植物生态学报 ›› 2021, Vol. 45 ›› Issue (12): 1292-1302.DOI: 10.17521/cjpe.2021.0230
所属专题: 植物功能性状
代景忠1, 白玉婷2, 卫智军3, 张楚4, 闫瑞瑞4,*()
收稿日期:
2021-06-21
接受日期:
2021-07-25
出版日期:
2021-12-20
发布日期:
2021-09-29
通讯作者:
闫瑞瑞
作者简介:
*(yanruirui@caas.cn)基金资助:
DAI Jing-Zhong1, BAI Yu-Ting2, WEI Zhi-Jun3, ZHANG Chu4, YAN Rui-Rui4,*()
Received:
2021-06-21
Accepted:
2021-07-25
Online:
2021-12-20
Published:
2021-09-29
Contact:
YAN Rui-Rui
Supported by:
摘要:
该研究以呼伦贝尔羊草(Leymus chinensis)草甸草原割草场为研究对象, 通过对羊草营养生长期内功能性状变化的观测, 研究切根对羊草叶、茎、植株功能性状的影响, 为干扰状态下羊草植株的响应机制和天然割草场植被的恢复提供参考。运用9QP-830型草地破土切根机对草地进行切根处理, 分期测定羊草单株高度、叶长、自然叶宽、展开叶宽、茎粗、茎长、叶质量、茎质量、单株质量等多个功能性状, 通过统计分析切根前后性状的差异, 拟合其变化方程, 探索影响羊草产量的表型性状和质量性状的驱动因子。研究结果显示: (1)切根显著降低了羊草的比叶面积、总叶质量、茎长/茎粗、茎干物质含量, 显著提高了平均叶长和叶面积, 整体上提高了单株质量、株高和植株干物质含量。(2)对照和切根羊草叶、茎功能性状均呈二次曲线变化, 拟合效果达显著或极显著水平。除叶干物质含量、茎干物质含量和茎长/茎粗外, 其余叶、茎功能性状均呈先升高后降低的变化趋势。(3)除叶片数外, 羊草各表型性状之间均呈极显著的正相关关系, 叶质量、茎质量、单株质量之间呈极显著的正相关关系, 比叶面积与质量性状关系不显著。(4)总叶长和总叶质量分别是羊草单株质量表型性状和质量性状之中的最大驱动因子。羊草功能性状间存在协同变化的关系, 切根一定程度上使羊草地上植株的生活史提前。
代景忠, 白玉婷, 卫智军, 张楚, 闫瑞瑞. 切根对羊草营养生长期内植物功能性状的影响. 植物生态学报, 2021, 45(12): 1292-1302. DOI: 10.17521/cjpe.2021.0230
DAI Jing-Zhong, BAI Yu-Ting, WEI Zhi-Jun, ZHANG Chu, YAN Rui-Rui. Effects of root-cutting in the vegetative phase on plant functional traits of Leymus chinensis. Chinese Journal of Plant Ecology, 2021, 45(12): 1292-1302. DOI: 10.17521/cjpe.2021.0230
图1 羊草叶功能性状的差异和变化趋势(平均值±标准误)。LA, 展叶面积; LDMC, 叶干物质含量; LL, 平均叶长; LTL, 总叶长; SLA, 比叶面积; TLM, 总叶质量。y, 二次曲线拟合方程(对照); Y, 二次曲线拟合方程(切根)。**、*表示分别在0.01、0.05水平上差异显著(双尾检测)。
Fig. 1 Dynamics of different leaf functional traits of Leymus chinensis without (CK) and with root-cutting (CR)(mean ± SE). LA, leaf area; LDMC, leaf dry matter fraction; LL, average leaf length; LTL, total leaf length; SLA, specific leaf area; TLM, total leaf mass. y, the quadratic curve fitting equation for CK; Y, the quadratic curve fitting equation for root-cutting. ** and * indicate differences at the 0.01 and 0.05 level, respectively.
