植物生态学报 ›› 2021, Vol. 45 ›› Issue (6): 617-625.DOI: 10.17521/cjpe.2020.0253
汲玉河1,2, 周广胜1,2,*(), 王树东3, 王丽霞4, 周梦子1
收稿日期:
2020-07-28
接受日期:
2021-03-15
出版日期:
2021-06-20
发布日期:
2021-09-09
通讯作者:
周广胜
作者简介:
*(zhougs@cma.gov.cn)基金资助:
JI Yu-He1,2, ZHOU Guang-Sheng1,2,*(), WANG Shu-Dong3, WANG Li-Xia4, ZHOU Meng-Zi1
Received:
2020-07-28
Accepted:
2021-03-15
Online:
2021-06-20
Published:
2021-09-09
Contact:
ZHOU Guang-Sheng
Supported by:
摘要:
为了阐明2000-2019年秦岭地区植被生态质量变化的空间异质性, 以及植被生态质量变化的驱动力, 该文采用模型模拟和卫星观测的方法对植被生态质量演变及其驱动力进行研究。结果显示: (1)秦岭地区植被生态质量整体显著改善, 植被净初级生产力(NPP)和植被覆盖度(VFC)的平均增加速率分别为8 g C·m-2·a-1和0.005 4·a-1。空间上, 秦岭地区85%-95%区域的植被生态质量明显改善, 但是以西安市为代表的局部地区植被NPP和VFC显著下降。(2)秦岭地区80%-85%区域的降水量和气温呈上升趋势, 与植被NPP和VFC增加的空间范围大体一致, 证实气候暖湿化对改善植被质量有重要驱动作用。(3)人类保护活动(天然林保护、退耕还林还草等)使秦岭地区大范围植被生态系统得到抚育, 林地、草地和水域面积大幅度增加。以秦岭北麓为代表的建设用地扩张是秦岭部分地区植被生态质量恶化的主要原因, 但是人类破坏活动被限制在局部区域。
汲玉河, 周广胜, 王树东, 王丽霞, 周梦子. 2000-2019年秦岭地区植被生态质量演变特征及 驱动力分析. 植物生态学报, 2021, 45(6): 617-625. DOI: 10.17521/cjpe.2020.0253
JI Yu-He, ZHOU Guang-Sheng, WANG Shu-Dong, WANG Li-Xia, ZHOU Meng-Zi. Evolution characteristics and its driving forces analysis of vegetation ecological quality in Qinling Mountains region from 2000 to 2019. Chinese Journal of Plant Ecology, 2021, 45(6): 617-625. DOI: 10.17521/cjpe.2020.0253
图2 2000-2019年秦岭地区1 km × 1 km空间精度上多年平均的植被净初级生产力(NPP)(A)、植被覆盖度(VFC)(B), 及其变化趋势(C, D), 以及各栅格平均的变化趋势(E, F)。
Fig. 2 Annual vegetation net primary productivity (NPP)(A), average vegetation coverage (VFC)(B), their change trends (C, D) at spatial resolution of 1 km × 1 km, and the average change trends from all grids (E, F) in Qinling Mountains region from 2000 to 2019.
图3 2000-2019年秦岭地区1 km × 1 km空间精度上的年平均气温变化趋势(A)及各栅格平均的变化趋势(B)。
Fig. 3 Change trends of mean annual temperature (A) at spatial resolution of 1 km × 1 km, and the average trend from all grids over Qinling Mountains region from 2000 to 2019 (B).
图4 2000-2019年秦岭地区1 km × 1 km空间精度上的年降水量变化趋势(A)及各栅格平均的变化趋势(B)。
Fig. 4 Change trends of annual precipitation (A) at spatial resolution of 1 km × 1 km, and the average trend from all grids over Qinling Mountains region from 2000 to 2019 (B).
