植物生态学报 ›› 2021, Vol. 45 ›› Issue (8): 860-869.DOI: 10.17521/cjpe.2021.0132
石新建, 张靖歆, 秦天姿, 刘金铭, 高玉葆, 任安芝*()
收稿日期:
2021-04-08
修回日期:
2021-06-29
出版日期:
2021-08-20
发布日期:
2021-11-18
通讯作者:
任安芝
作者简介:
* renanzhi@nankai.edu.cn基金资助:
SHI Xin-Jian, ZHANG Jing-Xin, QIN Tian-Zi, LIU Jin-Ming, GAO Yu-Bao, REN An-Zhi*()
Received:
2021-04-08
Revised:
2021-06-29
Online:
2021-08-20
Published:
2021-11-18
Contact:
REN An-Zhi
Supported by:
摘要:
Epichloë内生真菌能够影响宿主植物的抗病性, 但目前关于内生真菌感染对宿主邻生植物抗病性影响的研究很少。该研究首先调查了内蒙古呼伦贝尔天然草地中植物病害发生情况, 发现在常见牧草中禾本科植物病害最为严重, 其中感染内生真菌的羽茅(Achnatherum sibiricum)的总病情指数最低。进一步比较了与羽茅邻生及非邻生植物的病害差异, 结果显示羽茅显著降低了邻生羊草(Leymus chinensis)、狼针草(Stipa baicalensis)和冰草(Agropyron cristatum)的褐斑病病情指数。为探究羽茅对邻生植物病害的影响是否与其内生真菌有关, 分别从内生真菌发酵液、离体叶片和植株层面进行了室内验证试验。结果表明: 羽茅的2种内生真菌Epichloë gansuensis和Epichloë sibiricum发酵液显著抑制了新月弯孢(Curvularia lunata)、根腐离蠕孢(Bipolaris sorokiniana)、核盘菌(Sclerotinia sclerotioru)和三叶草核盘菌(Sclerotinia trifoliorum)的生长; 对于离体叶片, E. gansuensis和E. sibiricum显著减小了宿主叶片受4种病原真菌侵染后的病斑长度。在新月弯孢和根腐离蠕孢的植株接种条件下, 内生真菌显著降低了宿主羽茅及邻生植物羊草的病害程度。该研究首次发现并验证了羽茅内生真菌对邻生禾草抵御褐斑病有一定的增益作用。
石新建, 张靖歆, 秦天姿, 刘金铭, 高玉葆, 任安芝. 内生真菌感染对宿主羽茅及邻生植物抗病性的影响. 植物生态学报, 2021, 45(8): 860-869. DOI: 10.17521/cjpe.2021.0132
SHI Xin-Jian, ZHANG Jing-Xin, QIN Tian-Zi, LIU Jin-Ming, GAO Yu-Bao, REN An-Zhi. Effects of endophyte infection on fungal disease resistance of Achnatherum sibiricum and non-symbiotic neighbours. Chinese Journal of Plant Ecology, 2021, 45(8): 860-869. DOI: 10.17521/cjpe.2021.0132
科 Family | 属数 Genus number | 物种数 Species number | 草原病情指数 Grassland diseases index | ||||||
---|---|---|---|---|---|---|---|---|---|
斑枯病 Spot blight | 黄斑病 Yellow blotch | 锈病 Rust disease | 褐斑病 Brown patch | 白粉病 Powdery mildew | 其他病害 Others | 累计 Total | |||
禾本科 Gramineae | 10 | 10 | 13.0 | 6.4 | 8.0 | 5.5 | 6.8 | 0.2 | 39.8 |
豆科 Leguminosae | 5 | 6 | 22.8 | 0.5 | 2.2 | 3.9 | 4.3 | - | 33.7 |
菊科 Compositae | 7 | 14 | 17.4 | 3.0 | 1.2 | 1.9 | 8.6 | 0.6 | 32.7 |
蔷薇科 Rosaceae | 2 | 6 | 21.0 | 7.7 | 5.0 | 1.0 | 1.0 | - | 35.8 |
毛茛科 Ranunculaceae | 3 | 5 | 21.2 | 5.0 | 5.1 | 1.8 | 0.9 | 1.0 | 35.0 |
百合科 Liliaceae | 2 | 3 | 34.7 | 8.1 | 3.3 | 1.2 | - | 0.2 | 47.4 |
鸢尾科 Iridaceae | 1 | 3 | 29.7 | 17.8 | 1.4 | 1.0 | 0.2 | - | 50.1 |
唇形科 Labiatae | 2 | 2 | 34.4 | - | - | - | - | - | 34.4 |
伞形科 Umbelliferae | 2 | 2 | 20.9 | 1.2 | - | 0.1 | - | 0.2 | 22.3 |
石竹科 Caryophyllaceae | 2 | 2 | 5.4 | 14.2 | - | - | 25.0 | - | 44.6 |
车前科 Plantaginaceae | 1 | 1 | 20.0 | - | - | - | 46.7 | - | 66.7 |
