journal of Chemical Ecology, 144, 53-63. |
[25] | Lewis GC, Bakken AK, MacDuff JH, Raistrick N ( 1996). Effect of infection by the endophytic fungus Acremonium lolii on growth and nitrogen uptake by perennial ryegrass(Lolium perenne) in flowing solution culture. Annals of Applied Biology, 129, 451-460. |
[26] | Li CJ, Nan ZB, Paul VH, Dapprich PD, Liu Y ( 2004). A new Neotyphodium species symbiotic with drunken horse grass(Achnatherum inebrians) in China. Mycotaxon, 90, 141-147. |
[27] | Li X, Han R, Ren AZ, Gao YB ( 2010). Using high-temperature treatment to construct endophyte-free Achnatherum sibiricum. Microbiology China, 37, 1395-1400. |
[ 李夏, 韩荣, 任安芝, 高玉葆 ( 2010). 高温处理构建不感染内生真菌羽茅种群的方法探讨. 微生物学通报, 37, 1395-1400.] | |
[28] | Li XS, Zhang XZ, Gu X, Zheng Y ( 1998). The relationship between the toxic metabolin and the endophytic fungi of drunken horse grass (Achnatherum inebrians). Grass- Feeding Livestock, 124, 44-46. |
[ 李学森, 张学洲, 顾祥, 郑瑛 ( 1998). 醉马草有毒物质与其内生真菌的关系. 草食家畜, 124, 44-46.] | |
[29] | Louis MS, Faeth SH ( 1997). The effect of endophytic fungi on the fitness of Arizona fescue (Festuca arizonica) under varying nitrogen levels. Bulletin of the Ecological Society of America, 78, 317-327. |
[30] | Malinowski DP, Alloush GA, Belesky DP ( 2000). Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant and Soil, 227, 115-126. |
[31] | Malinowski DP, Belesky DP ( 2006). Ecological importance of Neotyphodium spp. grass endophytes in agroecosystems. Grassland Science, 52, 1-14. |
[32] | Malinowski DP, Belesky DP, Hill NS, Baligar VC, Fedders JM ( 1998). Influence of phosphorus on the growth and ergot alkaloid content of Neotyphodium coenophialum-infected tall fescue(Festuca arundinacea Schreb.). Plant and Soil, 198, 53-61. |
[33] | Malinowski DP, Brauer DK, Belesky DP ( 1999). The endophyte Neotyphodium coenophialum affects root morphology of tall fescue grown under phosphorus deficiency. Journal of Agronomy and Crop Science, 183, 53-60. |
[34] | Malinowski DP, Leuchtmann A, Schmidt D, Nosberger J ( 1997). Symbiosis with Neotyphodium uncinatum endophyte may increase the competitive ability of meadow fescue. Agronomy Journal, 89, 833-839. |
[35] |
Marks S, Clay K ( 2007). Low resource availability differentially affects the growth of host grasses infected by fungal endophytes. International Journal of Plant Sciences, 168, 1269-1277.
DOI URL |
[36] | Marks S, Clay K, Cheplick GP ( 1991). Effects of fungal endophytes on interspecific and intraspecific competition in the grasses Festuca arundinacea and Lolium perenne. Journal of Applied Ecology, 28, 194-204. |
[37] | Moraes PVD, Witt WW, Phillips TD, Rossi P, Panozzo LE ( 2014). Relative competitiveness of Nimblewill ( Muhlenbergia schreberi) with tall fescues and kentucky bluegrass. American Journal of Plant Sciences, 5, 3777-3787. |
[38] |
Newman JA, Abner ML, Dado RG, Gibson DJ, Brookings A, Parson AJ ( 2003). Effects of elevated CO2, nitrogen and fungal endophyte-infection on tall fescue: Growth, photosynthesis, chemical composition and digestibility. Global Change Biology, 9, 425-437.
DOI URL |
[39] | Oberhofer M, Gusewell S, Leuchtmann A ( 2014). Effects of natural hybrid and non-hybrid Epichloë endophytes on the response of Hordelymus europaeus to drought stress. New Phytologist, 201, 242-253. |
[40] | Qin JH, Gao Y, Liu H, Zhou Y, Ren AZ, Gao YB ( 2016). Effect of Endophyte infection and clipping treatment on resistance and tolerance of Achnatherum sibiricum. Frontiers in Microbiology, 7, 1988. DOI: 10.3389/fmicb.2016.01988. |
[41] | Ravel C, Courty C, Coudret A, Charmet G ( 1997). Beneficial effects of Neotyphodium lolii on the growth and the water status in perennial ryegrass cultivated under nitrogen deficiency or drought stress. Agronomie, 17, 173-181. |
[42] |
Ren AZ, Gao YB, Wang W, Wang JL, Zhao NX ( 2009). Influence of nitrogen fertilizer and endophyte infection on ecophysiological parameters and mineral element content of perennial ryegrass. Journal of Integrative Plant Biology, 51, 75-83.
DOI URL |
[43] | Ren AZ, Gao YB, Zhou F ( 2007). Response of Neotyphodium lolii-infected perennial ryegrass to phosphorus deficiency. Plant Soil and Environment, 53, 113-119. |
[44] |
Rudgers JA, Clay K ( 2008). An invasive plant-fungal mutualism reduces arthropod diversity. Ecology Letters, 11, 831-840.