图2 羊草叶宽的差异及变化趋势(平均值±标准误)。ALW, 展开叶宽; AMN, 展自叶差; LW, 叶宽; NLW, 自然叶宽。y, 二次曲线拟合方程(对照, CK): y1, 展开叶宽; y2, 展自叶差; y3, 自然叶宽。Y, 二次曲线拟合方程(切根, CR): Y1, 展开叶宽; Y2, 展自叶差; Y3, 自然叶宽。*表示在0.05水平上差异显著(双尾检测)。
Fig. 2 Dynamics of leaf width of Leymus chinensis (mean ± SE). ALW, spread leaf width; AMN, difference between spread leaf width and natural leaf width; LW, leaf width. NLW, natural leaf width. y, the quadratic curve fitting equation for control (CK): y1, spread leaf width; y2, difference between spread leaf width and natural leaf width; y3, natural leaf width. Y, the quadratic curve fitting equation for root-cutting (CR): Y1, spread leaf width; Y2, difference between spread leaf width and natural leaf width; Y3, natural leaf width. * indicate differences at the 0.05 level.
图3 羊草茎功能性状的差异及变化趋势(平均值±标准误)。SDMC, 茎干物质含量; SL, 茎长; SLWR, 茎长/茎粗; SW, 茎粗。y, 二次曲线拟合方程(对照); Y, 二次曲线拟合方程(切根)。**、*表示分别在0.01、0.05水平上差异显著(双尾检测)。
Fig. 3 Dynamics of different stem functional traits of Leymus chinensis (mean ± SE). SDMC, stem dry matter fraction; SL, stem length; SLWR, stem length/stem diameter; SW, stem diameter. y, the quadratic curve fitting equation for control (CK); Y, the quadratic curve fitting equation for root-cutting (CR). ** and * indicate differences at the 0.01 and 0.05 level, respectively.
图4 羊草植株功能性状的差异及变化趋势(平均值±标准误)。AB, 单株质量; PDMC, 单株干物质含量; PH, 株高; SLR, 茎质量/总叶质量。y, 二次曲线拟合方程(对照); Y, 二次曲线拟合方程(切根)。*表示在0.05水平上差异显著。
Fig. 4 Dynamics of plant functional traits of Leymus chinensis (mean ± SE). AB, aboveground biomass; PDMC, aboveground dry matter fraction; PH, plant height; SLR, stem mass/total leaf mass. y, the quadratic curve fitting equation for control (CK); Y, the quadratic curve fitting equation for root-cutting (CR). * indicate significant correlation at the 0.05 level.
LN | LL | LTL | NLW | ALW | AMN | LA | SW | SL | PH | |
---|---|---|---|---|---|---|---|---|---|---|
LN | 1 | |||||||||
LL | 0.01 | 1 | ||||||||
LTL | 0.21 | 0.72** | 1 | |||||||
NLW | 0.01 | 0.79** | 0.72** | 1 | ||||||
ALW | -0.01 | 0.88** | 0.76** | 0.91** | 1 | |||||
AMN | -0.02 | 0.88** | 0.74** | 0.82** | 0.98** | 1 | ||||
LA | -0.03 | 0.96** | 0.77** | 0.89** | 0.97** | 0.95** | 1 | |||
SW | 0.11 | 0.80** | 0.73** | 0.84** | 0.83** | 0.78** | 0.85** | 1 | ||
SL | 0.14 | 0.63** | 0.89** | 0.61** | 0.63** | 0.60** | 0.66** | 0.68** | 1 | |
PH | 0.12 | 0.90** | 0.81** | 0.79** | 0.82** | 0.78** | 0.89** | 0.87** | 0.81** | 1 |
表1 羊草叶、茎表型性状之间的协同变化关系
Table 1 Regression coefficients between phenotypic traits of Leymus chinensis