川续断科 Dipsacaceae | 1 | 1 | 40.0 | 11.7 | - | - | 8.9 | - | 60.6 |
大戟科 Euphorbiaceae | 1 | 1 | 15.0 | - | - | - | - | - | 15.0 |
景天科 Crassulaceae | 1 | 1 | - | - | - | - | - | - | 0 |
桔梗科 Campanulaceae | 1 | 1 | 18.5 | 2.8 | - | 0.3 | - | 0.6 | 22.2 |
蓼科 Polygonaceae | 1 | 1 | 22.5 | 41.3 | - | - | - | - | 63.8 |
柳叶菜科 Onagraceae | 1 | 1 | 30.0 | 22.5 | - | 10.0 | - | - | 62.5 |
龙胆科 Gentianaceae | 1 | 1 | 7.5 | 15.0 | - | - | 16.7 | - | 39.2 |
马钱科 Loganiaceae | 1 | 1 | 48.3 | - | 22.9 | - | - | - | 71.2 |
茜草科 Rubiaceae | 1 | 1 | 11.4 | 4.1 | 0.2 | 1.0 | - | - | 16.7 |
莎草科 Cyperaceae | 1 | 1 | 49.7 | 1.1 | 2.6 | 1.4 | 0.1 | - | 54.9 |
十字花科 Brassicaceae | 1 | 1 | 7.5 | 11.7 | - | - | 7.8 | - | 27.0 |
苋科 Amaranthaceae | 1 | 1 | - | - | - | - | - | - | 0 |
玄参科 Scrophulariaceae | 1 | 1 | - | - | - | 3.8 | 13.3 | - | 17.1 |
旋花科 Convolvulaceae | 1 | 1 | - | 22.5 | - | - | - | - | 22.5 |
表1 呼伦贝尔草原植物病害
Table 1 Plant diseases in Hulun Buir grassland
科 Family | 属数 Genus number | 物种数 Species number | 草原病情指数 Grassland diseases index | ||||||
---|---|---|---|---|---|---|---|---|---|
斑枯病 Spot blight | 黄斑病 Yellow blotch | 锈病 Rust disease | 褐斑病 Brown patch | 白粉病 Powdery mildew | 其他病害 Others | 累计 Total | |||
禾本科 Gramineae | 10 | 10 | 13.0 | 6.4 | 8.0 | 5.5 | 6.8 | 0.2 | 39.8 |
豆科 Leguminosae | 5 | 6 | 22.8 | 0.5 | 2.2 | 3.9 | 4.3 | - | 33.7 |
菊科 Compositae | 7 | 14 | 17.4 | 3.0 | 1.2 | 1.9 | 8.6 | 0.6 | 32.7 |
蔷薇科 Rosaceae | 2 | 6 | 21.0 | 7.7 | 5.0 | 1.0 | 1.0 | - | 35.8 |
毛茛科 Ranunculaceae | 3 | 5 | 21.2 | 5.0 | 5.1 | 1.8 | 0.9 | 1.0 | 35.0 |
百合科 Liliaceae | 2 | 3 | 34.7 | 8.1 | 3.3 | 1.2 | - | 0.2 | 47.4 |
鸢尾科 Iridaceae | 1 | 3 | 29.7 | 17.8 | 1.4 | 1.0 | 0.2 | - | 50.1 |
唇形科 Labiatae | 2 | 2 | 34.4 | - | - | - | - | - | 34.4 |
伞形科 Umbelliferae | 2 | 2 | 20.9 | 1.2 | - | 0.1 | - | 0.2 | 22.3 |
石竹科 Caryophyllaceae | 2 | 2 | 5.4 | 14.2 | - | - | 25.0 | - | 44.6 |
车前科 Plantaginaceae | 1 | 1 | 20.0 | - | - | - | 46.7 | - | 66.7 |
川续断科 Dipsacaceae | 1 | 1 | 40.0 | 11.7 | - | - | 8.9 | - | 60.6 |
大戟科 Euphorbiaceae | 1 | 1 | 15.0 | - | - | - | - | - | 15.0 |
景天科 Crassulaceae | 1 | 1 | - | - | - | - | - | - | 0 |
桔梗科 Campanulaceae | 1 | 1 | 18.5 | 2.8 | - | 0.3 | - | 0.6 | 22.2 |
蓼科 Polygonaceae | 1 | 1 | 22.5 | 41.3 | - | - | - | - | 63.8 |
柳叶菜科 Onagraceae | 1 | 1 | 30.0 | 22.5 | - | 10.0 | - | - | 62.5 |
龙胆科 Gentianaceae | 1 | 1 | 7.5 | 15.0 | - | - | 16.7 | - | 39.2 |
马钱科 Loganiaceae | 1 | 1 | 48.3 | - | 22.9 | - | - | - | 71.2 |
茜草科 Rubiaceae | 1 | 1 | 11.4 | 4.1 | 0.2 | 1.0 | - | - | 16.7 |