植被变量 Vegetation variables | 年降水量 Annual precipitation | 年平均气温 Annual mean air temperature | ||||
---|---|---|---|---|---|---|
相关系数 Correlation coefficient | 显著性 Significance (Two-tailed) | 自由度 df | 相关系数 Correlation coefficient | 显著性 Significance (Two-tailed) | 自由度 df | |
净初级生产力 Net primary productivity | 0.603 | 0.006 | 17 | 0.360 | 0.130 | 17 |
覆盖度 Coverage | 0.291 | 0.226 | 17 | 0.393 | 0.096 | 17 |
表1 2000-2019年秦岭地区1 km × 1 km空间精度上平均的气候变量(年降水量和年平均气温)与植被变量(净初级生产力和覆盖度)的偏相关关系
Table 1 Partial correlations between climate variables (annual precipitation and annual mean air temperature) and vegetation variables (net primary productivity and coverage) from 1 km × 1 km spatial accuracy over Qinling Mountains region from 2000 to 2019
植被变量 Vegetation variables | 年降水量 Annual precipitation | 年平均气温 Annual mean air temperature | ||||
---|---|---|---|---|---|---|
相关系数 Correlation coefficient | 显著性 Significance (Two-tailed) | 自由度 df | 相关系数 Correlation coefficient | 显著性 Significance (Two-tailed) | 自由度 df | |
净初级生产力 Net primary productivity | 0.603 | 0.006 | 17 | 0.360 | 0.130 | 17 |
覆盖度 Coverage | 0.291 | 0.226 | 17 | 0.393 | 0.096 | 17 |
土地利用变化 Land use change | 农田 Farmland | 林地 Forest land | 草地 Grassland | 水域 Body of water | 建设用地 Construction land |
---|---|---|---|---|---|
2000年面积 Area in 2000 (hm2) | 3 243 955 | 4 902 716 | 3 652 886 | 107 819 | 187 831 |
2015年面积 Area in 2015 (hm2) | 3 092 793 | 4 928 172 | 3 671 340 | 118 299 | 282 880 |
增减面积 Increase or decrease area (hm2) | -151 162 | 25 456 | 18 454 | 10 480 | 95 049 |
增减幅度 Range of increase or decrease (%) | -4.66 | 0.52 | 0.51 | 9.72 | 50.60 |
表2 2000-2015年秦岭地区土地利用类型及其变化
Table 2 Land use types and their change in Qinling Mountains region from 2000 to 2015
土地利用变化 Land use change | 农田 Farmland | 林地 Forest land | 草地 Grassland | 水域 Body of water | 建设用地 Construction land |
---|---|---|---|---|---|
2000年面积 Area in 2000 (hm2) | 3 243 955 | 4 902 716 | 3 652 886 | 107 819 | 187 831 |
2015年面积 Area in 2015 (hm2) | 3 092 793 | 4 928 172 | 3 671 340 | 118 299 | 282 880 |
增减面积 Increase or decrease area (hm2) | -151 162 | 25 456 | 18 454 | 10 480 | 95 049 |
增减幅度 Range of increase or decrease (%) | -4.66 | 0.52 | 0.51 | 9.72 | 50.60 |
[1] | Chen XN, Jiang HC(2019). Climate response of NDVI index on Qinling Mountains in 25 years. Bulletin of Surveying and Mapping, (3), 103-107. |
[ 陈晓宁, 蒋好忱(2019). 25年来秦岭NDVI指数的气候响应. 测绘通报, (3), 103-107.] | |
[2] | Deng CH, Bai HY, Gao S, Liu RJ, Ma XP, Huang XY, Meng Q(2018). Spatial-temporal variation of the vegetation coverage in Qinling Mountains and its dual response to climate change and human activities. Journal of Natural Resources, 33, 425-438. |
[ 邓晨晖, 白红英, 高山, 刘荣娟, 马新萍, 黄晓月, 孟清(2018). 秦岭植被覆盖时空变化及其对气候变化与人类活动的双重响应. 自然资源学报, 33, 425-438.] | |
[3] |
Deng CH, Bai HY, Gao S, Zhao T, Ma XP (2019a). Differences and variations in the elevation-dependent climatic growing season of the northern and southern slopes of the Qinling Mountains of China from 1985 to 2015. Theoretical and Applied Climatology, 137, 1159-1169.
DOI URL |
[4] |
Deng CH, Bai HY, Ma XP, Zhao T, Gao S, Huang XY (2019b). Spatiotemporal differences in the climatic growing season in the Qinling Mountains of China under the influence of global warming from 1964 to 2015. Theoretical and Applied Climatology, 138, 1899-1911.