LN | LL | LTL | NLW | ALW | AMN | LA | SW | SL | PH | |
---|---|---|---|---|---|---|---|---|---|---|
LN | 1 | |||||||||
LL | 0.01 | 1 | ||||||||
LTL | 0.21 | 0.72** | 1 | |||||||
NLW | 0.01 | 0.79** | 0.72** | 1 | ||||||
ALW | -0.01 | 0.88** | 0.76** | 0.91** | 1 | |||||
AMN | -0.02 | 0.88** | 0.74** | 0.82** | 0.98** | 1 | ||||
LA | -0.03 | 0.96** | 0.77** | 0.89** | 0.97** | 0.95** | 1 | |||
SW | 0.11 | 0.80** | 0.73** | 0.84** | 0.83** | 0.78** | 0.85** | 1 | ||
SL | 0.14 | 0.63** | 0.89** | 0.61** | 0.63** | 0.60** | 0.66** | 0.68** | 1 | |
PH | 0.12 | 0.90** | 0.81** | 0.79** | 0.82** | 0.78** | 0.89** | 0.87** | 0.81** | 1 |
LWM | TLM | SM | AB | LDMC | SDMC | PDMC | SLA | |
---|---|---|---|---|---|---|---|---|
LWM | 1 | |||||||
TLM | 0.87** | 1 | ||||||
SM | 0.73** | 0.76** | 1 | |||||
AB | 0.87** | 0.98** | 0.88** | 1 | ||||
LDMC | 0.01 | 0.27 | -0.01 | 0.19 | 1 | |||
SDMC | -0.48** | -0.23 | -0.30 | -0.27 | 0.594* | 1 | ||
PDMC | -0.14 | 0.14 | -0.11 | 0.07 | 0.97** | 0.78** | 1 | |
SLA | 0.09 | 0.04 | 0.22 | 0.10 | 0.20 | -0.09 | 0.13 | 1 |
表2 羊草质量性状之间的协同变化关系
Table 2 Regression coefficients between quantitative traits of Leymus chinensis
LWM | TLM | SM | AB | LDMC | SDMC | PDMC | SLA | |
---|---|---|---|---|---|---|---|---|
LWM | 1 | |||||||
TLM | 0.87** | 1 | ||||||
SM | 0.73** | 0.76** | 1 | |||||
AB | 0.87** | 0.98** | 0.88** | 1 | ||||
LDMC | 0.01 | 0.27 | -0.01 | 0.19 | 1 | |||
SDMC | -0.48** | -0.23 | -0.30 | -0.27 | 0.594* | 1 | ||
PDMC | -0.14 | 0.14 | -0.11 | 0.07 | 0.97** | 0.78** | 1 | |
SLA | 0.09 | 0.04 | 0.22 | 0.10 | 0.20 | -0.09 | 0.13 | 1 |
图5 羊草表型性状和质量性状对单株质量大小的影响。CK, 对照; CR, 切根。ALR, 叶长/展开叶宽; ALW, 展开叶宽; AMN, 展自叶差; LA, 展叶面积; LDMC, 叶干物质含量; LL, 平均叶长; LN, 叶片数; LTL, 总叶长; LWM, 单叶质量; NLR, 叶长/自然叶宽; NLW, 自然叶宽; PDMC, 单株干物质含量; PH, 株高; SDMC, 茎干物质含量; SL, 茎长; SLA, 比叶面积; SLR, 茎质量/总叶质量; SLWR, 茎长/茎粗; SM, 茎质量; SW, 茎粗; TLM, 总叶质量。
Fig. 5 Effects of phenotypic and mass traits of Leymus chinensis. CK, control; CR, root-cutting. ALR, LL/ALW; ALW, spread leaf width; AMN, difference between spread leaf width and natural leaf width; LA, spread leaf area; LDMC, leaf dry matter fraction; LL, average leaf length; LN, leaf number; LTL, total leaf length; LWM, average leaf mass; NLR, LL/NLW; NLW, natural leaf width; PDMC, plant dry matter fraction; PH, plant height; SDMC, stem dry matter fraction; SL, stem length; SLA, specific leaf area; SLR, SM/TLM; SLWR, SL/SW; SM, stem mass; SW, stem diameter; TLM, total leaf mass.