莎草科 Cyperaceae | 1 | 1 | 49.7 | 1.1 | 2.6 | 1.4 | 0.1 | - | 54.9 |
十字花科 Brassicaceae | 1 | 1 | 7.5 | 11.7 | - | - | 7.8 | - | 27.0 |
苋科 Amaranthaceae | 1 | 1 | - | - | - | - | - | - | 0 |
玄参科 Scrophulariaceae | 1 | 1 | - | - | - | 3.8 | 13.3 | - | 17.1 |
旋花科 Convolvulaceae | 1 | 1 | - | 22.5 | - | - | - | - | 22.5 |
图1 呼伦贝尔草原常见牧草的总病情指数。Ac, 冰草; As, 羽茅; Cp, 柄状薹草; Il, 马蔺; Lc, 羊草; Pc, 白头翁; Sb, 狼针草; Sd, 防风; Ts, 展枝唐松草; Vs, 野豌豆。
Fig. 1 Total disease index of common herbages in Hulun Buir grassland. Ac, Agropyron cristatum; As, Achnatherum sibiricum; Cp, Carex pediformis; Il, Iris lactea; Lc, Leymus chinensis; Pc, Pulsatilla chinensis; Sb, Stipa baicalensis; Sd, Saposhnikovia divaricata; Ts, Thalictrum squarrosum; Vs, Vicia sepium.
图2 呼伦贝尔草原天然草地中与羽茅邻生和非邻生常见禾草的病情指数分布。A, D, 羊草。B, E, 狼针草。C, F, 冰草。p经非参数Mann-Whitney U检验, p < 0.05表明邻生与非邻生差异显著。
Fig. 2 Frequency distribution of disease index of neighbor and non-neighbor plants with Achnatherum sibiricum of the native grassland in Hulun Buir grassland. A, D, Leymus chinensis. B, E, Stipa baicalensis. C, F, Agropyron cristatum. p was tested by nonparametric Mann-Whitney U test, p < 0.05 indicate significant difference between neighbor and non-neighber.
图3 不同内生真菌发酵液对4种病原真菌的平均抑制率(平均值±标准误, n = 5)。不同大写字母表示病原真菌间差异显著(p < 0.05)。EG, Epichloë gansuensis; ES, Epichloë sibiricum。Bs, 根腐离蠕孢; Cl, 新月弯孢; Ss, 核盘菌; St, 三叶草核盘菌。
Fig. 3 Mean inhibition rate of culture filtrate of different endophytes on four species of pathogenic fungi (mean ± SE, n = 5). Different uppercase letters indicate significant difference among pathogenic fungis (p < 0.05). EG, Epichloë gansuensis; ES, Epichloë sibiricum. Bs, Bipolaris sorokiniana; Cl, Curvularia lunata; Ss, Sclerotinia sclerotioru; St, Sclerotinia trifoliorum.
图4 感染不同内生真菌的羽茅离体叶片对病原真菌侵染后的平均病斑抑制率(平均值±标准误, n = 5)。不同大写字母表示不同病原真菌间差异显著(p < 0.05)。EF为无内生真菌感染的羽茅叶片; EG为感染Epichloë gansuensis的羽茅叶片; ES为感染Epichloë sibiricum的羽茅叶片。Bs, 根腐离蠕孢; Cl, 新月弯孢; Ss, 核盘菌; St, 三叶草核盘菌。
Fig. 4 Mean inhibition rate of disease area on detached leaves of Achnatherum sibiricum after inoculation with 4 pathogenic fungi (means ± SE, n = 5). Different uppercase letters indicate significant difference between different pathogenic fungis (p < 0.05). EF, endophyte-free A. sibiricum leaves; EG, Epichloë gansuensis-infected A. sibiricum leaves; ES, Epichloë sibiricum-infected A. sibiricum leaves; Bs, Bipolaris sorokiniana; Cl, Curvularia lunata; Ss, Sclerotinia sclerotioru; St, Sclerotinia trifoliorum.