DOI URL |
[5] | Fang JY, Song YC, Liu HY, Piao SL (2002). Vegetation- climate relationship and its application in the division of vegetation zone in China. Acta Botanica Sinica, 44, 1105-1122. |
[6] |
Feng X, Liu G, Chen JM, Chen M, Liu J, Ju WM, Sun R, Zhou W (2007). Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing. Journal of Environmental Management, 85, 563-573.
PMID |
[7] | Huang JJ(2015). Control of Qinling tectonic zone on climate and eco-environment in Shaanxi. Journal of Earth Sciences and Environment, 37(3), 81-86. |
[ 黄建军(2015). 秦岭构造带对陕西气候和生态环境的控制作用. 地球科学与环境学报, 37(3), 81-86.] | |
[8] | IPCC (2018). Summary for policymakers//Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, et al. Global Warming of 1.5 °C. World Meteorological Organization, Geneva, Switzerland. |
[9] |
Ji YH, Zhou GS, Luo TX, Dan Y, Zhou L, Lv XM (2020). Variation of net primary productivity and its drivers in China’s forests during 2000-2018. Forest Ecosystems, 7, 15. DOI: 10.1186/s40663-020-00229-0.
DOI URL |
[10] | Jia K, Yao YJ, Wei XQ, Gao S, Jiang B, Zhao X(2013). A review on fractional vegetation cover estimation using remote sensing. Advances in Earth Science, 28, 774-782. |
[ 贾坤, 姚云军, 魏香琴, 高帅, 江波, 赵祥(2013). 植被覆盖度遥感估算研究进展. 地球科学进展, 28, 774-782.] | |
[11] |
Jiang C, Mu XM, Wang F, Zhao GJ (2016). Analysis of extreme temperature events in the Qinling Mountains and surrounding area during 1960-2012. Quaternary International, 392, 155-167.
DOI URL |
[12] |
Li CX, Gao X, Xi ZL (2019). Characteristics, hazards, and control of illegal villa (houses): evidence from the Northern Piedmont of Qinling Mountains, Shaanxi Province, China. Environmental Science and Pollution Research, 26, 21059-21064.
DOI URL |
[13] | Li WZ, Huang CP, Ji WL(2000). A Study on the problems of implementing natural forests conservation programme in Qinling forest area. Journal of Northwest Forestry University, 15(1), 80-84. |
[ 李卫忠, 黄春萍, 吉文丽(2000). 秦岭林区实施天然林保护工程若干问题的思考. 西北林学院学报, 15(1), 80-84.] | |
[14] |
Li Y, Viña A, Yang W, Chen XD, Zhang JD, Ouyang ZY, Liang Z, Liu JG (2013). Effects of conservation policies on forest cover change in giant panda habitat regions, China. Land Use Policy, 33, 42-53.
DOI URL |
[15] | Liu HY, Zhang MY, Lin ZS, Xu XJ (2018). Spatial heterogeneity of the relationship between vegetation dynamics and climate change and their driving forces at multiple time scales in Southwest China. Agricultural and Forest Meteorology, 256-257, 10-21. |
[16] | Pi WQ, Du JM, Chen C, Zhu XB, Liu H(2018). Identification of vegetation in high-spectral images of desertification grassland based on normalized vegetation index. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 39(4), 75-79. |
[ 皮伟强, 杜健民, 陈程, 朱相兵, 刘浩(2018). 基于归一化植被指数对荒漠化草原地面高光谱影像中植被的识别. 内蒙古农业大学学报(自然科学版), 39(4), 75-79.] | |
[17] |
Shao YT, Mu XM, He Y, Sun WY, Zhao GJ, Gao P (2019). Spatiotemporal variations of extreme precipitation events at multi-time scales in the Qinling-Daba mountains region, China. Quaternary International, 525, 89-102.