DOI URL |
[45] |
Rudgers JA, Orr S ( 2009). Non-native grass alters growth of native tree species via leaf and soil microbes. Journal of Ecology, 97, 247-255.
DOI URL |
[46] |
Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH ( 2006). Model systems in ecology: Dissecting the endophyte-grass literature. Trends in Plant Science, 11, 428-433.
DOI URL |
[47] | Schardl CL, Young CA, Faulkner JR, Florea S, Pan J ( 2012). Chemotypic diversity of Epichloë, fungal symbionts of grasses. Fungal Ecology, 5, 331-344. |
[48] | Schulthess FM, Faeth SH ( 1998). Distribution, abundances, and associations of the endophytic fungal community of Arizona fescue (Festuca arizonica). Mycologia, 90, 569-578. |
[49] |
Su JQ, Li XR, Li XJ, Li F ( 2013). Effects of additional N on herbaceous species of desertified steppe in arid regions of China: A four-year field study. Ecological Research, 28, 21-28.
DOI URL |
[50] | Sullivan TJ, Rodstrom J, Vandop J, Librizzi J, Graham C, Schardl CL, Bultman TL ( 2007). Symbiont-mediated changes in Lolium arundinaceum inducible defenses: Evidence from changes in gene expression and leaf composition. New Phytologist, 176, 673-679. |
[51] |
Sutherland BL, Hume DE, Tapper BA ( 1999). Allelopathic effects of endophyte-infected perennial ryegrass extracts on white clover seedlings. New Zealand Journal of Agricultural Research, 42, 19-26.
DOI URL |
[52] | Vázquez-de-Aldana BR, Romo M, García-Ciudad A, Petisco C, García-Criado B ( 2011). Infection with the fungal endophyte Epichloë festucae may alter the allelopathic potential of red fescue. Annals of Applied Biology, 159, 281-290. |
[53] | Vázquez-de-Aldana BR, Zabalgogeazcoa I, García-Ciudad A, García- Criado B ( 2013). An Epichloë endophyte affects the competitive ability of Festuca rubra against other grassland species. Plant & Soil, 362, 201-213. |
[54] |
Wei YK, Gao YB, Xu H, Su D, Zhang X, Wang YH, Lin F, Chen L, Nie LY, Ren AZ ( 2006). Occurrence of endophytes in grasses native to northern China. Grass and Forage Science, 61, 422-429.
DOI URL |
[55] | White JF, Reddy PV ( 1998). Examination of structure and molecular phylogenetic relationships of some graminicolous symbionts in genera Epichloë and ParEpichloë. Mycologia, 90, 226-234. |
[56] | Xia C, Zhang XX, Christensen MJ, Nan ZB, Li CJ ( 2015). Epichloë endophyte affects the ability of powdery mildew (Blumeria graminis) to colonise drunken horse grass(Achnatherum inebrians). Fungal Ecology, 16, 26-33. |
[57] |
Yang GW, Liu N, Lu WJ, Wang S, Kan HM, Zhang YJ, Xu L, Chen YL ( 2014). The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. Journal of Ecology, 102, 1072-1082.
DOI URL |
[58] | Yang GW, Yang X, Zhang WJ, Wei YQ, Ge G, Lu WJ, Sun JJ, Liu N, Kan HM, Shen Y, Zhang YJ ( 2015). Arbuscular mycorrhizal fungi affect plant community structure under various nutrient conditions and stabilize the community productivity. Oikos, 125, 576-585. |
[59] | Zhang X, Ren AZ, Wei YK, Lin F, Li C, Liu ZJ, Gao YB ( 2009). Taxonomy, diversity and origins of symbiotic endophytes of Achnatherum sibiricum in the Inner Mongolia Steppe of China. FEMS Microbiology Letters, 301, 12-20. |
[60] | Zhou F, Gao YB, Ma WJ ( 2003). Effects of phosphorus deficiency on growth of perennial ryegrass-fungal endophyte symbiont and phenolic content in root. Plant Physiology Communications , 39, 321-324. |
[ 周芳, 高玉葆, 马文江 ( 2003). 缺磷对黑麦草-内生真菌共生体生长和根中酚含量的影响. 植物生理学通讯, 39, 321-324.] |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[3] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[4] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[5] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[6] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[7] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[8] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[9] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[10] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[11] | 臧永新, 马剑英, 周晓兵, 陶冶, 尹本丰, 沙亚古丽•及格尔, 张元明. 极端干旱和降水对沙垄不同坡向坡位短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[12] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[13] | 石新建, 张靖歆, 秦天姿, 刘金铭, 高玉葆, 任安芝. 内生真菌感染对宿主羽茅及邻生植物抗病性的影响[J]. 植物生态学报, 2021, 45(8): 860-869. |
[14] | 汲玉河, 周广胜, 王树东, 王丽霞, 周梦子. 2000-2019年秦岭地区植被生态质量演变特征及 驱动力分析[J]. 植物生态学报, 2021, 45(6): 617-625. |
[15] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19