因素 Factor | 羽茅 Achnatherum sibiricum | 羊草 Leymus chinensis | ||||||
---|---|---|---|---|---|---|---|---|
病斑数 Lesion number | 病斑长度 Lesion length | 病斑数 Lesion number | 病斑长度 Lesion length | |||||
F | p | F | p | F | p | F | p | |
E | 137.68 | <0.001 | 65.73 | <0.001 | ||||
P | 147.75 | <0.001 | 3.16 | 0.078 | 82.59 | <0.001 | 17.53 | <0.001 |
M | 1.32 | 0.271 | 1.83 | 0.165 | 4.87 | 0.011 | 0.81 | 0.451 |
P × M | 0.02 | 0.980 | 0.55 | 0.578 | 1.24 | 0.298 | 0.20 | 0.819 |
E × P | 4.74 | 0.032 | 2.33 | 0.130 | ||||
E × M | 0.13 | 0.871 | 0.31 | 0.734 | ||||
E × P × M | 0.26 | 0.774 | 0.15 | 0.861 |
表2 内生真菌(E)、病原真菌(P)和种植方式(M)对羽茅和羊草的病斑数以及病斑长度的多因素方差分析
Table 2 Multi-way ANOVA showing the effects of endophyte (E), pathogen (P) and mixture type (M) on lesion number and length of Achnatherum sibiricum and Leymus chinensis
因素 Factor | 羽茅 Achnatherum sibiricum | 羊草 Leymus chinensis | ||||||
---|---|---|---|---|---|---|---|---|
病斑数 Lesion number | 病斑长度 Lesion length | 病斑数 Lesion number | 病斑长度 Lesion length | |||||
F | p | F | p | F | p | F | p | |
E | 137.68 | <0.001 | 65.73 | <0.001 | ||||
P | 147.75 | <0.001 | 3.16 | 0.078 | 82.59 | <0.001 | 17.53 | <0.001 |
M | 1.32 | 0.271 | 1.83 | 0.165 | 4.87 | 0.011 | 0.81 | 0.451 |
P × M | 0.02 | 0.980 | 0.55 | 0.578 | 1.24 | 0.298 | 0.20 | 0.819 |
E × P | 4.74 | 0.032 | 2.33 | 0.130 | ||||
E × M | 0.13 | 0.871 | 0.31 | 0.734 | ||||
E × P × M | 0.26 | 0.774 | 0.15 | 0.861 |
图5 病原真菌侵染下不感染内生真菌(□)和感染内生真菌(■)羽茅的病斑数(A)和病斑长度(B)(平均值±标准误, n = 10)。不同小写字母表示差异显著(p < 0.05)。
Fig. 5 Mean number (A) and length of lesions (B) of endophyte-free (□) and endophyte-infected (■) Achnatherum sibiricum after inoculated by pathogenic fungi (means ± SE, n = 10). Different lowercase letters indicate significant difference (p < 0.05).
图6 病原真菌侵染下邻生植物羊草的病斑数(A)和病斑长度(B)(平均值±标准误, n = 10)。不同小写字母表示差异显著(p < 0.05)。Lc, 单种羊草; LcEF, 与EF为邻的混种羊草; LcEI, 与EI为邻的混种羊草。
Fig. 6 Mean number (A) and length of lesions (B) of neighbor Leymus chinensis inoculated by pathogenic fungi (means ± SE, n = 10). Different lowercase letters indicate significant difference (p < 0.05). Lc, L. chinensis grown in monoculture (mono); LcEF, L. chinensis grown with endophyte-free Achnatherum sibiricum; LcEI, L. chinensis grown with endophyte-infected A. sibiricum.
[1] | Anten NPR, Chen BJW (2021). Detect thy family: mechanisms, ecology and agricultural aspects of kin recognition in plants. Plant, Cell & Environment, 44, 1059-1071. |
[2] | Babikova Z, Gilbert L, Bruce TJA, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013). Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecology Letters, 16, 835-843. |
[3] | Bai KY, Peng XF (2000). Current situation and countermeasure of sustainable utilization of grassland resources in Inner Mongolia. Journal of China Agricultural Resources and Regional Planning, 21, 40-44. |
[ 白可喻, 彭秀芬 (2000). 内蒙古草地资源的现状与持续利用对策. 中国农业资源与区划, 21, 40-44.] | |
[4] | Bastías DA, Martínez-Ghersa MA, Ballaré CL, Gundel PE (2017). Epichloë fungal endophytes and plant defenses: not just alkaloids. Trends in Plant Science, 22, 939-948. |
[5] | Bilas RD, Bretman A, Bennett T (2021). Friends, neighbours and enemies: an overview of the communal and social biology of plants. Plant, Cell & Environment, 44, 997-1013. |
[6] | Chen ZY, Gao TD, Yan DF, Ni SK, Lu F, Shi AB (1997). Result of controlling sheath blight of rice with antagonistic bacteria (Bacillus subtilis 916) under field conditions. Chinese Journal of Biological Control, 13(2), 75-78. |
[ 陈志谊, 高太东, 严大富, 倪寿坤, 陆凡, 史阿宝 (1997). 枯草芽孢杆菌B-916防治水稻纹枯病的田间试验. 中国生物防治, 13(2), 75-78.] | |
[7] | Clay K (1990). Fungal endophytes of grasses. Annual Review of Ecology, Evolution, and Systematics, 21, 275-297. |
[8] | de Silva NI, Brooks S, Lumyong S, Hyde KD (2019). Use of endophytes as biocontrol agents. Fungal Biology Reviews, 33, 133-148. |
[9] | de Wit CT (1960). On competition. Verslagen Landbouwkundige Onderzoekigen, 66, 1-82. |
[10] | Erneberg M, Strandberg B, Strandberg M, Jensen B, Weiner J (2008). Effects of soil disturbance and disease on the growth and reproduction of Lolium perenne(Poaceae) introduced to semi-natural grasslands. Polish Journal of Ecology, 56, 593-604. |
[11] |
Fiorenza JE, Fernández PC, Omacini M (2021). Z-3-Hexenylacetate emissions induced by the endophyte Epichloë occultans at different levels of defoliation during the host plant’s life cycle. Fungal Ecology, 49, 101015. DOI: 10.1016/j.funeco.2020.101015.