图6 不同生育期内羊草表型功能性状对单株质量的贡献率。CK, 对照; CR, 切根。ALR, 叶长/展开叶宽; ALW, 展开叶宽; AMN, 展自叶差; LA, 展叶面积; LL, 平均叶长; LN, 叶片数; LTL, 总叶长; NLR, 叶长/自然叶宽; NLW, 自然叶宽; PH, 株高; SL, 茎长; SLWR, 茎长/茎粗; SW, 茎粗。
Fig. 6 Weighting factors of phenotypic functional traits to plant mass of Leymus chinensis on different measurement dates. CK, control; CR, root-cutting. ALR, LL/ALW; ALW, spread leaf width; AMN, difference between spread leaf width and natural leaf width; LA, spread leaf area; LL, average leaf length; LN, leaf number; LTL, total leaf length; NLR, LL/NLW; NLW, natural leaf width; PH, plant height; SL, stem length; SLWR, stem length/stem diameter; SW, stem diameter.
[1] |
Bai WM, Xun F, Li Y, Zhang WH, Li LH (2010). Rhizome severing increases root lifespan of Leymus chinensis in a typical steppe of Inner Mongolia. PLOS ONE, 5, e12125. DOI: 10.1371/journal.pone.0012125.
DOI URL |
[2] | Cao J (2014). The Effects of Vertical Cutting Roots on Community Characteristics, Photosynthetic Characteristics and Rhizome Nutrient of Leymus chinensis. Master degree dissertation, Jilin Agricultural University, Changchun. |
[ 曹杰 (2014). 垂直切根对羊草草地群落特征、羊草光合特性及根茎养分的影响. 硕士学位论文, 吉林农业大学, 长春.] | |
[3] |
Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology, 38, 1135-1153.
DOI URL |
[ 陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.]
DOI |
|
[4] |
Craine JM, Froehle J, Tilman DG, Wedin DA, Chapin III FS (2001). The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos, 93, 274-285.
DOI URL |
[5] |
Crowley PH, Stieha CR, McLetchie DN (2005). Overgrowth competition, fragmentation and sex-ratio dynamics: a spatially explicit, sub-individual-based model. Journal of Theoretical Biology, 233, 25-42.
PMID |
[6] | Dai JZ (2016). Effects of Root-cutting and Fertilization on Vegetation and Soil in Mowing Pasture of Lymus chinensis Meadow Steppe. PhD dissertation, Inner Mongolia Agricultural University, Hohhot. |
[ 代景忠 (2016). 切根与施肥对羊草草甸草原割草场植被与土壤的影响. 博士学位论文, 内蒙古农业大学, 呼和浩特.] | |
[7] | Dong M (2011). Clonal Plant Ecology. Science Press, Beijing. |
[ 董鸣 (2011). 克隆植物生态学. 科学出版社, 北京.] | |
[8] |
Donovan LA, Maherali H, Caruso CM, Huber H, de Kroon H (2011). The evolution of the worldwide leaf economics spectrum. Trends in Ecology & Evolution, 26, 88-95.
DOI URL |
[9] | Du ZC, Yang ZG (1988). A preliminary study on light-photosynthetic characteristic in the leaves at various age for Aneurolepidium chinense. Journal of Integrative Plant Biology, 30, 196-206. |
[10] |
Flynn DFB, Mirotchnick N, Jain M, Palmer MI, Naeem S (2011). Functional and phylogenetic diversity as predictors of biodiversity-ecosystem-function relationships. Ecology, 92, 1573-1581.
PMID |
[11] | Gao RF, Zhang TY, Bai Y, Cui H, Liu ZY (2019). Effects of different improvement measures on species diversity and community productivity of degraded mowing grassland. Chinese Journal of Grassland, 41, 98-104. |
[ 高若凡, 张天宇, 白杨, 崔浩, 刘志英 (2019). 不同改良措施对退化割草场物种多样性及群落生产力的影响. 中国草地学报, 41, 98-104.] | |
[12] | Gao ZC, Tian JN, Huo YS, Shu K, Bao Y (2017). Effects of root pruning and shallow plowing on soil properties and plant communities in deteriorated steppe. Acta Ecologica Sinica, 37, 3824-3829. |
[ 高志成, 田佳妮, 霍艳双, 舒锴, 宝音陶格涛 (2017). 切根和浅耕翻措施对退化草地生长季土壤性质及植物群落的影响. 生态学报, 37, 3824-3829.] | |
[13] | Guo MR, Sun SY (2016). Review of plant reproductive allocation and environmental adaptation strategies. Journal of Northern Agriculture, 44, 99-103. |
[ 郭茉苒, 孙淑英 (2016). 植物生殖分配及其适应环境策略研究进展. 北方农业学报, 44, 99-103.] | |
[14] | Han TT, Tang X, Ren H, Wang J, Liu N, Guo QF (2021). Community/Ecosystem functional diversity: measurements and development. Acta Ecologica Sinica, 41, 3286-3295. |
[ 韩涛涛, 唐玄, 任海, 王俊, 刘楠, 郭勤峰 (2021). 群落/生态系统功能多样性研究方法及展望. 生态学报, 41, 3286-3295.] | |
[15] |
He YY, Guo SL, Wang Z (2019). Research progress of trade-off relationships of plant functional traits. Chinese Journal of Plant Ecology, 43, 1021-1035.