DOI URL |
[18] | Sun YL, Yang YL, Zhang L, Wang ZL (2015). The relative roles of climate variations and human activities in vegetation change in North China. Physics and Chemistry of the Earth, 87-88, 67-78. |
[19] | Wang J, Zhou WQ, Xu KP, Yan JL, Li WF, Han LJ(2017). Quantitative assessment of ecological quality in Beijing- Tianjin-Hebei urban megaregion, China. Chinese Journal of Applied Ecology, 28, 2667-2676. |
[ 王静, 周伟奇, 许开鹏, 颜景理, 李伟峰, 韩立建(2017). 京津冀地区的生态质量定量评价. 应用生态学报, 28, 2667-2676.] | |
[20] |
Xu B, Yang XC, Tao WG, Qin ZH, Liu HQ, Miao JM(2007). Remote sensing monitoring upon the grass production in China. Acta Ecologica Sinica, 27, 405-413.
DOI URL |
[ 徐斌, 杨秀春, 陶伟国, 覃志豪, 刘海启, 缪建明(2007). 中国草原产草量遥感监测. 生态学报, 27, 405-413.] | |
[21] |
Xu WH, Viña A, Qi ZX, Ouyang ZY, Liu JG, Liu W, Wan H (2014). Evaluating conservation effectiveness of nature reserves established for surrogate species: case of a giant panda nature reserve in Qinling Mountains, China. Chinese Geographical Science, 24(1), 60-70.
DOI URL |
[22] | Xu ZX(2015). Grain for Green, full of green Qinling Mountains. Environmental Economy, (21), 33. |
[ 徐祯霞(2015). 退耕还林, 绿满秦岭. 环境经济, (21), 33.] | |
[23] |
Zhang HJ, Gao Y, Hua YW, Zhang Y, Liu K (2019). Assessing and mapping recreationists’ perceived social values for ecosystem services in the Qinling Mountains, China. Ecosystem Services, 39, 101006. DOI: 10.1016/j.ecoser.2019.101006.
DOI URL |
[24] |
Zhang W, Wang LC, Xiang FF, Qin WM, Jiang WX (2020). Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze River and Yellow River Basin, China. Ecological Indicators, 110, 105892. DOI: 10.1016/j.ecolind.2019.105892.
DOI URL |
[25] |
Zhang YB, Wang YZ, Phillips N, Ma KP, Li JS, Wang W (2017). Integrated maps of biodiversity in the Qinling Mountains of China for expanding protected areas. Biological Conservation, 210, 64-71.
DOI URL |
[26] | Zhang ZW, Cui YW(1963). Vegetation regionalization in Qinling Mountains (draft). Acta Phytoecologia et Geobotanica Sinica, 1, 161-162. |
[ 张珍萬, 崔友文(1963). 秦岭地区的植被区划(草案). 植物生态学与地植物学丛刊, 1, 161-162.] | |
[27] | Zhou GS, Zhang XS(1996). Study on NPP of natural vegetation in China under global climate change. Acta Phytoecologica Sinica, 20, 11-19. |
[ 周广胜, 张新时(1996). 全球气候变化的中国自然植被的净第一性生产力研究. 植物生态学报, 20, 11-19.] | |
[28] |
Zhou ZX, Li MT (2017). Spatial-temporal change in urban agricultural land use efficiency from the perspective of agricultural multi-functionality: a case study of the Xi’an metropolitan zone. Journal of Geographical Sciences, 27, 1499-1520.
DOI URL |
[1] | 朱玉英 张华敏 丁明军 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 0-0. |
[2] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[3] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[4] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[5] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[6] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[7] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[8] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[9] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度 敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[10] | 臧永新 马剑英 周晓兵 陶冶 尹本丰 沙亚古丽·及格尔 张元明. 极端干旱和降水对沙垄不同坡位、坡向短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[11] | 刘超, 李平, 武运涛, 潘胜难, 贾舟, 刘玲莉. 一种基于数码相机图像和群落冠层结构调查的草地地上生物量估算方法[J]. 植物生态学报, 2022, 46(10): 1280-1288. |
[12] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[13] | 高德才, 白娥. 冻融循环期间土壤氧化亚氮排放影响因素[J]. 植物生态学报, 2021, 45(9): 1006-1023. |
[14] | 倪铭, 张曦月, 姜超, 王鹤松. 中国西南部地区植被对极端气候事件的响应[J]. 植物生态学报, 2021, 45(6): 626-640. |
[15] | 方欧娅, 张永, 张启, 贾恒锋. 黄河上游甘蒙柽柳生长对极端旱涝的响应[J]. 植物生态学报, 2021, 45(6): 641-649. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19