DOI |
[12] | García-Parisi PA, Grimoldi AA, Omacini M (2014). Endophytic fungi of grasses protect other plants from aphid herbivory. Fungal Ecology, 9, 61-64. |
[13] | García-Parisi PA, Gavilán SA, Casas C, Gundel PE, Omacini M (2021). A fungal endophyte of an annual weed reduces host competitive ability and confers associational protection to wheat. Basic and Applied Ecology, 50, 16-24. |
[14] | Heil M, Karban R (2010). Explaining evolution of plant communication by airborne signals. Trends in Ecology & Evolution, 25, 137-144. |
[15] | Horwitz SB, Lothstein L, Manfredi JJ, Mellado W, Parness J, Roy SN, Schiff PB, Sorbara L, Zeheb R (1986). Taxol: mechanisms of action and resistance. Annals of the New York Academy of Sciences, 466, 733-744. |
[16] | Hou TJ (1987). Major herbage disease in Inner Mongolia. Plant Protection, 13, 17-18. |
[ 侯天爵 (1987). 内蒙古的主要牧草病害. 植物保护, 13, 17-18.] | |
[17] | Hou TJ (1993). Survey on the diseases in the nothern grassland of China. Grassland of China, 15, 56-60. |
[ 侯天爵 (1993). 我国北方草地病害调查及主要病害防治. 中国草地, 15, 56-60.] | |
[18] | James W (1971). An illustrated series of assessment keys for plant diseases, their preparation and usage. Canadian Plant Disease Survey, 51, 39-65. |
[19] |
Karban R, Shiojiri K, Ishizaki S, Wetzel WC, Evans RY (2013). Kin recognition affects plant communication and defence. Proceedings of the Royal Society B: Biological Sciences, 280, 20123062. DOI: 10.1098/rspb.2012.3062.
DOI |
[20] | Latch GCM, Christensen MJ (1985). Artificial infection of grasses with endophytes. Annals of Applied Biology, 107, 17-24. |
[21] | Li B (1997). The rangeland degradation in north China and its preventive strategy. Scientia Agricultura Sinica, 30, 1-9. |
[ 李博 (1997). 中国北方草地退化及其防治对策. 中国农业科学, 30, 1-9.] | |
[22] |
Li T, Blande JD, Gundel PE, Helander M, Saikkonen K (2014). Epichloë endophytes alter inducible indirect defences in host grasses. PLOS ONE, 9, e101331. DOI: 10.1371/journal.pone.0101331.
DOI |
[23] | Li X, Han R, Ren AZ, Gao YB (2010). Using high-temperature treatment to construct endophyte-free Achnatherum sibiricum. Microbiology China, 37, 1395-1400. |
[ 李夏, 韩荣, 任安芝, 高玉葆 (2010). 高温处理构建不感染内生真菌羽茅种群的方法探讨. 微生物学通报, 37, 1395-1400.] | |
[24] |
Liu H, Chen J, Qin TZ, Shi XJ, Gao YB, Ren AZ (2020). Removal of soil microbes alters interspecific competitiveness of Epichloë endophyte-infected over endophyte- free Leymus chinensis. Microorganisms, 8, 219. DOI: 10.3390/microorganisms8020219.
DOI |
[25] |
Liu JM, Ge XY, Fan XW, Liu H, Gao YB, Ren AZ (2021). The inhibitory effect of endophyte-infected tall fescue on white clover can be alleviated by Glomus mosseae instead of rhizobia. Microorganisms, 9, 109. DOI: 10.3390/microorganisms9010109.