DOI URL |
[ 何芸雨, 郭水良, 王喆 (2019). 植物功能性状权衡关系的研究进展. 植物生态学报, 43, 1021-1035.]
DOI |
|
[16] | Hou Q, Wang YS, Shi GH, Yang ZL (2010). Grass growing characters and major ecological factors analysis for typical steppe in Xilinguole. Chinese Agricultural Science Bulletin, 26, 1-7. |
[ 侯琼, 王英舜, 师桂花, 杨泽龙 (2010). 锡林郭勒典型草原牧草生长特性与主要生态因子分析. 中国农学通报, 26, 1-7.] | |
[17] | Hu J, Hou XY, Ding Y, Bai J (2016). The relationship between individual above-ground biomass and morphological characteristics of leaf and stem of Leymus chinensis. Journal of Inner Mongolia University (Natural Science Edition), 47, 609-616. |
[ 胡静, 侯向阳, 丁勇, 白金 (2016). 羊草地上生物量与其茎、叶形态特征参数关系的研究. 内蒙古大学学报(自然科学版), 47, 609-616.] | |
[18] | Jin S, Yan SJ, Huang LJ, Chen Y, Ma WW, Wang YX, Wang Z (2019). Research progress in trade-offs among leaf functional traits. Journal of Sichuan Forestry Science and Technology, 40, 96-103. |
[ 靳莎, 闫淑君, 黄柳菁, 陈莹, 马雯雯, 王云霄, 王喆 (2019). 植物叶功能性状间的权衡研究进展. 四川林业科技, 40, 96-103.] | |
[19] |
Lei LJ, Kong DL, Li XM, Zhou ZX, Li GY (2016). Plant functional traits, functional diversity, and ecosystem functioning: current knowledge and perspectives. Biodiversity Science, 24, 922-931.
DOI URL |
[ 雷羚洁, 孔德良, 李晓明, 周振兴, 李国勇 (2016). 植物功能性状、功能多样性与生态系统功能: 进展与展望. 生物多样性, 24, 922-931.]
DOI |
|
[20] | Li XF, Liu J, Liu GS (2003). Correlation and path analysis on quantitative characters of Leymus chinensis. Acta Agrestia Sinica, 11, 42-47. |
[ 李晓峰, 刘杰, 刘公社 (2003). 羊草若干数量性状的相关性及通径分析. 草地学报, 11, 42-47.] | |
[21] |
Li XL, Hou XY, Wu XH, Sa RL, Ji L, Chen HJ, Liu ZY, Ding Y (2014). Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe. Chinese Journal of Plant Ecology, 38, 440-451.
DOI URL |
[ 李西良, 侯向阳, 吴新宏, 萨茹拉, 纪磊, 陈海军, 刘志英, 丁勇 (2014). 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应. 植物生态学报, 38, 440-451.]
DOI |
|
[22] | Li YJ, Ji SQ, Zhang SW, Chen CC (2009). The determination method of leaf area on Leymus chinensis. Journal of Anhui Agricultural Sciences, 37, 6819. |
[ 李亚军, 纪澍琴, 张守伟, 陈成成 (2009). 羊草叶面积的测定方法. 安徽农业科学, 37, 6819.] | |
[23] |
Lienin P, Kleyer M (2012). Plant trait responses to the environment and effects on ecosystem properties. Basic and Applied Ecology, 13, 301-311.