DOI |
[26] | Liu Y, Zhang YW, Nan ZB, Duan TY (2016). Progress of research into the effects of native grassland management practices on plant disease. Acta Ecologica Sinica, 36, 4211-4220. |
[ 刘勇, 张雅雯, 南志标, 段廷玉 (2016). 天然草地管理措施对植物病害的影响研究进展. 生态学报, 36, 4211-4220.] | |
[27] | Malinowski DP, Alloush GA, Belesky DP (1998). Evidence for chemical changes on the root surface of tall fescue in response to infection with the fungal endophyte Neotyphodium coenophialum. Plant and Soil, 205, 1-12. |
[28] | Müller CB, Krauss J (2005). Symbiosis between grasses and asexual fungal endophytes. Current Opinion in Plant Biology, 8, 450-456. |
[29] |
Murphy B, Doohan F, Hodkinson T (2018). From concept to commerce: developing a successful fungal endophyte inoculant for agricultural crops. Journal of Fungi, 4, 24. DOI: 10.3390/jof4010024.
DOI |
[30] | Nan ZB, Li CJ (1994). The directory of forage grasses disease in China. Pratacultural Science, 13(Suppl.), 1-160. |
[ 南志标, 李春杰 (1994). 中国牧草真菌病害名录. 草业科学, 13(增刊), 1-160.] | |
[31] | Niu Y, Gao Y, Li GP, Ren AZ, Gao YB (2016). Effect of different species of endophytes on fungal disease resistance of Achnatherum sibiricum. Chinese Journal of Plant Ecology, 40, 925-932. |
[ 牛毅, 高远, 李隔萍, 任安芝, 高玉葆 (2016). 内生真菌对羽茅抗病性的影响. 植物生态学报, 40, 925-932.] | |
[32] | Olowe OM, Akanmu AO, Asemoloye MD (2020). Exploration of microbial stimulants for induction of systemic resistance in plant disease management. Annals of Applied Biology, 177, 282-293. |
[33] | Pańka D, Piesik D, Jeske M, Baturo-Cieśniewska A (2013a). Production of phenolics and the emission of volatile organic compounds by perennial ryegrass (Lolium perenne L.)/Neotyphodium lolii association as a response to infection by Fusarium poae. Journal of Plant Physiology, 170, 1010-1019. |
[34] | Pańka D, West CP, Guerber CA, Richardson MD (2013b). Susceptibility of tall fescue to Rhizoctonia zeae infection as affected by endophyte symbiosis. Annals of Applied Biology, 163, 257-268. |
[35] |
Patchett A, Newman JA (2021). Comparison of plant metabolites in root exudates of Lolium perenne infected with different strains of the fungal endophyte Epichloë festucae var. lolii. Journal of Fungi, 7, 148. DOI: 10.3390/jof7020148.
DOI |
[36] |
Pélissier R, Violle C, Morel JB (2021). Plant immunity: good fences make good neighbors? Current Opinion in Plant Biology, 62, 102045. DOI: 10.1016/j.pbi.2021.102045.
DOI |
[37] | Peng D, Li SD, Wang JX, Chen CJ, Zhou MG (2014). Integrated biological and chemical control of rice sheath blight by Bacillus subtilis NJ-18 and jinggangmycin. Pest Management Science, 70, 258-263. |
[38] | Pérez LI, Gundel PE, Omacini M (2016). Can the defensive mutualism between grasses and fungal endophytes protect non-symbiotic neighbours from soil pathogens? Plant and Soil, 405, 289-298. |
[39] | Pérez LI, Gundel PE, Zabalgogeazcoa I, Omacini M (2020). An ecological framework for understanding the roles of Epichloë endophytes on plant defenses against fungal diseases. Fungal Biology Reviews, 34, 115-125. |
[40] | Platt TG, Bever JD (2009). Kin competition and the evolution of cooperation. Trends in Ecology & Evolution, 24, 370-377. |
[41] | Qawasmeh A, Obied HK, Raman A, Wheatley W (2012). Influence of fungal endophyte infection on phenolic content and antioxidant activity in grasses: interaction between Lolium perenne and different strains of Neotyphodium lolii. Journal of Agricultural and Food Chemistry, 60, 3381-3388. |
[42] |
Qin JH, Gao Y, Liu H, Zhou Y, Ren AZ, Gao YB (2016). Effect of endophyte infection and clipping treatment on resistance and tolerance of Achnatherum sibiricum. Frontiers in Microbiology, 7, 1988. DOI: 10.3389/fmicb.2016.01988.
DOI |
[43] |
Raymaekers K, Ponet L, Holtappels D, Berckmans B, Cammue BPA (2020). Screening for novel biocontrol agents applicable in plant disease management: a review. Biological Control, 144, 104240. DOI: 10.1016/j.biocontrol.2020. 104240.
DOI |
[44] | Rey T, Dumas B (2017). Plenty is no plague: streptomyces symbiosis with crops. Trends in Plant Science, 22, 30-37. |
[45] | Riedell WE, Kieckhefer RE, Petroski RJ, Powell RG (1991). Naturally-occurring and synthetic loline alkaloid derivatives: insect feeding behavior modification and Toxicity. Journal of Entomological Science, 26, 122-129. |
[46] | Saikkonen K, Ruokolainen K, Huitu O, Gundel PE, Piltti T, Hamilton CE, Helander M (2013). Fungal endophytes help prevent weed invasions. Agriculture, Ecosystems & Environment, 165, 1-5. |
[47] | Schardl CL, Florea S, Pan J, Nagabhyru P, Bec S, Calie PJ (2013). The epichloae: alkaloid diversity and roles in symbiosis with grasses. Current Opinion in Plant Biology, 16, 480-488. |
[48] |
Shi XJ, Qin TZ, Liu H, Wu M, Li JJ, Shi YS, Gao YB, Ren AZ (2020). Endophytic fungi activated similar defense strategies of Achnatherum sibiricum host to different trophic types of pathogens. Frontiers in Microbiology, 11, 1607. DOI: 10.3389/fmicb.2020.01607.
DOI |
[49] |
Song YY, Ye M, Li CY, He XH, Zhu-Salzman K, Wang RL, Su YJ, Luo SM, Zeng RS (2014). Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants. Scientific Reports, 4, 3915. DOI: 10.1038/srep03915.
DOI |
[50] |
Song YY, Zeng RS, Xu JF, Li J, Shen X, Yihdego WG (2010). Interplant communication of tomato plants through underground common mycorrhizal networks. PLOS ONE, 5, e13324. DOI: 10.1371/journal.pone.0013324.
DOI |
[51] | Steinebrunner F, Schiestl FP, Leuchtmann A (2008a). Ecological role of volatiles produced by Epichloë: differences in antifungal toxicity. FEMS Microbiology Ecology, 64, 307-316. |
[52] | Steinebrunner F, Twele R, Francke W, Leuchtmann A, Schiestl FP (2008b). Role of odour compounds in the attraction of gamete vectors in endophytic Epichloë fungi. New Phytologist, 178, 401-411. |
[53] | Stierle A, Strobel G, Stierle D (1993). Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 260, 214-216. |
[54] | Subrahmaniam HJ, Libourel C, Journet EP, Morel JB, Muños S, Niebel A, Raffaele S, Roux F (2018). The genetics underlying natural variation of plant-plant interactions, a beloved but forgotten member of the family of biotic interactions. The Plant Journal, 93, 747-770. |
[55] | Tanaka A, Takemoto D, Chujo T, Scott B (2012). Fungal endophytes of grasses. Current Opinion in Plant Biology, 15, 462-468. |
[56] |
Vikuk V, Young CA, Lee ST, Nagabhyru P, Krischke M, Mueller MJ, Krauss J (2019). Infection rates and alkaloid patterns of different grass species with systemic Epichloë endophytes. Applied and Environmenta Microbiology, 85, e00465-9. DOI: 10.1128/aem.00465-19.
DOI |
[57] |
Vurukonda SSKP, Giovanardi D, Stefani E (2018). Plant growth promoting and biocontrol activity of streptomyces spp. as endophytes. International Journal of Molecular Sciences, 19, 952. DOI: 10.3390/ijms19040952.