DOI URL |
[24] | Lin XL, Xu ZZ, Wang YH, Zhou GS (2008). Modeling the responses of leaf photosynthetic parameters of Leymus chinensis to drought and rewatering. Acta Ecologica Sinica, 28, 4718-4724. |
[ 林祥磊, 许振柱, 王玉辉, 周广胜 (2008). 羊草(Leymus chinensis)叶片光合参数对干旱与复水的响应机理与模拟. 生态学报, 28, 4718-4724.] | |
[25] | Liu XJ, Ma KP (2015). Plant functional traits-concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[26] | Meng TT, Ni J, Wang GH (2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165. |
[ 孟婷婷, 倪健, 王国宏 (2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.]
DOI |
|
[27] | Ping XY, Jia BR, Yuan WP, Wang FY, Wang YH, Zhou L, Xu ZZ, Zhou GS (2007). Biomass allocation of Leymus chinensis population: a dynamic simulation study. Chinese Journal of Applied Ecology, 18, 2699-2704. |
[ 平晓燕, 贾丙瑞, 袁文平, 王风玉, 王玉辉, 周莉, 许振柱, 周广胜 (2007). 羊草种群生物量分配动态模拟. 应用生态学报, 18, 2699-2704.] | |
[28] | Qi LX (2019). Effects of Different Recovery and Improvement Measures on Degraded Leymus chinensis Steppe Community and Plant Functional Traits. Master degree dissertation, Inner Mongolia University, Hohhot. |
[ 齐丽雪 (2019). 不同恢复改良措施对退化羊草草原群落及植物功能性状的影响. 硕士学位论文, 内蒙古大学, 呼和浩特.] | |
[29] | Qin Y, Liu WH, He F, Tong ZY, Li XL (2019). Influence of fertilization and root cutting on soil physicochemical properties and enzyme activities in a degraded Leymus chinensis steppe. Acta Prataculturae Sinica, 28, 5-14. |
[ 秦燕, 刘文辉, 何峰, 仝宗永, 李向林 (2019). 施肥与切根对退化羊草草原土壤理化性质和酶活性的影响. 草业学报, 28, 5-14.] | |
[30] |
Stearns SC (1989). Trade-offs in life-history evolution. Functional Ecology, 3, 259-268.
DOI URL |
[31] | Sun JH, Qi LX, Li YR, Bao Y (2020). Effects of different restoration and improvement measures on the functional traits of Leymus chinensis in degraded steppe. Ecology and Environmental Sciences, 29, 1738-1744. |
[ 孙佳慧, 齐丽雪, 李雅茹, 宝音陶格涛 (2020). 不同恢复改良措施对退化草原羊草功能性状的影响. 生态环境学报, 29, 1738-1744.] | |
[32] |
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
DOI URL |
[33] |
Wang CS, Wang SP (2015). A review of research on responses of leaf traits to climate change. Chinese Journal of Plant Ecology, 39, 206-216.
DOI URL |
[ 王常顺, 汪诗平 (2015). 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 39, 206-216.]
DOI |
|
[34] | Wang H, Deng B, Chen JS, Sun ZW (2018). Effect of root cutting on the components and reproductive allocation of Leymus chinensis. Pratacultural Science, 35, 2968-2977. |
[ 王欢, 邓波, 陈积山, 孙泽微 (2018). 垂直切根对当年羊草构件及繁殖资源分配的影响. 草业科学, 35, 2968-2977.] | |
[35] | Wang J, Zhao WW, Liu Y, Jia LZ (2019). Effects of plant functional traits on soil conservation: a review. Acta Ecologica Sinica, 39, 3355-3364. |
[ 王晶, 赵文武, 刘月, 贾立志 (2019). 植物功能性状对土壤保持的影响研究述评. 生态学报, 39, 3355-3364.] | |
[36] | Wang P, Sheng LX, Yan H, Zhou DW, Song YT (2010). Plant functional traits influence soil carbon sequestration in wetland ecosystem. Acta Ecologica Sinica, 30, 6990-7000. |
[ 王平, 盛连喜, 燕红, 周道玮, 宋彦涛 (2010). 植物功能性状与湿地生态系统土壤碳汇功能. 生态学报, 30, 6990-7000.] | |
[37] | Wang RZ, Zu YG (2001). Biomass and energy allocation in Leymus chinensis population. Bulletin of Botanical Research, 21, 299-303. |
[ 王仁忠, 祖元刚 (2001). 羊草种群生物量和能量生殖分配的研究. 植物研究, 21, 299-303.] | |
[38] | Wang X, Yang L, Zhao Q, Zhang QD (2020). Response of grassland community functional traits to soil water in a typical the Loess Plateau watershed. Acta Ecologica Sinica, 40, 2691-2697. |
[ 王鑫, 杨磊, 赵倩, 张钦弟 (2020). 黄土高原典型小流域草地群落功能性状对土壤水分的响应. 生态学报, 40, 2691-2697.] | |
[39] | Wang YL, Xu ZZ, Zhou GS (2004). Changes in biomass allocation and gas exchange characteristics of Leymus chinensis in response to soil water stress. Acta Phytoecologica Sinica, 28, 803-809. |
[ 王云龙, 许振柱, 周广胜 (2004). 水分胁迫对羊草光合产物分配及其气体交换特征的影响. 植物生态学报, 28, 803-809.]