DOI |
[58] | Wang NQ, Kong CH, Wang P, Meiners SJ (2021). Root exudate signals in plant-plant interactions. Plant, Cell & Environment, 44, 1044-1058. |
[59] | Wang XY, Zhou Y, Ren AZ, Gao YB (2014). Effect of endophyte infection on fungal disease resistance of Leymus chinensis. Acta Ecologica Sinica, 34, 6789-6796. |
[ 王欣禹, 周勇, 任安芝, 高玉葆 (2014). 内生真菌感染对宿主羊草抗病性的影响. 生态学报, 34, 6789-6796.] | |
[60] | Wei YK, Gao YB, Xu H, Su D, Zhang X, Wang YH, Lin F, Chen L, Nie LY, Ren AZ (2006). Occurrence of endophytes in grasses native to Northern China. Grass and Forage Science, 61, 422-429. |
[61] | Wei YK, Gao YB, Zhang X, Su D, Wang YH, Xu H, Lin F, Ren AZ, Chen L, Nie LY (2007). Distribution and diversity of Epichloë/Neotyphodium fungal endophytes from different populations of Achnatherum sibiricum(Poaceae) in the Inner Mongolia Steppe, China. Fungal Diversity, 24, 329-345. |
[62] | Xia C, Li NN, Zhang YW, Li CJ, Zhang XX, Nan ZB (2018). Role of Epichloë endophytes in defense responses of cool-season grasses to pathogens: a review. Plant Disease, 102, 2061-2073. |
[63] | Yue Q, Miller CJ, White JF, Richardson MD (2000). Isolation and characterization of fungal inhibitors from Epichloë festucae. Journal of Agricultural and Food Chemistry, 48, 4687-4692. |
[64] | Yue Q, Wang CL, Gianfagna TJ, Meyer WA (2001). Volatile compounds of endophyte-free and infected tall fescue (Festuca arundinacea Schreb.). Phytochemistry, 58, 935-941. |
[65] | Zhang X, Ren AZ, Wei YK, Lin F, Li C, Liu ZJ, Gao YB (2009). Taxonomy, diversity and origins of symbiotic endophytes of Achnatherum sibiricum in the Inner Mongolia Steppe of China. FEMS Microbiology Letters, 301, 12-20. |
[66] |
Zheng RH, Li SJ, Zhang X, Zhao CQ (2021). Biological activities of some new secondary metabolites isolated from endophytic fungi: a review study. International Journal of Molecular Sciences, 22, 959. DOI: 10.3390/ijms22020959.
DOI |
[67] | Zin NA, Badaluddin NA (2020). Biological functions of Trichoderma spp. for agriculture applications. Annals of Agricultural Sciences, 65, 168-178. |
[1] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[2] | 秦天姿, 任安芝, 樊晓雯, 高玉葆. 内生真菌种类和母本基因型对内生真菌-禾草共生体叶形状和叶面积的影响[J]. 植物生态学报, 2020, 44(6): 654-660. |
[3] | 吴曼, 李娟娟, 刘金铭, 任安芝, 高玉葆. 刈割干扰和养分添加条件下Epichloë内生真菌感染对羽茅所在群落多样性和生产力的影响[J]. 植物生态学报, 2019, 43(2): 85-93. |
[4] | 李春杰, 姚祥, 南志标. 醉马草内生真菌共生体研究进展[J]. 植物生态学报, 2018, 42(8): 793-805. |
[5] | 孙茜, 薛子可, 解琳琳, 贺学礼, 赵丽莉. 沙冬青及其伴生植物深色有隔内生真菌物种多样性[J]. 植物生态学报, 2017, 41(7): 729-737. |
[6] | 牛毅, 高远, 李隔萍, 任安芝, 高玉葆. 内生真菌对羽茅抗病性的影响[J]. 植物生态学报, 2016, 40(9): 925-932. |
[7] | 孙茜, 贺超, 贺学礼, 赵丽莉. 沙冬青与伴生植物深色有隔内生真菌定殖规律及其与土壤因子的相关性[J]. 植物生态学报, 2015, 39(9): 878-889. |
[8] | 李秀璋, 姚祥, 李春杰, 南志标. 禾草内生真菌作为生防因子的潜力分析[J]. 植物生态学报, 2015, 39(6): 621-634. |
[9] | 刘慧, 陈薇, 周勇, 李夏, 任安芝, 高玉葆. 内生真菌和丛枝菌根真菌对羊草生长的影响[J]. 植物生态学报, 2015, 39(5): 477-485. |
[10] | 贾彤, 任安芝, 魏茂英, 尹立佳, 高玉葆. 不同传播方式的内生真菌感染对羽茅的生理生态影响[J]. 植物生态学报, 2015, 39(1): 72-80. |
[11] | 闫姣,贺学礼,张亚娟,许伟,张娟,赵丽莉. 荒漠北沙柳根系丛枝菌根真菌和黑隔内生真菌定殖状况[J]. 植物生态学报, 2014, 38(9): 949-958. |
[12] | 周勇, 郑璐雨, 朱敏杰, 李夏, 任安芝, 高玉葆. 内生真菌感染对禾草宿主生境土壤特性和微生物群落的影响[J]. 植物生态学报, 2014, 38(1): 54-61. |
[13] | 魏宇昆, 高玉葆. 禾草内生真菌的遗传多样性及其共生关系[J]. 植物生态学报, 2008, 32(2): 512-520. |
[14] | 魏宇昆, 高玉葆, 李川, 许华, 任安芝. 内蒙古中东部草原羽茅内生真菌的遗传多样性[J]. 植物生态学报, 2006, 30(4): 640-649. |
[15] | 梁宇, 陈世苹, 高玉葆, 任安芝. 内生真菌感染对干旱胁迫下黑麦草生长的影响[J]. 植物生态学报, 2002, 26(5): 621-626. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19