DOI |
|
[40] | Wurenqiqige, Yan RR, Xin XP, Siqingaowa (2011). Influence of root cutting on degraded grassland Leymus chinensis community. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 32, 55-58. |
[ 乌仁其其格, 闫瑞瑞, 辛晓平, 斯钦高娃 (2011). 切根改良对退化草地羊草群落的影响. 内蒙古农业大学学报(自然科学版), 32, 55-58.] | |
[41] | Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM (2012). Leaf and twig functional traits of woody plants and their relationships with environmental change: a review. Chinese Journal of Ecology, 31, 702-713. |
[ 杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙 (2012). 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 31, 702-713.] | |
[42] | Yang L (2018). Community Characteristics and Geographic Distribution of Leymus chinensis Steppe in China. Master degree dissertation, Inner Mongolia University, Hohhot. |
[ 杨柳 (2018). 中国羊草(Leymus chinensis)草原植物群落特征及其地理分布. 硕士学位论文, 内蒙古大学, 呼和浩特.] | |
[43] | Yue XY, Zuo XA, Yu Q, Xu C, Lv P, Zhang J (2018). Effects of precipitation and short term extreme drought on leaf traits in Inner Mongolia typical steppe. Journal of Desert Research, 38, 1009-1016. |
[ 岳喜元, 左小安, 庾强, 徐翀, 吕朋, 张晶 (2018). 降水量和短期极端干旱对典型草原植物群落及优势种羊草(Leymus chinensis)叶性状的影响. 中国沙漠, 38, 1009-1016.] | |
[44] | Zhang JL, Cao J, Deng B, Chen JS, Zhang YX (2017). Root cutting can improve the growth of Leymus chinensis in Songnen Plain. Pratacultural Science, 34, 1057-1063. |
[ 张佳良, 曹杰, 邓波, 陈积山, 张月学 (2017). 垂直切根可以改善松嫩草地羊草生长. 草业科学, 34, 1057-1063.] | |
[45] | Zhang ZK, Wang Q, Wu YH, Liu XZ, Huang LJ (2020). Advances in functional traits of plants based on CiteSpace. Acta Ecologica Sinica, 40, 1101-1112. |
[ 张增可, 王齐, 吴雅华, 刘兴诏, 黄柳菁 (2020). 基于CiteSpace植物功能性状的研究进展. 生态学报, 40, 1101-1112.] | |
[46] | Zhou DW (2009). A phylogenic approach to comparative functional plant ecology. Acta Ecologica Sinica, 29, 5644-5655. |
[ 周道玮 (2009). 植物功能生态学研究进展. 生态学报, 29, 5644-5655.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[4] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[5] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[6] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[7] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[8] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[9] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[10] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[11] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[12] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[13] | 陈雪萍, 赵学勇, 张晶, 王瑞雄, 卢建男. 基于地理探测器的科尔沁沙地植被NDVI时空变化特征及其驱动因素[J]. 植物生态学报, 2023, 47(8): 1082-1093. |
[14] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[15] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19